
Regression methods

Regression methods search for the best relationship between a set of variables describing
objects (samples) and a set of responses obtained for the same objects.

The type of relationship (model) is initially searched for by fitting it to the experimental
measures; once the model has been subjected to validation, i.e., the quality of its description
of responses is checked, a prediction of future responses can be made:

Regression methods are thus mathematical models searching for functions f that relate to a
response Y a certain number, m, of variables (descriptors):

As shown in the general scheme reported in the next slide, the number and type of variables
determine the specific definition of a regression model.
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Linear regression

A linear model of type:

with β0 , β1 , …., βm representing the model parameters, is the simplest type of regression
model.

Actually, even a generic transformation of each variable, fi(Xi) can be used in the model:

Examples of linear models are then:

whereas the following are examples of non linear models:
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Simple linear regression

A linear model of type:

thus involving a single variable, represents simple linear regression, that is one of the most
common in analytical chemistry (for example, it is used for calibration purposes).

Examples of sets of observations that can be treated with simple linear regression are:

where average values of X and Y, representing the center of gravity (or centroid) of the
measurements set, are also indicated in the left graph, whereas the case of replicated
measurements of response y for specific values of the independent variable (x) is
represented in the right graph.
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A deterministic and an accidental (or stochastic) component can be distinguished in a simple
linear model:

Deterministic component

Accidental (stochastic) component

εββ ++= XY o 1

For the i-th observation the equation becomes:

The main assumptions made for simple linear regression are:

Consequently:

iioi XY εββ ++= 1

εi ∼ N(0, σ2),  thus:  E(εi) = 0 and V(εi )  = σ2 for  i = 1,2,….,n  (homoscedasticity);  

Cov (εi , εj) = 0 for  i ≠ j = 1,2,….,n   (uncorrelation between stochastic components)

2)( σ=iYV for i = 1,2,…. , n; 0),( =ji YYCov for  i ≠ j = 1,2,…., n. 
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Parameters β0 and β1 of the model can be subjected to statistical inference.

One of the first approaches adopted at this aim, still one of the most common, is based on
the least squares method, that was described in 1805 by the French mathematician Adrien-
Marie Legendre.
Friedrich Gauss was also one of the first mathematicians to study linear regression.

Such assumptions can be represented with the following graph:
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Estimators of β0 and β1 are indicated as b0 and b1 and the general equation for values
predicted by the model is:

Minimization of the squares of differences between actual and modelled values leads to the 
following equations for the two estimators:

Combining the equation for b0 and the general equation of the model, the following 
equation is easily obtained:

It is thus apparent that the least squares regression line passes through the data centroid, as 
emphasized in the following graph.
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Given a specific couples of values (Xi , Yi) the meaning of εi as the difference between the 
experimental value Yi and the value provided by the real model (green line) is evidenced in 
the figure: 

On the other hand, the difference between the experimental value Yi and the response value 
predicted by the inferred model (red line) is represented by ei, which is called residual.



If experimental data are fitted properly, 
the mean of residuals ei and their 
correlation with x are both equal to 0:

Actually, also the sum of all residuals is 
equal to 0.

On the contrary, in the example shown 
on the right the model is wrong; thus, 
both the residuals mean and their 
correlation with x are not equal to 0:

Specifically, the correlation is negative 
because the residuals decrease (even 
becoming negative) at the increase of x.



Interestingly, equations for estimators b0 and b1 can be obtained starting from the 
assumptions that the mean of residuals (or their sum) and their correlation with X are equal 
to 0: 
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Variances and distributions for estimators b0 and b1

Variances for the estimators of regression line slope and intercept can be obtained 
considering the general properties of variance:

where:

Consequently:



Note that ai 
in this case 
is different 
from the 
one used for 
V(b1). 

When each square of the binomial indicated in the last member of the sequence of 
equations is calculated and then the sum of squares is considered, the following equations 
have to be taken into account for cross-products:
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Since:

the variance of b0 can be finally expressed as:



The properties of b0 and b1 can thus be summarized as follows:

It is worth noting that σ2 can be estimated using the residual mean square, MSRES, 
corresponding to the square of residual standard deviation, sy/x. 

