
Design of Experiments (DoE)



Design of Experiments (DoE): the first developments

Statistical experimental design, or design of experiments (DoE) is the methodology referred 
to how to conduct and plan experiments to extract the maximum amount of information in 
the fewest number of runs.

The first example of DoE dates back to 1923, with a study on the response of different 
potato varieties to fertilizers, published by the famous English statistician Ronald Fisher.

Fisher published the first book on the topic in 1935 (in the same book the nomenclature of 
hypothesis testing was also introduced).

During the 1950s the English statistician George E.P. Box published several papers on 
fundamental aspects of experimental design.



Problems with the «One variable at a time (OVAT)» approach

Although it is widely adopted in scientific research, the approach based on the consideration 
of the effect of one variable at a time (OVAT) can lead to poor results, eventually preventing 
the researcher from finding the really optimal conditions.

As an example, a contour plot of a reaction yield as 
a function of time and temperature is reported in 
the figure on the right:

As apparent, the yield tends towards 100% when 
high temperatures and short times are adopted.

If temperature and time were explored separately, 
as indicated by the two black lines in the figure, 
the trends shown in the next slide would be 
observed.

Note: °C = (°F – 32) ×  5/9



Since the appropriate combination of reaction temperature and time was not explored, the 
maximum yield achieved using the OVAT approach (lower than 80%) was much lower than 
the actual maximum yield. 

Yield vs reaction time 
at constant temperature (155°F).

Yield vs temperature
at constant time (1.7 h).



To locate the real optimum, an experiment that 
varies time and temperature together (the only 
way to detect interactions) should be 
performed.
This type of experiment is called a factorial 
experiment.

The responses observed at the four corners of 
the square indicate that we should move in the 
general direction of increased temperature and 
decreased reaction time to increase yield. 

Two approaches might be used:

Method of steepest ascent

A few additional runs could be performed in the direction found before, which would be 
sufficient to locate the region of maximum yield. 

Response surface methodology

After reaching the region of the optimum a more elaborate experiment could be performed 
to obtain a very precise estimate of the optimal operating condition.



Comparison between DoE and OVAT approaches

 DoE considers the interactions among the variables, while the OVAT does not;

 DoE provides a global knowledge (in the whole experimental domain), while OVAT gives a 
local knowledge (only where the experiments have been performed);

 In each point of the experimental domain, the quality of the information obtained by the 
experimental design is higher than the information obtained by the OVAT;

 The number of experiments required by an experimental design is smaller than the 
number of experiments performed with an OVAT approach.

The most important aspect of DoE is that it provides a strict mathematical framework for 
changing all pertinent factors simultaneously and achieve this in a small number of 
experimental runs. 



DoE basic terminology

Experimental domain the experimental ‘area’ that is investigated, 
defined by the variation of the experimental
variables.

Factors experimental variables that can be changed 
independently of each other

Independent variables same as factors

Levels values assumed by factors

Continuous variables independent variables that can be changed 
continuously

Discrete variables independent variables that can be changed step-
wise

Responses the measured value of the results from 
experiments

Residual the difference between the calculated and the 
experimental result



Steps for designing an experiment

1. Recognition of/statement of the problem: can be very helpful in terms of process 
understanding

2. Choice of factors and levels: process knowledge, based on practical experience and 
theoretical understanding, is required; in a first step the number of factor levels is 
usually kept low (e.g., 2)

3. Selection of the response: it should correspond to a quantity providing useful 
information on the process under study; sometimes multiple responses are 
considered

4. Choice of experimental design: selection of sample size (number of replicates) and run 
order for experimental trials, eventual introduction of blocking or other randomization 
restrictions

5. Performing the experiment: at this stage great care must be put in experimental 
procedures; in fact, eventual errors would decrease significantly the experimental 
validity



6. Data analysis: statistical methods should be used in this step, to obtain objective 
results. Software packages are often used.

7. Conclusions and recommendations: draw practical conclusions about the results and 
recommend a course of action. Follow-up runs and confirmation testing should also 
be performed to validate the conclusions.



Empirical models

It is reasonable to assume that the outcome of an experiment is dependent on the 
experimental conditions. This means that response, y, can be described as a function based 
of the experimental variables xi; a contribution due to experimental error, ε, has also to be 
considered. Typical multivariate models adopted are the following:

Examples are: first-degree model
k = number of factors

second-degree 
model

interaction model



Once estimates of model coefficients are obtained, it is possible:

1) to establish a relationship, albeit approximate, between y and x1, x2, . . . , xk, that can 
be used to predict response values for given settings of the control variables.

