
Classification methods

The goal of classification methods is associating an object (sample) to a specific class, based
on the values of a certain number of independent variables (descriptors)

The following requisites have to be fulfilled:

1) classes must be defined preliminarily
2) a training set of objects (samples) must be available
3) each object of the training set can be assigned to one of the predefined classes.

The preliminary definition of classes can occur according to one of the following criteria:

1) classes are known a priori, based on theoretical considerations

2) classes are searched for through methods related to Cluster Analysis

3) classes can be defined through a categorical variable (e.g., the type of catalyst adopted 
for a chemical reaction)

4) classes are defined through the categorization of a quantitative variable.



An example of procedure 4 is shown in the following figure:

Objects/samples are thus assigned to classes 1, 2 or 3 based on the value of variable x1.
Once this is used to define classes, it is removed from the classification model.

The classification model is subsequently developed, starting from other variables related to 
objects, which must be independent on classes.

After the model has been constructed, an
unknown object, not belonging to the training set,
can be assigned to one of the classes.

The most natural criterion for classification
consists in assigning this object (X) to the class
whose centroid is closest to the obiect, as shown
for a bidimensional space in the figure on the
right, where class centroids are indicated by
circles.



Classification methods can be distinguished
in non-modelling and modelling ones.

Modelling methods produce a model able
to define the borders of each class, i.e., the
dimensions of a space enclosing all objects
belonging to that class.

They are drawn as ellipses in the figure on
the right.

Note that object X in the figure cannot be
assigned to any of the three classes, since
it is external to their borders.



Evaluation of a classification method: confusion matrix

The so-called confusion matrix enables the evaluation of a classification method, based on its
ability to assign objects correctly to classes.

In the matrix, actual classes, those adopted in the training set, are represented by rows,
whereas assigned classes are represented by columns:

In the example shown in the figure, 30 objects are distributed among classes A (10), B (12)
and C (8).

Numbers reported along the main diagonal of the matrix represent objects classified
correctly, thus 9 (out of 10) for class A, 8 (out of 12) for class B and 5 (out of 8) for class C.



Numbers located outside the main diagonal represent objects that, although belonging to a
certain class, are erroneously assigned to another class.

Consequently:

1 object of class A has been assigned to class B;
2 objects of class B have been assigned to class A and 2 objects to class C
1 object of class C has been assigned to class A and 2 objects to class B

The final number of each row, ng , corresponds to the number of objects originally present in
a specific class.
The final number of each column, ng’ , corresponds to the number of objects assigned to a
specific class based on the calculated model.



A parameter that can summarize in a simple way the result of a classification procedure is the
correct classifications percentage, or, non-error rate, NER%, defined as follows:

where NER%g represent the non-error rates for the different classes and G is the number of
classes.

In the specific example:

NER% (A) = 9/10 = 90.0% NER% (B) = 8/12 = 66.7% NER% (C) = 5/8 = 62.5%

thus:

NER%= [(9/10) + (8/12) + (5/8)]/3 x 100 = 73.05%

A parameter complementary to NER% is the error rate, ER%, defined as 100-NER%. In the
specific example ER% = 26.95%.



A priori probability, sensitivity and specificity of a class

If specific indications are not available, two equations can be adopted to assign a priori
probabilities to classes, Pg:

where n is the total number of objects.

In the first case the same probability is assigned to each class, without considering the
corresponding number of objects.

In the second case the probability corresponds to the ratio between the number of objects in
a specific class and the total number of objects.
This definition obviously leads to low probabilities for classes including a few objects.

The sensitivity of a class is defined as the percentual ratio between objects correctly assigned
to a certain class, cgg, and the total number of objects actually belonging to that class, ng:



The specificity of a class measures the capacity of isolating objects of a certain class from
those of other classes; indeed, it corresponds to the percentual ratio between the number of
objects correctly assigned to a specific class, cgg, and the total number of objects assigned to
that class, ng’:

In the following table, values of Sng% and Spg%, calculated from data shown before, are
reported:

It can be easily verified that, if no incorrect assignment is made, sensitivity and specificity are
equal to 100% for all classes.