Distributions for b0 and b1 can thus be obtained:
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Confidence intervals for b0 and b1 can then be expressed as follows:

A confidence interval can be also calculated for the predicted response Y, according to the 
linear regression model, once a specific value of variable X is fixed.

First, the expectation for the predicted response can be expressed as:
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Since estimators b0 and b1 are NOT independent, the following equation has to be written for 
the predicted response variance:

since X, in this case, is a specific value (thus it is a constant).



Covariance between b0 and b1 can be calculated starting from the following general property:

which implies that:

As shown before, both b0 and b1  can be expressed as

with ai having a different expression in the two cases:

Consequently:

 

Cov(aY, bY) = ab Cov (Y,Y) = ab V(Y)

for b1for b0



Considering that V(Yi) is always equal to σ2, if homoschedasticity occurs, the following 
equation can be obtained:

Considering the expressions for V(b0), V(b1) and Cov(b0, b1):
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the variance related to the predicted response can be finally obtained:
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The equation can be easily re-written in a compact form: 

The following expression can subsequently be written, considering the normality of 
distribution for predicted Y values:

Using sy/x as an estimator for σ, the confidence interval for the predicted values of Y can be 
expressed as:

This expression is exploited by fitting programs to draw the so-called confidence bands, 
together with regression line, as shown, for example, in the next figure.



95% confidence interval for mean Y at X = 3.5:
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As apparent, the narrowest confidence interval is observed when an X value close to the 
system centroid is considered, as clearly indicated by the last equation.

On the other hand, it seems that several actual responses can be located outside confidence 
bands. This result will be discussed later.



Partitioning of total deviations and ANOVA related to linear regression

As shown in the following figure, the difference between an experimental Y value and the 
average of Y values can be partitioned into two contributions:
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A further development of this equation is:

Indeed, the double product                                             is equal to zero:
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The total deviation of a specific value from the mean of values can thus be partitioned into 
the regression deviation and the residual deviation:

Total deviation Regression deviation Residual deviation

SSTOT =  SSREG +  SSRES

The strict analogy with the equation referred to one-way (fixed factor) ANOVA is clear.



The following ANOVA table for regression can thus be written:

Source  of 
variation SS df MS E(MS)

Regression 1 MSREG

Residuals n-2 MSRES σ  2 

Total n-1
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The expected value for the regression mean square, MSREG, is identical to the one for the 
regression sum of squares SSREG (since df = 1). SSREG can be easily calculated:
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The expected value for the square of b1 can be calculated starting from its variance and from 
an already described general property of variance:

E(MSREG) =

Considering that dfREG = 1, thus MSREG = SSREG, the following equations can be written:



The significance of regression can be tested using hypothesis testing:

H0: β1 = 0  regression not significant
H1: β1 ≠ 0  regression significant XββY 1o+=

oβY =
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if the H0 hypothesis is true, both MSREG and MSRES are estimators of σ2.

The reject criterion for H0 is thus:
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Coefficient of determination and correlation coefficient

The coefficient of determination, denoted as R2 or r2, is the proportion of the variance in the 
dependent variable that is predictable from the independent variable.

In the case of linear regression, the mathematical definition is:

R2 is thus comprised between 0 and 1.

Notably, R2 = 0 when SSREG = 0 and R2 = 1 when SSRES = 0, i.e., when all the observed points 
are perfectly located on the regression line (total fit of the adopted model).

An interesting relationship can be found between the coefficient of determination and the 
linear correlation coefficient, ρ2

XY (whose estimator is indicated as r2
XY):

thus:
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As shown in the following figure, R2 becomes much lower than 1 when the variability of data 
not explained by regression becomes remarkable, yet its approach to values close to 0 does 
not necessarily mean that variables are not related at all:



Since:                                              

and: 

R2 is expected to increase when Sxx is increased (i.e., x values are more spread out around 
their mean) and if σ2 is decreased.
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Given a particular value of X, x, an estimate of the expected value of Y (the latter is also 
called conditional mean) is obtained:

It is important to point out that the latter is an estimate of the mean, not of a single actual 
value obtained for Y when X = x. 

A significant difference may exist between the estimate of conditional mean and that of an 
actual value of Y.