2) to determine, through hypothesis testing, the significance of the factors whose levels 
are represented by x1, x2, . . . , xk

3) to determine the optimum settings of x1, x2, . . . , xk, i.e., settings that result in the 
maximum (or minimum) response over a certain region of interest.

As shown in the following for models based on two variables, the difference between the 
actual response and the one reproduced by the estimated model corresponds to the 
residual:

The minimum number of experiments required in the three cases to estimate parameters 
is: 3 (linear model), 4 (interaction model), 6 (quadratic).

first-degree (linear) model

second-degree 
(quadratic) model

interaction model



Designs related to First- and Second-Degree Models

The following classification can be made for experimental designs, based on their 
relationship with first- or second-degree models:

First-Order (screening) 
Designs

 2k Factorial (full or fractional) 

 Plackett–Burman

 Simplex

Second-Order (response
surface) Designs

 3k Factorial

 Central Composite Design (CCD)

 Box–Behnken

First-degree 
Models

Second-degree 
Models



Screening designs

Screening designs provide simple models with information about dominating variables and 
ranges (relevant information is gained in only a few experiments).

In accordance with the Pareto’s principle, the 20% of factors usually account for the 80% of 
information, thus information on dominating variables can be very useful.

First-degree or interaction models are usually adopted when screening designs are 
performed.

Actually, the main interest is in understanding if a factor does influence the response, not 
how it influences it.

Two-level factorial designs are some of the most common screening designs.



Factorial designs

The term “factorial design“ is thought to have been introduced for the first time in the
statistical literature by Ronald Fisher in its 1935 book on DoE.

As a general definition, a factorial design consists of two or more factors, each with discrete 
possible values or "levels“.

If experimental units take on all possible combinations of these levels across all such factors 
the design is defined as “full factorial”.

Conversely, a “fractional factorial” design consists of a carefully chosen subset (fraction) of 
the experimental runs of a full factorial design.

The subset is chosen so as to exploit the sparsity-of-effects principle, i.e., to expose 
information about the most important features of the problem studied while using a 
fraction of the effort of a full factorial design in terms of experimental runs and resources.
In other words, it considers that many experiments in full factorial design are 
often redundant, giving little or no new information about the system.



Two-level factorial designs (2k designs)

Two-level factorial designs consider two values for each factor as input.

First, a range is carefully chosen for each factor, to ensure feasibility, then two possible
values for each factor, low and high, are selected.

Such levels are subsequently coded (normalized) so that their values range between -1 and
+1.

The following formula is adopted for coding in the case of two level-factors:

Coded level = (Uncoded level – M)/H

where M is the average of high and low uncoded levels and H is the half-width of their
interval.



Examples of full 2k factorial designs

+ and – signs represent high (+1) and low (-1) levels of coded factors (variables).

Notably, all variables are changed in a controlled way, to ensure that every experiment is a
unique combination of levels. As apparent, the total number of experiments correspond to
2k.



21 full factorial design

Suppose a reaction yield has been measured at two temperatures, resulting equal to 70
and 80% for temperatures equal to 50 and 100 °C, respectively.
The temperature needed to get 90% yield has to be estimated.

A linear model can be adopted:

where x1 represents the reaction temperature, after coding, and y the yield.
In this case 50 and 100°C temperatures are coded as -1 and +1, respectively.

Under these conditions:
b0 = 75 % and b1 = 5%

Thus a yield of 90% is obtained for
x1 = (90-75)/5 = 3
i.e., for a temperature
(75 + 3 × 25°C) = 150°C.



22 full factorial design

Let us consider a design involving pH (levels 3 and 7) and temperature (40 and 80°C).

The following experimental matrix, i.e., a matrix describing all non redundant combinations
of levels, and graphical representation of the experimental domain can be drawn:

-1, -1
(1)

+1, -1
(2)

-1, +1
(3)

+1, +1
(4)

pH

Temperature

pH temperature
Experiment



Let us consider an interaction model:

A model matrix, reporting values by which parameters b0, b1, b2 and b12 have to be
multiplied, according to the selected experiment, can be drawn:

y
pH T               pHT

Exp. Const.

The response y obtained from each experiment is reported outside the matrix.

Interestingly, the effect of pH on the response depends on temperature, since for the same
pH variation the response variation is higher (20 vs 10) at the lower temperature.
This outcome indicates the presence of an interaction between the two factors.



This conclusion is obviously confirmed by the fact that the response variation with
temperature is higher (30 vs 20) at the lower pH.

Now, the average response variations due to pH and temperature variations are,
respectively, 15 and 25.
Since they correspond to variations of 2 units of the coded factors (from -1 to + 1), it can
then be inferred that the average response variations due to pH and temperature are,
respectively, 7.5 and 12.5.