(9/12)
(8/11)
(5/7)

(9/10)
(8/12)
(5/8)



k-nearest neighbours (K-NN) classification method

The k-nearest neighbours classification method, first developed by American statisticians
Evelyn Fix and Joseph Hodges in 1951, and then expanded by the American information
theorist Thomas Cover in the Sixties, is a non parametric one, i.e., it does not require the
knowledge of the distribution of variables.

In this case classification is based on the concept of analogy.
The method considers the distance (usually the euclidean distance) between objects and a
selection of an integer number, k, of neighbour objects with respect to the one to be
classified.
The algorithm of the K-NN method includes
the following steps:

a. data scaling
b. choice of the type of distance to use
c. choice of the number of neighbours, k
d. calculation of the matrix of distances
e1. consideration of the k-nearest

neighbour objects for a specific object
e2. assignment of the object to the most

represented class in the k neighbours.

Usually, several values of k need to be tried before finding the optimal one, i.e., the one
leading to the lowest number of classification errors in the training set.



When the same number of nearest neighbours belonging to different classes is found, the
object to be classified is assigned to the class for which the sum of distances between that
object and the nearest neighbours belonging to that class is minimum.

The K-NN model is not a mathematical model; it consists in the ensemble of the best k value
determined, the type of measure adopted and all objects belonging to the training set.

The prediction of the class for a new object is performed by adding the object to the training
set and then evaluating to which class the object is assigned, based on the criterion
described before.

The method usually provides good results and is particularly efficient when the borders
between classes are non-linear and particularly complex.



Let us consider the table shown on
the right, in which the results
obtained for four training samples,
represented by a special paper
tissue, are reported.

Two objective attributes (acid
durability and strength) and a
classification as bad or good,
provided from a survey with
customers, were obtained for each
sample.

A numerical example

In this case the classification of the four samples of the training set is based on the
customers’ evaluation (bad or good).

The classification problem is expressed as follows:

a new paper tissue whose objective attributes are X1 = 3 and X2 = 7 is produced; the K-NN
method is adopted to evaluate if it would be classified as bad or good by customers.



Let us choose k = 3 as the first option.

Since the coordinates of the new object are (3,7), squared Euclidean distances from objects
of the training set can be easily calculated and ranked, as shown in the following table:

As shown in the last column of the table, two of the three nearest neighbours belong to class
«good», whereas one belong to class «bad», so the new object is assigned to class «good».



Another example: classifying elements between metals and nonmetals, based on
four periodic properties.

The following four periodic
properties:

Atomic radius
Ionization energy
Electron affinity
Electronegativity

were considered for 38
elements, divided into two
classes: metals (22) and
nonmetals (16), according to
some versions of the periodic
table.

The KNN method was used to
assign the elements to the two
classes, changing the number
of nearest neighbours from 1 to
10.
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The following results were obtained, in terms of % Error rate, according to the number of
nearest neighbours adopted:

In particular:

B, Si, P, As and Te
were nonmetals
misclassified as metals

Ge and Po were
metals misclassified as
nonmetals

where the initial
classifications were based
on a periodic table like the
one reported on the right.



The table on the right shows
which properties of those
elements had values compatible
with ranges characteristic of the
classes in which they were
misclassified

Misclassification was clearly
due to the partial overlap of
properties values for the two
classes for certain elements.

A less misleading version of the
periodic table of elements can
thus be the one in which most
elements misclassified using
the KNN method are actually
marked as metalloids.



Discriminant analysis

The term Discriminant Analysis is used to indicate a group of methodologies that, starting
from a sampling set of N p-dimensional data X, divided into k classes (C1, C2, …, Ck), enable
the assignment of a generic object to one of the k classes.

Multivariate discriminant analysis was introduced in 1936 by the British statistician Ronald A.
Fisher, while he was studying the assignment of fossil evidences to primates or humanoids
starting from measurements taken on them.

The most used methodology for discriminant analysis is Linear Discriminant Analysis (LDA).

The data set typical of LDA is represented by a N × p
matrix.

Each row in the matrix represents an object (sample),
characterized by p variables (X1, X2, …, Xp).

Each class includes Ni rows, each corresponding to an
object included in the class.