Comparison between confidence and prediction intervals

When least squares regression is applied, a general model is assumed to be valid for Y:

Regression produces an estimate of model parameters, thus leading to the equation:
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In the following figure, blue points correspond to the actual line of conditional means, i.e., 
the values of the true model, whereas yellow points represent the calculated regression 
line, that has been found, as it always occur with regression procedures, by rotation around 
the centroid:

The black square shows the value of the (conditional) mean of Y obtained when x = 3, which 
is very close to the true mean.

However, Y values obtained for x = 3, represented by brown crosses, can be quite different 
from that value.



In order to obtain a better estimate of actual values, the so-called prediction interval has to 
be considered.

Such interval must take into account both the uncertainty in the estimate of the conditional 
mean and the variability in the conditional distribution.

In order to find this interval, the so-called prediction error:

has to be considered.

The expectation for the prediction error is:
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The variance of prediction error can be obtained from the following variances:
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Considering that β0 and β1 are constant values, thus their variance is zero, the following 
equation can be written (notably, V(X) = 0 in this case, since X is fixed):

Given the normal distribution of Y data, the following relation can be written:



Considering that σ can be estimated by the residual standard deviation, sy/x, the prediction 
interval for Y at a α level of significance, can be expressed as:

If m replicates are obtained for response Y at a specific value of X, an average value of Y is 
obtained, and the corresponding variance becomes σ2/m, thus the prediction interval for Y 
becomes:  

It is apparent that, as emphasized by the figure in the next slide, the width of the prediction 
interval is larger than that of the confidence interval (since the term 1, or 1/m, is present 
additionally under the square root sign).



95% prediction interval for mean Y at X = 3.5:
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As shown in the figure, if the precision of responses is poor a remarkable difference is 
observed between prediction and confidence bands.

The two types of bands get closer when the precision of responses is increased.



Lack of fit in simple linear regression

A key aspect of linear regression is the evaluation of the eventual lack of fit, indicating that 
the model is inadequate; it is based on the analysis of residuals:
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As shown in the figure, if the linear model is not correct (because the curved model is 
actually correct) a residual includes both a random component, qi, and a systematic 
component, or bias, Bi, with the latter arising from the inadequacy (lack of fit) of the model.



If a lack of fit exists, the residual mean squares, MSRES:

cannot be considered an unbiased estimator of σ2 (the pure error).

Application of ANOVA to residuals analysis enables a separation between contributions due 
to pure error (p.e.) and to lack of fit (LoF).

An independent estimate of σ2, easily obtained by replicating responses at each Xi, is 
required:
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Considering n1 = n2 =….nh= n, the pure error sum of squares, SSp.e., is:

Since the number of degrees of freedom is given by N – h, where:

the pure error mean square, MSp.e., is calculated as:  
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The ANOVA table for simple linear regression, also including the contribution due to the Lack 
of fit, is the following:

Source  of 
variation SS df MS E(MS)

Total N-1

Regression By
subtraction 1 MSREG

Residuals N-2 MSRES σ2 

Lack of Fit By
subtraction h-2 MSLoF

Pure error N-h MSp.e.
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In order to find the presence of lack of fit the following statistic needs to be defined:

which is distributed according to an F distribution with h-2, N-h degrees of freedom.

The presence of Lack of fit will thus be confirmed, with a α significance coefficient, if:

It can be demonstrated that, as reported in the ANOVA table shown before, the expected 
value for MSLoF  is:

Since MSp.e. = σ2
p.e. ,  the absence of a significant difference between MSLoF and MSp.e. implies 

that all the bias values Bi are negligible (indeed, the sum of their squares is close to 0), which 
is consistent with the absence of lack of fit.

F = MSLoF/MSp.e

MSLoF/MSp.e ≥  Fh-2, N-h, α
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A numerical example

Suppose that the following X and Y values were obtained from a series of measurements:

X Y
90 81; 83
79 75
66 68; 60; 62
51 60; 64
35 51; 53

These sums can be easily calculated:

The total sum of squares, SSTOT, is thus given by:



The slope of regression line is:

The regression sum of squares, SSREG, is:

As a result, the residual sum of squares is 1084.1 – 956.66 = 118.44. 