These values can be adopted as estimates of coefficients b1 and b2, i.e., those related to pH
and temperature, respectively, in the model.

The interaction effect is calculated according to one of the two following equations:

[(X1 effect at high X2)-(X1 effect at low X2)]/2 = [(y4-y3) – (y2-y1)]/2 = (y1-y2-y3+y4)/2

[(X2 effect at high X1)-(X2 effect at low X1)]/2 = [(y4-y2) – (y3-y1)]/2 = (y1-y2-y3+y4)/2

Since (y1-y2-y3+y4)/2 = (50-70-80+90)/2 = -5 and the effect needs to be divided by the
range of each factor, i.e., +1 - (-1) = 2, the coefficient b12, accounting for interaction effects,
is equal to -5/2 = -2.5.



As far as the b0 coefficient is concerned, it is easy to understand that it can be obtained by
averaging the responses obtained for all the four experiments.

In fact, considering the coded values assumed by x1, x2 and x1x2 for the four different
experiments, the following equations are obtained:

(y1 + y2 + y3 + y4)/4 = {[b0 - b1 - b2 + b12] + [b0 + b1 - b2 - b12]
+ [b0 - b1 + b2 - b12] + [b0 + b1 + b2 + b12] }/ 4 = 4 b0/4 = b0

In the specific case b0 = (50 + 70 + 80 +90)/4 = 72.5

The model can thus be expressed with the equation (in which pH and T are meant to be
expressed as coded variables):

y = 72.5 + 7.5 pH + 12.5 T – 2.5 pH T
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A graphical representation of the
model can be obtained using a 3D
plot, in which temperature and pH
are still used as coded variables.

Colored lines designed on the
surface correspond to iso-response
curves, with response values
represented on the scale drawn on
the right of the 3D plot.

It is worth noting that model coefficients can be generally calculated using the following
equation (in the specific example k = 2):

where ci are the coefficients reported in the column of the model matrix
corresponding to a specific model coefficient.



23 full factorial design

When a 23 full factorial design is considered, 23 = 8 experiments have to be performed. The
coded values of the three factors can be arranged in a design table, according to the Box
notation, and drawn in a 3D plot:

X1

X3

X2

1 2

3 4

5 6

7 8

- - - + - -

+ - +

+ + +- + +

- + -

- - +

+ + -

It it worth noting that in the Box notation the column referred to x1 in the design table is
represented by -1 and +1 values, alternatively. As a general rule, the column referred to the
kth factor is a vector with 2k-1 experiments at -1 level, followed by as many at +1 level.



Supposing that an interaction model is adopted:

a model table can be obtained from the design table, according to some rules that are
included in the column algebra developed by Box:

Specifically, signs in colums
related to interaction effects
(ab, ac, bc and abc) are obtained
by multiplications of signs
present in the columns of the
involved factors.

For example, in the case of run
#1, the sign of the ab column
will be (+), since it comes from
the multiplication of two
negative signs.



In order to obtain the model matrix a column containing only +1 values, related to the b0
coefficient (as for the 22 factorial design), has to be introduced before the design table:

In the table responses are finally added in the last column.
In the specific case they represent reaction yields as a function of the following variables:
x1 = temperature, x2 = pH, x3 = catalyst



By analogy with calculations made before for the 22 factorial design, the following
calculations can be made:

It can thus be inferred that interactions between x1 and x3 and between x1, x2 and x3 are
hardly significant (their coefficients are much lower than other ones).



A further example of 23 full factorial design

A chemical company had a problem with the viscosity of a polymer when a variation in a
raw material occurred.
After performing OVAT experiments without finding a solution, a 23 full factorial design was
implemented by selecting three variables corresponding to the amounts of three
polymerization reagents (A, B and C), whose original formulation was 10, 4 and 10 g,
respectively.

In order to keep the original recipe as the central point for each variable, levels -1 and +1
were set to correspond to 9 and 11 g for reagents A and C and 3.6 and 4.4 for reagent B.
The experimental plan was the following:



The model matrix was the
following:

A graphical representation of the experimental
results is the following:

It can be clearly seen that all the experiments 
performed at a lower value of reagent A led to 
responses greater than the threshold value 
(corresponding to 46). 
It can therefore be said that by lowering the 
amount of A an increase of the response is 
obtained.



As for reagent B, it can be seen that its increase 
leads to a decrease of the response when 
reagent C is at a lower level and to an increase 
of the response when reagent C is at a higher 
level. 
This is a clear example of interaction between 
two variables. 

The same interaction is detected when taking 
into account reagent C. It can be seen that an 
increase of reagent C improves the response 
whereas a decrease occurs when reagent B is at 
a lower level.