In the following example, the data matrix arises from 15 apple juice samples, divided into 3
classes including the same number of samples (Ni = 5), corresponding to as many varieties.

Each sample is described by the concentrations (g L-1) of sucrose, glucose, fructose and
sorbitol (one of the names used to indicate the alditol corresponding to glucose), thus p = 4.



The questions to which LDA has to answer are:

1) do the four classes, defined a priori, differ also with respect to values assumed by the
four explicative variables?

2) If so, is it possible to define a decision rule applicable to a new object, whose class is
unknown?

As an example, how should an apple juice with concentrations 11, 23, 50 and 3.8 g L-1 for
sucrose, glucose, fructose and sorbitol, respectively, be classified?

In the specific example, a 4-dimensional space would be required to represent all the original
15 samples, corresponding to the training set, and then verify if the original distribution
between classes is confirmed.

Afterwards, the unknown sample should be represented in the same space and its position
with respect to those belonging to the three classes should be evaluated.



In order to explain the general procedure, let us consider the simplest case, i.e., two classes
of samples described by two variables.

A graphical representation of samples
belonging to the two classes is easily
obtained in this case:

Projections of variables on the two axes are
useful to evaluate the degree of separation
between the two classes.

As apparent, the two classes are poorly
separated, especially in terms of the X2
variable.

The identification of class for a new sample
would be very difficult in this case.

A method to increase the separability between classes has thus to be found, e.g., by
considering the projection of samples in a direction differing from those of the variable axes.
This approach is the base of the technique called Linear Discriminant Analysis (LDA).



Linear Discriminant Analysis (LDA)

Let us consider a set of N p-dimensional data, of which Ni belong to class Ci, with i going from
1 to k.

The N × p matrix of data X can be reduced to a N × 1 vector z through an appropriate linear
combination.

As discussed for Principal Components Analysis, this operation can be interpreted, from a
geometric point of view, as the projection of a set of points in a p-dimensional space on an
axis defined by vector z.

Using matricial notation, the operation can be expressed through the following equation:

w represents the vector of weights given to each variable in the linear combination.

Given the i-th object (sample), described by p variables, the operation leads to the following
scalar, with xi representing the i-th row of the X matrix transformed into a column vector:

z =    X    w
(N× 1) = (N× p)·(p × 1)

where w = (w1, w2, …, wp)T

zi = wTxi = w1xi1 + w2xi2 + … + wpxip
1 = (1× p)·(p × 1)



If vector w norm is equal to 1 (i.e., w represents a normalized weights vector), the linear
combination corresponds to a projection of data on a line whose direction is indicated by
vector w, passing through the origin of axes.

The choice of vector w has to satisfy some criteria:

1) weights w1, w2, …, wp  should be chosen so that the distribution of objects xi between 
classes is reproduced by scalars zi in the best possible way;

2) the separation between scalars zi belonging to different classes should be maximized, 
aiming at the best possible discrimination between classes, thus enabling a reliable 
assignment of a new object (sample) to its class.



Let us consider the simplest case, represented by objects described by two variables and
distributed between two classes.
In the following figure, two different vectors w are represented:

As apparent, only the direction adopted for vector w in the right panel is able to fulfil the
two requirements described before, since the projections referred to objects beloging to the
same class are close and the two groups of projections referred to the respective classes are
well separated.



An interesting comparison can be made between Principal Component Analysis (PCA) and
(Fisher) Linear Discriminant Analysis (LDA):

As apparent, the maximum variance direction, which is prioritary for PCA, is totally
inadequate for a classification of the two objects, which is the goal of LDA.

Actually, the minimum variance direction enables the best separation between the two
classes.

PCA

LDA



In order to find the best vector w, a measure of separation between classes has to be
defined. The distance between classes centroids can be adopted.

In the case of two classes including objects defined by two variables, classes centroids co-
ordinates are the following:

where C1 and C2 are the set of values assumed by the two variables for the two classes,
respectively.