Calculations required for the pure error sum of squares, SSp.e., are:

xi

SSp.e. =  2 + 0 + 34.67 + 8 + 2 = 46.67

SSLoF = SSRES – SSp.e. = 118.44 – 46.67 = 71.77 



Since the ratio F = MSLoF/MSp.e. is lower than the critical value of F distribution:

The simple linear model is adequate, at a level of confidence of 95%.

The following ANOVA table is thus obtained:

Source  of 
variation SS df MS

Regression 965.66 1 965.66

Lack of Fit 71.77 3 23.92

Pure error 46.67 5 9.33

Total 1084.1 9



Calibration and inverse regression

A calibration experiment typically consists of two stages.
In the first stage n observations (xi, yi) are collected from standards and used to fit a 
regression model, that in the simplest case can be expressed as:

    

The fitted model is often referred to as the calibration curve or standards curve.
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In the second stage m (m ≥ 1) values of the response are observed for an unknown predictor 
value x0. 

Inverse regression (also called inverse prediction or discrimination) is the procedure, based 
on the calibration line, adopted to estimate the value x0 from a single observation y0 or from 
the mean of m replicated observations. 

x0

y0

x0 ± tn-2, 1-α/2 sx0



The x0 estimate is based on inverting the calibration curve at y0 (i.e., solving the fitted 
regression equation for x0) and is easily extended to polynomial and nonlinear calibration 
problems:
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Two approaches are usually adopted to calculate confidence intervals for :

1) Wald interval

2) Inversion interval

0x̂



Wald interval

According to the Wald approach, the following standard deviation can be estimated for :

thus an approximate 100 (1-α) % confidence interval for     is given by:
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From a graphical point of view this interval can be obtained by exploiting prediction bands,
namely, by extrapolating x values corresponding to the upper (y+) and lower (y-) limits of the
prediction interval for y0:
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For example, if the y+ value corresponding to x = x0 is considered:

x0
+ corresponds to the abscissa of the calibration line point that has a y+ ordinate:

thus:

which means that x0
+ is the upper end of the confidence interval calculated for x0 using the

Ward equation.



Inversion interval

A confidence interval for      can be constructed also by inverting a prediction interval for the 
response, thus it is called “inversion interval”.

From a graphical point of view, an approximate inversion interval can be obtained by 
drawing a horizontal line through the scatterplot of the standards at y0 and finding the 
abscissas of its intersections with the prediction bands of the calibration curve:
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Interestingly, for the simple linear calibration problem the Wald-based interval is equivalent
to the approximate inversion interval:

xβ̂β̂ŷ 10+=

Y

X

0y

+
0x̂0x̂−

0x̂

Prediction band

+y

−y
Wald interval

(approximate) inversion
interval



It is worth noting that the expression for can be expressed in an alternative form, if the
following relationships are considered:

Indeed, the equation:

is easily transformed into:
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As shown in the following figure, even a limited number of replicates can reduce
significantly the uncertainty on x0:
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Moreover, given a certain number of replicates, the uncertainty on x0 is minimized when
and when Sxx is increased.xx =0



Considerations about the Sxx term and the experimental design of calibration

The SXX term depends on the number of experimental points but also on their distribution
along the x axis.

Sxx values as a function of the distribution of
calibration points are reported in the figure on the
right:

As apparent, they are higher for designs including
clusters of points close to the ends of the x interval.

However, such designs would not provide good
guarantees on the adequacy of the adopted linear
regression model.

Consequently, calibration designs including evenly-
spaced points, that lead to intermediate values for
Sxx but, additionally, provide information on
important aspects like homoscedasticity and
linearity, are usually preferred.



It is also worth noting that, as shown in the following figure, the distribution of
experimental points has a clear influence also on the centroid, indicated by an arrow in each
set of points:

2.5 5 1510 200

Sxx = 311.7

Sxx = 298.2
Sxx = 514.9

Sxx = 312.0

The centroid displacement has, in turn, a direct influence on the position of confidence and
prediction bands, and, consequently, on the width of confidence intervals for extrapolated
concentrations.

The choice of the calibration design has thus to consider also this important aspect.
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