The following model is obtained:

As apparent, coefficients related to reagent A (X1) and to the interaction between reagents 
B and C (X2, X3) are larger than the other ones.
The negative value of the X1 coefficient accounts for the decrease of polymer viscosity when 
the amount of reagent A is increased.



The interaction between reagents B and C  
can be interpreted by looking at the iso-
response plot shown in the figure, referred 
to an amount of reagent A of 9 g.

It can be seen that an increase of reagent B 
leads to decrease viscosity when reagent C is 
at its lower level, while it has the opposite 
effect when reagent C is at its higher level. 
In the same way, an increase of reagent C 
decreases viscosity when reagent B is at its 
lower level, while it has the opposite effect 
when reagent B is at its higher level.

x

Looking at the plot, it can also be understood why the OVAT approach did not produce any 
good result. In fact, starting from the central point (corresponding to the original 
formulation) and changing the amount of either reagent B or reagent C (but not both at 
the same time) nothing changes. 
Instead, due to the strong interaction, relevant variations are observed only when both 
variables are changed at the same time.

OVAT



As apparent from the plot, two combinations produce the same response (namely, a 
viscosity of 53): 3.6 g of reagent B and 9 g of reagent C and 4.4 g of reagent B and 11 g of 
reagent C. 

As a higher amount of reagents increases the speed of the reaction, and therefore the final 
throughput, the latter has been selected as the best combination.

When transferred from the laboratory scale to the industrial plant the combination still 
proved to provide a viscosity value well over the acceptability value.

It could have been worthwhile to check if the effect was the same also outside the 
experimental domain, thus evaluating the possibility of obtaining even better results, yet 
the immediate goal was the return to the production of an acceptable product.

The main problem with the previous design was that, as there were no degrees of freedom 
and no previous estimate of the experimental error was available, it was not possible to 
determine which coefficients (factors) were statistically significant.

A different type of factorial design, including also replicates, should have been considered 
to perform this evaluation.



Full factorial designs with replicates: 22 design with 3 replicates

As an example of full factorial design with replicates let us consider a design with two two-
level factors (22) and 3 replicates (n = 3) for each combination.

Factor A: reagent concentration (%) – levels: 15 (low) and 25 (high)
Factor B: catalyst amount (pounds) – levels: 1 (low) and 2 (high) pounds

A total of 4 × 3 = 12 experiments is performed
and the following data are obtained:

The three values reported near each vertex
correspond to replicated measurements of
reaction yield.
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Data can be conveniently summarized using the following table:

factor Y (replicated response)

I A(x1) B(x2) AB 1 2 3 Row total (Ti)

+1 -1 -1 +1 28 25 27 80

+1 +1 -1 -1 36 32 32 100

+1 -1 +1 -1 18 19 23 60

+1 +1 +1 +1 31 30 29 90

T=330

Exp.

1

2

3

4

Design table

ci

Model matrix

Model table

Interaction model

Each response can thus be classified according to two indexes, i and j:

 i indicates the number of experiment, in turn corresponding to a specific combination of
levels, thus i = 1, 2, …, 2k;

 j indicates the number related to the replicate, thus j = 1, 2, …, n.



The average effect of factor A (x1) is calculated as follows:

(-80+100-60+90)/[2(3)] =  50/[2(3)] = 8.33

In general terms the average effect can be calculated with the following formulas:

where Ti correspond to row totals.

Notably, the term at the numerator in the second expression corresponds to the contrast of
response values:

As a general definition, contrast is any linear combination of values for which the sum of the
coefficients is zero.



By analogy with the previous calculation, the average effect of factor B (x2) is calculated as
follows:

(-80-100+60+90)/[2(3)] = -30/[2(3)] = -5.00

Finally, the average effect of the interaction AB (x1x2) is calculated as follows:

(80-100-60+90)/[2(3)] = 10/[2(3)] = 1.67

Since replicates were performed in this case, the significance of effects can be evaluated
using ANOVA.

Sum of squares can be calculated according to the following equation:

thus specific sum of squares are the following:



The total sum of squares can be calculated according to one of the equations described in
the ANOVA slides:

thus:

SStot = 9398 - (330)2)/[4(3)] = 323.00

The error sum of squares SSE can be calculated as a difference:



Notably, the degrees of freedom related to the error are calculated as the difference
between the total degrees of freedom and the sum of those related to the other sources of
variation. Anyway, the general equation is 2k(n-1).

Based on the F0 values, obtained by ratioing MSA, MSB and MSAB by MSE, the effects due to
factors A and B are significant, whereas the effect of the AB interaction is not significant
(indeed, the P-value is greater than 0.05).