The centroids for each class in the direction obtained using vector w are:



the two centroids can be expressed as inner products between the row vectors of weights
adopted for variables and column vectors expressing the centroids of the two classes in the
original co-ordinates:

If column vectors µ1 and µ2 are defined as follows:

A target parameter, i.e., a quantity to be maximized, could thus be the distance, in absolute
value, between centroid projections on vector w:

clearly depending on the vector w selected.



However, the distance between the projections of classes centroids on a specific direction
does not take into account the dispersion of objects around centroids.

In the following figure the distributions of objects projections in specific directions are
represented by Gaussian functions with equal variance, thus centroids correspond to the
Gaussian maxima:

As apparent in the left panel, although direction X2 enables a good separation between
centroids, the overlap between classes projections is remarkable along it.
The direction minimizing the overlap betwen classes is the one shown in the right panel.



In the following further example, the separation between classes is better along direction x2,
although the separation of classes centroids is worse than that observed along direction x1:

This effect is due to the fact that the spread of objects in the two classes is more remarkable
along direction x1.

For this reason, Fisher proposed an approach based on the maximizaton of centroid distance
normalized by a measure of class dispersion (like the within-class scatter).



The Fisher linear discriminant is thus
defined as:

The LDA procedure tries to maximize
this quantity by choosing an
appropriate vector w.

Once a direction is selected for data projection, scatter is defined, for each class, as:

If two classes are present, the following quantity:

is defined as the within-class scatter of projected samples.

( )22~ ∑ ∈
−=

iCz ii zzs

)~~( 2
2

2
1 ss +

( )21 zz −
2

1
~s

2
2

~s



Notably, J(w) can be expressed using an alternative equation:

where SB represents the between-class scatter matrix and Sw = S1 + S2 represents the
within-class scatter matrix.

First, each Si can be expressed as follows:

consequently:

thus:



The numerator of the J(w) quantity can be expressed as follows:

The following equation can thus be written:

moreover, the total scatter is defined as:

where the sum is now extended to all samples, xi is a vector containing variable values for
the i-th sample and µ is a vector containing average values for all variables.

Since ST = SW + SB, J(w) can be expressed also as:



Maximization of the J(w) function

An important property of the J(w) function is its invariance with respect to a re-scaling of
vector w, i.e., it remains identical when a new vector, obtained by multiplying vector w by a
scalar α, is considered.

A specific vector w, able to fulfil the equality , can be thus selected and the
maximization of J(w) corresponds to the maximization of .

By analogy with the procedure followed for Principal Component Analysis, the problem can
be solved using the approach of Lagrangian multipliers, i.e., by maximizing the following
function:

The maximization corresponds to solving the following system:
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Each member of the first equation of the system can be multiplied by Sw
-1, thus obtaining

the following equation:

The maximization of the J(w) function can thus be considered as the solution of an
eigenvalue problem, were λ is an eigenvalue of Sw

-1SB and w is the corresponding
eigenvector.

Once w has been determined, the linear discriminant function is:

If objects are represented by two variables (p = 2) this equation can be written as:

where w1 and w2 are defined Fisher non standardized coefficients.

If variables are expressed using different units of measurement it is better to consider Fisher
standardized coefficients, which are obtained by considering standardized values of
variables.

In any case, larger coefficients are related to variables with a higher discriminating capacity.

xwTz =

z = w1 X1 + w2 X2



A numerical example of LDA with two classes

Let us consider bidimensional data
reported in the figure on the right,
originally divided into two classes:

Class centroids are:

µ1

µ2

Class 1 Class 2

µ1 = [3.0  3.6]T µ2 = [8.4  7.6]T    

x1 x2

4 1

2 4

2 3

3 6

4 4

x1 x2

9 10

6 8

9 5

8 7

10 8



Since scatter matrices are defined as:

their calculation implies the consideration, for each of the two classes, of the (x-µi) matrix
and its transpose. As an example, the two matrices for Class 1 are:

1 -2.6

-1 0.4

-1 -0.6

0 2.4

1 0.4

x – µ1

(x – µ1)T

1 -1 -1 0 1

-2.6 0.4 -0.6 2.4 0.4

The resulting S1 matrix is:
4 -2

-2 13.2



0.6 2.4

-2.4 0.4

0.6 -2.6

-0.4 -0.6

1.6 0.4

x – µ2

(x – µ2)T

0.6 -2.4 0.6 -0.4 1.6

2.4 0.4 -2.6 -0.6 0.4

In the case of Class 2 the two matrices required for the calculation of S2 matrix are:

The resulting S2 matrix is:
9.2 -0.2

-0.2 13.2

The following step of the calculation implies the sum of S1 and S2 to obtain SW:

4 -2

-2 13.2

9.2 -0.2

-0.2 13.2
+ =

13.2 -2.2

-2.2 26.4

S1 S2 SW



The inverse of SW matrix, indicated as (SW)-1, is:

The next step of calculation is finding the between-class scatter matrix, SB:

In the specific case, the calculation is:

The inverse of SW matrix and SB matrix can now be multiplied:

For example: 2.375 = 0.077 × 29.16 + 0.006 × 21.6

0.077 0.006

0.006 0.038

(µ1 – µ2) (µ1 – µ2)T

-5.4 -4
-5.4

-4

29.16 21.6

21.6 16

(µ1 – µ2) (µ1 – µ2)T

0.077 0.006

0.006 0.038
×

(SW)-1 SB

29.16 21.6

21.6 16
=

2.375 1.759

0.996 0.738

(SW)-1 SB



Starting from the equation

the following equation can be written (remembering that I = )

The solutions of this equation are the eigenvalues:

λ1 = 3.113 and λ2 = 0

2.375 - λ 1.759

0.996 0.738 - λ
= 0 λ2 – 3.113 λ + (2.375*0.738 – 1.759*0.996) 

= λ (λ – 3.113) = 0   

The eigenvector can be obtained by reconsidering the equation

and the non zero eigenvalue, i.e., λ1 = 3.113:

2.375 1.759

0.996 0.738

w1

w2
=  3.113 

w1

w2

1 0

0 1



Finally, the scalar z = wT x can be obtained:

z = 0.920 X1 + 0.393 X2

This equation represents the linear discriminant function for the problem under
consideration.

2.34

1.0
2.375 w1 + 1.759 w2 = 3.113 w1
0.996 w1 + 0.738 w2 = 3.113 w2

w1

w2
=

√(2.34)2 + (1)2 = 2.545 Vector w can be normalized to its norm, which is:

Its components thus become: w1 = 2.34/2.545 = 0.920 and w2 = 1.0/2.545 = 0.393

The following system is thus obtained:



µ1

µ2

θ = 66.9°

From a geometrical point of view, the
equation for z represents a specific
direction on the X1, X2 plane.

In particular, it represents a line
passing through the origin and
forming an angle θ of 66.9° with the
vertical axis.

Indeed:

0.920/0.393 = 2.34 = tan θ

θ = 66.9°

As evidenced in the figure, the direction represented by the equation for z enables the best
separation between the projections of objects belonging to the two classes.



Classification of a new object using LDA

Once values of projections are found for objects included in the training set, the
classification of a new object can be based on the calculation of its projection, zi, on the
direction of vector w, starting from the corresponding vector xi:

The resulting zi is compared with z values corresponding to the centroids of classes; the
object will be related to the class whose centroid is closest to its projection.
As an example, if two classes are present the new object will be related to Class 1 if:

or, equivalently:
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This relationship can be easily visualized in
geometrical terms by representing projections of
objects on an horizontal line corresponding to the
direction of vector w, as shown in the figure on the
right.



If a previously described dataset is re-considered and the output of LDA is shown:

LDA

The following values are obtained for class centroids projections:

Since the average value of the two centroids projections is equal to 7.0, a new object will be
assigned to Class 1 if its projection is lower than 7.0, otherwise it will be assigned to Class 2.

Class 1
Class 2

3.15
10.85

7.0



Linear Discriminant Analysis (LDA) with more than two classes

When more than 2 classes are involved in LDA (k > 2) k-1 projection vectors wi, arranged in
columns in a projection matrix W, are considered:

In this case within-class, SW, and between-class, SB, scatter matrices are defined as follows:

where µi is a vector containing the co-ordinates
of the i-th class centroid.

xWz T=

where µ is a vector containing the co-ordinates
of the centroid of class centroids.