The ANOVA table can thus be written as follows:



Regression model

The results of the experiment described in previous slides can be expressed in terms of the
following model:

Notably, the term including the interaction is absent, since this was not considered
significant after ANOVA.

The model is fitted by the following equation:

ŷ = b0 + b1x1 + b2x2

Regression coefficients b1 and b2 are calculated as the average
effects observed for the respective factors divided by 2
(since coded variables with a total range of +1 – (-1) = 2 were adopted):

As described before, the b0 coefficient is the grand average of all the 12 observations.
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The final equation is thus:

It can be used to obtain the predicted (fitted) values of y at the four points in the design
and then calculate the residuals, i.e. the differences between the observed and the fitted
values of y.

For example, when both the reactant concentration and the catalyst are at the low level (x1

= x2 = -1) the predicted yield is:

ŷ = 27.5 - (8.33/2) - (-5.00/2) = 25.835

Since three responses were obtained at those levels, i.e., 28, 25 and 27, the residuals are:



The other predicted values and the corresponding residuals are:

high level of the reactant concentration and low level of the catalyst

low level of the reactant concentration and high level of the catalyst



high level of the reactant concentration and high level of the catalyst

Residuals can be plotted versus predicted yield:

as apparent, the residuals are distributed as
negative or positive values without any
prevalence of either the former or the latter in
a specific interval of the predicted yield.

Therefore, there is no reason to suspect
problems with the validity of the model
conclusions.



The regression model:

can be also used to generate response surface plots.

It is usually desirable to construct these plots in terms of natural factor levels, which can be
obtained simply by replacing coded variables x1 and x2 with the relationships between them
and the corresponding natural factors, i.e. the reactant and the catalyst concentrations,
respectively (note that coded values = [Uncoded-Average]/Half-width of range):

ŷ  = 18.34 + 0.833 Conc – 5.00 Catalyst



The response surface related to the model can be
drawn in a 3D plot:

Since the model is a first-degree one, the fitted
response surface is a plane.

The plot clearly shows that the reaction yield
increases as the reactant concentration increases
and as the catalyst amount decreases.

(+,-) 
34.165 

(-,-) 
25.835 

(+,+) 
29.165 

(-,+) 
20.835 

b0 = 27.5

-1 +1
-1

+1

0

0

Another possible representation of the
same information is the bidimensional
contour plot.



Full factorial designs with replicates: 23 design with 2 replicates

As a further example of full factorial design with replicates let us consider a design with
three two-level factors (23) and 2 replicates (n = 2) for each combination, related to the
optimization of a HPLC mobile phase composition.

Factor A: pH of mobile phase
Factor B: counterion concentration
Factor C: % of organic modifier

In this case the response is represented by the capacity factor k’ = (tr – tm ) / tm .



Exp. x1 x2 x3 Average response

1 -1 -1 -1 4.7

2 +1 -1 -1 9.9

3 -1 +1 -1 7.0

4 +1 +1 -1 15

5 -1 -1 +1 2.7

6 +1 -1 +1 5.3

7 -1 +1 +1 3.2

8 +1 +1 +1 6.0

A total of 8 × 2 = 16 experiments is performed, in random order, and the following data
table (where only average responses are shown, for simplicity) is obtained:



The following model is hypothesised:

y = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3+ b123x1x2x3

The table summarizing the model matrix and average responses for the 8 experiments is
the following:

b0 b1   b2   b3 b12 b13 b23 b123

Model matrix
mean X1     X2 X3 X1X2    X1X3     X2X3    X1X2X3

Exp

4.7

9.9

7.0

15

2.7

5.3

3.2

6.0

iy



Average effects of factors are calculated as follows:

Factor x1

Factor x2

Factor x3

Interactions

X1X2:       0.75

X1X3:      -1.95

X2X3:      -1.55

X1X2X3:  -0.65

(-4.7+9.9-7.0+15-2.7+5.3-3.2+6.0)/4 = 18.6/4 = 4.65

(-4.7-9.9+7.0+15-2.7-5.3+3.2+6.0)/4 = 8.6/4 = 2.15

(-4.7-9.9-7.0-15+2.7+5.3+3.2+6.0)/4 = -19.4/4 = - 4.85



The significance of effects can be evaluated using ANOVA, starting from the calculation of
the sums of squares:

Since the average effect of a factor is expressed as:

an equation correlating a SS value with the average effect of the corresponding factor can
be obtained:

average effect

In the present case each SS is thus obtained by multiplying the square of the corresponding
average effect by 2 * (22)2 / 8 = 4.



Source SS df MS F0

X1 86.49 1 86.49 4324.5

X2 18.49 1 18.49 924.5

X3 94.09 1 94.09 4704.5

X1X2 2.25 1 2.25 112.5

X1X3 15.21 1 15.21 760.5

X2X3 9.61 1 9.61 480.5

X1X2X3 1.69 1 1.69 84.5

Error 0.160 8 0.02

where, as explained previously, SSE and the respective degrees of freedom (df) are obtained
by difference, considering that :

= 227.990

The following ANOVA table is thus obtained:

Since all F0 values are higher than the critical value F1,8 (7.57) all factors have a significant
effect.



Use of Minitab 18 for calculations of a full 23 factorial design with replicates

The Minitab 18 software can be used to develop a full factorial design with replicates.

The option is accessed from the Stat > DOE > Factorial > Create Factorial Design… path.



Several different designs can be set, including a general full factorial design. The number of 
factors (3 in the specific case) is indicated, then details on the numbers of levels and of 
replicates are reported in the Designs… window.



The Factors… window enables the specification of factors names and level values.
In the specific example coded values are assigned to the levels:

The Options… window enables the
selection of runs randomization and
the storage of design in worksheet:



When the OK command is given
in the Create factorial design
window, this option leads to the
automatic insertion of several
data into the first seven columns
of the worksheet.
The first column indicates the
randomized order of runs,
whereas columns 5, 6 and 7
indicate the coded values of
factors to be used in the
respective run:

Notably, column 3 indicates the type of points (1 is the code for corner points, i.e., those
referred to extreme values of the coded variables, -1 or 1); column 4 is referred to eventual
blocks, i.e., groups of runs between which an eventual difference can be observed (e.g.,
groups of replicated runs obtained in different days). In the present case all runs were
included in a single block.
As soon as a run is completed the Response can be introduced in column 8.



Different types of information can be obtained after the OK command is given.

As an example, the ANOVA table can be easily obtained:

Once all data are introduced, the design analysis can be made through the pathway:
Stat > DoE > Factorial Design > Analyze Factorial Design…



The so-called Pareto Chart of the Standardized Effects is also provided. This plot shows the 
absolute values of the standardized effects, ordered from the largest to the smallest one. 
Each value is obtained by multiplying the average effect of a specific factor by (MSE)1/2 and 
then by 100.
The chart also plots a reference line to indicate which effects are statistically significant, i.e., 
those whose bars cross the reference line (all the effects in the specific case, as indicated 
also by the ANOVA table). This outcome is based on a t-test; in the present case, the 
reference line is located at 2.31, corresponding to the Student’s t value for 1-α = 0.975 and n 
= 8.



Fractional factorial designs

Fractional factorial designs (FFD) are experimental designs consisting of a carefully chosen 
subset (fraction) of the experimental runs of a full factorial design. 

They are applied when the number of experiments required for a full factorial design is too 
high and exploit the fact that many experiments in full factorial designs are often redundant, 
giving little or no new information about the system.

When two-levels factors are considered, FFDs are indicated as 2k-p designs, where p 
represents the size of the fraction adopted.



Let us consider a 23 full factorial design, which would imply the following table:

Design table

Model matrix

Model table

Exp.

The following effects can be calculated, based on responses 
obtained from the different runs:

As apparent, interactions have a very low effect.



A possible fractional design 
could thus be obtained by 
setting p = 1,  i.e., by 
performing only 23-1 = 4 runs, 
instead of 8.

Two of the possibile sub-sets of
4 runs arising from the 23

design are shown in the figure
on the right:

It is easy to note that, if a new design table is
drawn, based on runs 5, 2, 3 and 8, i.e., on the
upper-half-design, signs observed for factor 3 are
equal to those that would be obtained for a 12
interaction in a 22 full factorial design:

Box notation

22 model matrix

x1 x2 x12

Exp.



Interestingly, the effects calculated with the 23 full
factorial design and the 22 fractional design are
comparable, within a reasonable uncertainty:

More specifically, if the effects of factor 3 and of the 12 interaction for the 23 full factorial
design are summed the result is identical to the effect due to factor 3 in the 22 fractional
design. By analogy, the sums of effects of factors I and 123, 1 and 23, 2 and 13 of the full
factorial design corresponds, respectively, to the effects of factors I, 1 and 2 of the fractional
design.

In other words, effects calculated with a fractional design are mixed (confused); for this
reason, they are also called «aliased» and are indicated with λi, to be distinguished from
pure effects, indicated as Ei.

However, if the effects due to interactions are small, like in this case, the result of using a
fractional design instead of a full one can be acceptable.