In the figure SWi matrices, contributing to SW, and SBi matrices, contributing to SB, are
represented in geometrical terms for a system including three classes and based on two
variables.



The corresponding scatter matrices for projections are:

where:

where:

By analogy with LDA involving two classes, the following equations can be written:

In this case determinants of scatter matrices need to be calculated.

The optimal projection W can be obtained using an eigenvalue equation:

WSWS W
T

W =
~

WSWS T
BB =

~



If three classes are considered (k = 3), two of the three possible eigenvalues are different
from zero.

The largest eigenvalue, λ1, is considered first and the corresponding eigenvector (w1), and
then also the first linear discriminating function, that is the one providing the better
separation of classes, are obtained.

The second eigenvalue, λ2, lower than λ1, is considered subsequently, thus eigenvector w2
and the second linear discriminating functon are obtained.

It is worth noting that a further constraint has to be introduced when calculating w2, since w1
and w2 must be incorrelated.

A graphical representation referred to a
system including three classes and based
on three variables is reported in the
figure on the right.

In this case three-dimensional classes
are projected onto planes, whose
normals are represented by vectors w1
and w2.

As apparent, a better distinction
between classes is observed on the
plane normal to w1.



A numerical example of LDA with three classes performed with Minitab 18

Let us re-consider the dataset referred to apple juices described by concentrations (g L-1)
found for four carbohydrates, divided into three classes:

The problem to be solved using LDA is classifying an apple juice containing 11, 23, 50 and 3.9
g L-1 of sucrose, glucose, fructose and sorbitol, respectively.



As an example of software application, Minitab 18 has been used to perform LDA, which can
be assessed using the following path: Stat > Multivariate > Discriminant Analysis….



The Discriminant Analysis window is used to select the column indicating classifications in the
Groups box, whereas columns referred to variables are selected for the Predictors box.
The program enables the choice between Linear and Quadratic Discriminant Analysis.

Note that four further columns (from C7 to C10) have already been prepared and named as
Sucr/Gluc/Fruc/Sorb Unk, since they will be used to enter variables for unknown samples.

In this case, a column of the Worksheet, usually the first, is used to indicate classifications of
samples in the training set. The other columns are used for variables:



The first information obtained as output, included in the
Session window of the Minitab software, is the summary
of samples belonging to the three classes (groups) and
then the confusion matrix.

As apparent, 100% of correct classifications was obtained
in the specific case, since all 15 samples were classified in
the originally proposed classes.

Several further results can be found in the Session window:



Covariance matrices for each class, that can be used to generate the corresponding scatter
matrices through multiplication by the number of degrees of freedom, are also reported in
the Session window (note that some values are missing since they are identical to
symmetric values with respect to the main diagonal of matrices):

An important result is also the
Summary of Classified Observations,
that indicates the True group (the
one declared), the Predicted Group
and the Cross Validated (X-val)
Group for each sample in the
training set:

The table enables an evaluation of
the attribution of each sample to a
specific class.



Minitab 18 also provides the so-called Classification Functions (Linear Discriminant Functions,
in the specific case), one for each of the classes. They are used for the classification of
unknown samples.

In particular, the general form of a Classification Function in Minitab is:

Values obtained for coefficients cj1, cj2,…, cj0 for each
class in the specific case are reported in the table
shown on the right.

The assignment of a new sample to one of the classes is achieved by introducing the
corresponding values of variables into classification (linear discriminant) functions:

In the specific case, the maximum value (score) is obtained from the function referred to
Group B, thus the new sample is classified in this group.



The assignment of one or more new samples to classes can be made automatically using the
Minitab 18 software.

First, values of variables referred to new samples are introduced in appropriate columns,
different from those including values of variables for samples in the training set:

Those columns have to be indicated in the «Predict
group membership for:» box included in the
Discriminant Analysis: Options window:



Once the calculations are performed by the program, a specific table (Prediction for Test
Observations) will appear at the end of the Session Window:

The new sample (Observation) will be labelled with the number of the worksheet row in
which the corresponding values for variables are reported (row #1 in the specific example).