Effects 23 22



A «confusion table», also called «table of alias», can be drawn to emphasize the
correspondence between effects related to a full and to a fractional factorial design:

FULL 
DESIGN

PURE 
EFFECTS

ALIAS 
EFFECTS

FRACTIONAL 
DESIGN



The correspondence existing between pure effects in the full design and aliased effects in
fractional ones, like the upper/lower half designs, can be appreciated using a color code:

Upper half
design

Lower half
design

In particular, alias have the same sign in
the upper half design and an opposite
sign in the lower half design. The
following equations can be written:

Exp.



Some considerations can be made also about the response model.
Indeed, for a 23 full factorial design the model would be the following:

The following relations are defined when the fractional
design is considered:

After their introduction in the complete model, the following new model is obtained:



Four coefficients can then be obtained as estimates of model parameters:

Due to the adoption of a fractional design, coefficients estimate a specific true parameter 
but with a “contamination” due to one of the interactions. 

As an example, b1 is an estimate of β1 but with a contamination due to the parameter 
related to the 23 interaction, β23.

b1 is thus named an “alias” of the two confounded coefficients.



Generators of fractional factorial designs

A general approach can be defined to determine the confounding effects. It is based on the 
definition of the so-called alias generators.

If the example of the upper-half design for the 23-1 fractional design is considered, the fact 
that signs related to factor 3 are identical to those related to the 12 interaction can be 
expressed, in terms of Box algebra, as 3 = 12.

Now, if both sides of this equation are multiplied by 3, the following equation is obtained:

3 • 3 = 12 • 3

Since 3 • 3 = I, according to one of the Box algebra rules, the equation becomes: I = 123.

This relation is called the “design generator”. Indeed, if each column in the matrix model is 
multiplied by the generator, the relations indicating confounding effects are obtained:

1.I = 1.123 =  I.23 1 = 23

2.I = 2.123 = 2.213 = I.13 2 = 13

3.I = 3.123 = 3.312 = I.12 3 = 12



Resolution for fractional factorial designs

Resolution is an important property of a fractional factorial design, since it represents its 
ability to separate main effects and low-order interactions from one another.  

By definition, Resolution I is that of a 21-1 design, i.e., a design based on one factor and only 
on one run, which, of course, cannot even distinguish between the high and low levels of 
the factor under study.
Resolution II is that of a 22-1 design in which the design generator is I = 12. In this case main 
effects are confounded with other main effects (in fact: 1.12 = 2 and 2.12 = 1)
Resolution III is referred to a 23-1 design with a design generator I = 123, like in the example 
discussed before. In this case main effects are estimated but may be confounded with two 
factor interactions.
Resolution IV is obtained for a 24-1 design in which the generator is I = 1234. In this case main 
effects are estimated without confusion with two-factor interactions, whereas two factor 
interactions can be confounded with other two-factor interactions.
Resolution V is obtained with 25-1 designs in which the generator is I = 12345. In this case 
main effects are estimated unconfounded by three-factor (or less) interactions, two-factor 
interactions effects are unconfounded by other two-factor interactions, but two-factor 
interactions may be confounded with three-factor interactions.



Higher resolutions (VI, VII, etc.) can be obtained for fractional designs based on 6 or more
two-level factors, yet they are useless, since the expanded experimentation has no practical
benefit in most cases.

Fractional designs with resolutions from III to V are thus the most important, with those
having Resolutions III and IV being used only, or mainly, for screening.

Generally speaking, a fractional design is adopted when the following hypotheses are
verified:

1) interactions between three or more factors are negligible;
2) interactions between two small effects are small;
3) interactions between a big and a small effect are usually small;
4) interactions between two big effects are likely big.



Plackett-Burman designs

Plackett-Burman designs were introduced in 1946 by English statisticians R.L. Plackett and 
J.P. Burman. Their main goal was to investigate the dependence of some measured quantity 
on a certain number of factors, each taking a certain number of levels, in such a way to 
minimize the variance of the estimates of these dependencies using a limited number of 
experiments. 

The Plackett-Burman designs are very efficient for large numbers of factors, yielding a 
number of runs which is just one unity higher than the number of factors and, nonetheless, 
enabling a Resolution III (main effects confounded with binary interaction effects).

As shown in the next table, given a certain number of two-level factors, the difference with 
the number of experiments that would be required by a full factorial design is huge, when 
factors are more than 10:



A key aspect of Plackett-Burman designs is represented by the corresponding matrix, usually
adopted for numbers of runs that are multiple of 4.
As an example, the matrix related to 11 factors, i.e., 12 runs, is the following:

Notably, whatever
couple of factors
Xi,Xj is considered,
three equal
combinations of
their levels are
found.

Moreover, 6 «+»
and 6 «-» values of
factors can be
found in each
column.