The Predicted Group is B, in accordance with calculations shown before, based on Linear
Discriminant Functions.

The probability of this assignment, reported in the last column of the table, is related to the
squared distance of the new sample from the centroids of the three groups.

In the specific example, the differences between distances are so large that the probability of
assignment to Group B is 1 (100%). In other cases, the assignment is made to the class
(group) for which the probability is higher.



In the case of Statgraphics, values of variables referred to eventual new samples to be
classified are introduced in the same worksheet columns used for samples in the training
set but the box referred to the classification is obviously left blank:

Other statistical programs provide further interesting information on LDA in their output. As
an example, Statgraphics also provides eigenvalues related to linear discriminant functions



Once calculations are completed, a classification table is reported in the program’s output:

As evidenced in row #16, the unknown sample is classified primarily in Group B (probability =
0.9999), due to the value assumed by the corresponding linear discriminant function
(Highest value).
The program also reports the second possible assignment (2nd Highest Group) and the
corresponding probability (0.0001).

Notably, slight (not significant) differences can be observed between Minitab 18 and
Statgraphics in terms of values referred to classification functions and/or squared distances.
They are due to small differences in rounding off during calculations.



A plot of discriminant functions is also generated by Statgraphics:

(-0,40; -1,31)
(z1, z2)

Centroids for different classes are also reported in the plot. Notably, (z1, z2) co-ordinates of
the unknown sample can be calculated by introducing standardized values of their variables
into linear discriminant functions:

Based on these co-ordinates, the point referred to the unknown sample clearly appears
closer to points related to Class B, thus confirming the previous assignment.

Z1 = -1.090×(-0.221) -0.1092 ×1.23 - 0.4645 ×(-0.2897) + 1.227 ×(-0.525) = -0.40

Z2 = 0.7414×(-0.221) -0.8295 ×1.23 + 0.5028 ×(-0.2897) - 0.037 ×(-0.525) = -1.31



Limitations of Linear Discriminant Analysis (LDA)

Three major limitations can be described for LDA:

1) LDA produces at most k-1 feature projections, when k classes are considered. If
classification error estimates establish that more features are needed, other methods
must be employed to provide additional features;

2) LDA is a parametric method. It data distributions are significantly non-Gaussian, LDA
projections may not preserve the complex structure included in data needed for
classification:



3) LDA will also fail if discriminatory
information is embedded in the
variance of data, rather than in the
mean.

In this case PCA is expected to be more
effective than LDA.



A comparison between LDA and PCA

As an example of comparison between LDA and PCA, the recognition of coffee odour will be
considered.

Odour released from five varieties of coffee beans, Sulawesy, Kenya, Arabian, Sumatra and
Colombia, was analyzed using an array consisting of 60 gas sensors. 45 analyses were
performed for each variety.

In the figure shown on the right
readings obtained for all
samples by each of the 60
sensors are represented as
continuous lines with different
colors.



The comparison between 3D-scatter plots obtained using PCA and LDA clearly shows that
LDA was more effective in separating the five coffee beans varieties:

PCA LDA

This is an example of a system in which discriminatory information is not aligned with the
direction of maximum variance.



Chemometrics based on the MetaboAnalyst web-based platform
The MetaboAnalyst platform is freely accessible at the web address metaboanalyst.ca



If data have been already processed and values of variables are thus known, a txt or an Excel
csv (comma-separated values) file, with samples reported in rows, are the simplest files that
can be used as input, selecting «Concentrations» as the Data Type:

Part of the dataset adopted, including
spectral intensities obtained for 30
fatty acid ions (m/z values are
indicated in the columns) referred to
26 wild and 25 farmed Canadian
salmon samples.



Summary of the data integrity check performed by Metaboanalyst:



Overview of the available normalization/transformation/scaling approaches:



In this case data were
subjected to autoscaling, since
there were significant
differences between variables
values.

By clicking on the «View
results» button, box and
whisker plots are shown for
each variable before and after
normalization.



After data normalization, many different types of elaborations can be selected:



Once PCA is selected and
performed, all possible
combinations of bi-
dimensional score plots can
be visualized in the
Overview.