A more focused inspection of the matrix shows that the whole design can be generated 
starting from the first row. To build the second row, the last element of the first row is 
transformed into the first element of the second row, then the remaining elements of the 
first row are copied to the second row, shifted by one position to the right. The procedure is 
adopted down to the 11th row. The last row, i.e., the 12th one,  contains only “- “ signs.

Other Plackett–Burman matrices, for N 
corresponding to further multiples of 4, can 
be built using the same strategy but starting 
from the first rows reported in this table:



An example of Plackett-Burman design

A company producing brake pads selected 11 variables as having a possible effect on the 
quality of the final product. 
As a first screening, they were interested in sorting out which of these variables actually had 
an effect (or, better, in removing those variables that had no significant effect). 
The selected variables and the levels under study are described in the following table:

*The scorching process consists in heating the brake pad friction material to 600° – 700°C to 
reduce the time it takes for the pad and disc to adapt to each other.



Notably, some of the variables in the table (e.g., resin type, press type) can be described 
by a qualitative label, not a number. Though a numerical label can be applied to such 
qualitative variables, there is no correspondence at all with a real numerical value.
In the case of quantitative variables, the ‘-1’ level is usually assigned to the lower level and 
the ‘+1’ to the higher level; in the case of qualitative variables the ‘-1’ and ‘+1’ levels are
arbitrarily assigned.
The following experimental matrix is obtained by including the response as the last
column (pad compressibility):



Since each column has six ‘-’ and six ‘+’ signs, each variable will have one half of the 
experiments performed at the low level and one half of the experiments performed at the 
high level. 

As in the Factorial Design, the effect of each variable will be easily computed by calculating 
the algebraic sum of the responses, each with the appropriate sign. 
This means that the effect of each variable will be derived from the comparison of the 
responses of the six experiments performed at the high level and the responses of the six 
experiments performed at the low level.
12 coefficients must be estimated for the model, and this is the reason why 12 
experiments are required.

If the model equation is written as y = b0 + b1x1 + b2x2 + ….. + b11x11

b0 is obtained as the sum of responses divided by 12:  1717 / 12 = 143.1.

In the case of b1 the calculation is (see the table on the right):

(163-121+152-100-93-173+133+131+157-157+101-236)/12 = -3.6.

The same approach can be used to obtain all the other coefficients.



The coefficients of the model are reported in
the table on the right:

As in all cases in which no estimation of 
experimental variability is made, it is not 
possible to have a statistical estimation of the 
significance of the coefficients.

An easy and visual way to sort out the 
‘relevant’ variables is drawing a scatter plot of 
the coefficients and look for those variables 
whose coefficients lie far away from the bulk 
of the coefficients:



It can be seen that four coefficients have particularly high absolute values: b3, b5, b8 and 
b9 (press time, press temperature, scorching time and scorching temperature). 
As their coefficients are negative and the response has to be minimized, it can be 
concluded that for both steps of the process (press and scorching) longer times and 
higher temperatures improve the quality of the product.

More detailed results can now be obtained by preparing a new experimental design (e.g., 
a Factorial Design) with these four variables only, all of them having a range moved 
toward longer times and higher temperatures.



Use of Minitab for calculations on a Plackett-Burman design

The Minitab software includes also an option for the Plackett-Burman design.

The option is accessed from the same path described before for factorial design: Stat >
DOE > Factorial Design > Create Factorial Design….

When the «Display Available Designs…» window is opened, a table describing all available
Plackett-Burman Designs, along with full or fractional factorial designs, with indication of
the respective resolutions for the latter, is shown:



The specific conditions related to the adopted 
Plackett-Burman design can be indicated by accessing
the «Designs» window in the «Create Factorial
Design» window:

In the present case, 12 runs are indicated, since 11
factors are considered. Only one replicate is assumed
for each run.

When the OK command is given, a Worksheet with the coded values of factors to be used
in the 12 runs, along with their randomized order, is provided by Minitab and response
values can be added in the last column once all runs have been performed:



It is worth noting that Minitab uses a specific table of coded values for the 12 runs, different
from that reported before, yet the basic constraints are respected.

Just to obtain an example of the program output, response data used before were
introduced in the Minitab worksheet as if they were obtained with combinations of factors
adopted before.
Once all data were introduced, the design analysis was made through the already described
pathway: Stat > DoE > Factorial Design > Analyze Factorial Design…

A table with coded coefficients,
i.e., coefficients of the regression
model obtained using coded
values of factors, was reported in
the program’s output.

The regression equation in
uncoded units is also reported,
yet in this case it included the
same coefficients, since the
coding rule was not provided to
the software.
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