In the following figure, all
combinations involving the
top 5 principal components
are shown:



The Scree plot indicates absolute and
cumulative contributions of principal
components to the overall variance.

Here, values referred to the first five
principal components are shown:

The Score plot obtained for the first two
principal components is integrated by ellipses
representing the 95% confidence areas
related to the two sample groups.

The PERMANOVA calculation evaluates the
significance of the separation between the
two groups.



An interactive Loading plot can be
visualized for each couple of principal
components.

By clicking on the point referred to a specific
variable, a new window is opened, reporting
box-and-whisker plots for the original and the
normalized (auto-scaled, in this case) values
of the variable.



Synchronized 3D plots, corresponding to score and loading plots for three principal
components, can be also visualized:

The two plots can be rotated contemporarily around different axes, to emphasize the
relationship between principal components and variables.

Each plot is also interactive, thus the number of the specific sample or the name of the
variable, according to the case, can be visualized by clicking on specific points.



A biplot can be also visualized for each couple of principal components, with arrows referred
to variables being reported with an appropriate scale and each sample represented by a
colored dot. Colored areas corresponding to different groups of samples are also drawn.



Hierarchical Clustering Heatmaps can be obtained using Metaboanalyst, along with
conventional HCA dendrograms. In the following figure the settings adopted for the
elaboration of salmon fatty acids data are shown.



The heatmap resulting from salmon fatty acid data emphasizes the good clustering of farmed
and wild-type samples, and also the presence of a defined clustering of variables:



In this case the conventional
dendrogram, performed only
for samples, enables a better
visualization of the relationships
existing between specific
samples:



The Metaboanalyst platform also includes some approaches to discriminant analysis based
on Partial Least Squares. One of the most popular, although sometimes can lead to
controversial results, is Partial Least Squares – Discriminant Analysis (PLS-DA).

In this case, the assignment of a sample to a specific class, which is a categorical variable, is
preliminarily coded into a numerical variable (like 0 and 1), leading to a vector y if just two
classes are considered (in this case the algorithm is known as PLS1-DA), and to a matrix Y if
more than two classes are involved (algorithm PLS2-DA), as exemplified by the following
figure:

In this case X is the matrix containing the values of variables for samples included in the
classes, with rows representing samples and columns representing variables, as usual.
Like in PLS regression, the algorithm searches for components arising from the original
variables accounting for a relevant portion of the covariance between X and y (or Y) and then
finds a regression model that can be used to predict the assignment of a new sample to one
of the classes.



The overview obtained for PLS-DA results using Metaboanalyst includes several options and
shows plots for couples of components that resemble PCA score plots, although their
meaning is different:



In the case of PLS-DA,
components are combination of
original variables ordered
according to their ability to
account for the covariance
between matrix X and vector
y/matrix Y.

However, the percentages
shown in the score plot for each
component still correspond to
the proportion of matrix X
variance accounted for by that
component. Consequently, it is
not impossible that component
2 accounts for a higher variance
with respect to component 1.

Loading plots and synchronized 3D plots are reported by Metaboanalyst also for PLS-DA. In
this case loadings represent the contributions of variables to a specific component.



Further PLS-DA outputs are included in the Imp. Features link of the Overview menu:

In particular, Variable Importance in Projection (VIP) scores are calculated for each variable
j, according to the following formula:

where J and F represent the total numbers of original and latent variables, respectively, w2
jf

represents the weight of variable j on the latent variable f and SSYf and SSYtot.expl. represent,
respectively, the portion of y or Y variance explained by latent variable f and the variance
explained by all latent variables.



It is common to assume as a 
threshold a VIP value larger 
than 1 (i.e., larger than the 
average of squared VIP 
values), which means that a 
selected variable will have an 
above average influence on 
the model explaining 
response Y.

Alternative threshold values 
include lowering the 
threshold to 2/3 or 
considering the average of 
VIP values.

In any case, the number of 
variables (features) for which 
VIP scores are calculated can 
be increased by the analyst by 
changing the number of top 
features to show.

The VIP scores plot generated by Metaboanalyst also includes qualitative information on the
values of a specific variable in the classes under comparison, based on a color scale.
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