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Crystals are model systems characterized by periodicity, i.e.
invariance under translation. The 3, 2 and 1-dimensional crystal,
therefor, must be invariant under all translation operations:

Tn1a1+n2a2+n3a3 Tn1a1+n2a2 Tn1a1

where ai are 3 independent vectors and ni are integers. This simple
property has many important consequences. Crystals are also often
endowed with other (punctual) symmetries, not all of the symmetry
operations are however compatible with translational invariance.
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|a | = |a |, φ = 90°1 2|a | = |a |, φ = 120°1 2

a1

|a | ≠ |a |, φ = 90°1 2 |a | ≠ |a |, φ ≠ 90°1 2
|a | ≠ |a |, φ ≠ 90°1 2

1 2 3

54

φ

a1

a2

φ
a2

φ

a1

a2

φ

a1

a2φ

a1

a2

shamelessly copied from wiki-commons
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In general we shall expect that for every physical punctual property
f of a crystal system we can redefine f with respect to fractional
coordinates u:

x = uiai , f (x) = f̃ (u) = f̃ (u + n) = f (x + aini )

so that f̃ (u) is periodic in u with period 1 for all ui . One can
fourier expand f̃ (u), e.g. in two dimensions one has:

f̃ (u1, u2) =
∑
N1,N2

F̃N1N2e
2πi(N1u1+N2u2)
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However we can also introduce a set of vectors bi with the same
dimensionality of ai such that:

biaj = 2πδij .

The vectors k = nibi form the “reciprocal lattice” of x = niai ,
“reciprocal” meaning that it is connected to the fourier transform,
which in light of the relation above we may rewrite:

f (x) =
∑

k=bini

F (k)e ikx (1)

F (k) =
1

2π

∑
x=aini

f (x)e ikx (2)

the sum being on each vector of its lattice.
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Quantum eigenfunctions of the hamiltonian must satisfy symmetry
requirements in crystal, we are here concerned with the
implications of translational symmetry, i.e. the Bloch theorem.
According to linear algebra, when two operators do commute with
one another, it is always possible to find a set of vectors that are
eigenvectors of both operators. Consequently, when one operator is
the Hamiltonian and the other one of the translation operators
Tx , x = niai :

[Tx ,H] = 0

that is how one expresses the fact that the potential has the
periodicity of the crystal, and therefore it must be possible to find
the H eigenfunctions ψ(r) so that:

Txψ(r) = ψ(r − x) = λxψ(r)

Tnxψ(r) = T n
x ψ(r) = ψ(r − nx) = λnxψ(r)

for all integer values of n.
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Since λn should not grow explosively for either positive or negative
n, λ must be of unitary module and we may reword the latter
equations:

Txψkj(r) = e ikxψkj(r)

ψkj(r) = ϕkj(r)e
ikr

that is: all stationary wavefunctions can be classified with a
quantum number k in the reciprocal space and each such function
can be expressed as a function ϕ with the periodicity of the crystal
multiplied by a plane wave e ikr with the same wavevector.
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Nuclear motion constitutes an important part of crystal physics, it
dictates sound propagation, heat transport, thermodynamic
properties and influences charge conduction, molecular adsorption
and several other processes.
For brevity, we directly approach the quantum equations of motion,
though consideration of the classical solutions provides some
insight.
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The harmonic oscillator

We shortly review a solution of the quantum harmonic oscillator.

Hψi = (− p2

2m
+

k

2
x2)ψi = ϵiψi

The harmonic oscillator really depends on a single parameter,
infact:

ξ =
√
mx

η = −iℏ
1√
m

d

x
= −iℏ

d

dξ

ω2 =
k

m

H =
η2

2
+
ω2

2
ξ2
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We need to introduce 2 new operators:

a =

√
ω

2ℏ
(ξ − 1

iω
η)

a† =

√
ω

2ℏ
(ξ +

1

iω
η)

ξ =

√
ℏ
2ω

(a† + a)

η = i

√
ℏω
2
(a† − a)

[a, a†] =
ω

2ℏ

(
1

iω
[ξ, η]− 1

iω
[η, ξ]

)
= 1

[a, a] = [a†, a†] = 0
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We need to introduce 2 new operators and their commutation
relations:

a =

√
ω

2ℏ
(ξ − 1

iω
η)

a† =

√
ω

2ℏ
(ξ +

1

iω
η)

ξ =

√
ℏ
2ω

(a† + a)

η = i

√
ℏω
2
(a† − a)

[a, a†] =
ω

2ℏ

(
1

iω
[ξ, η]− 1

iω
[η, ξ]

)
= 1

[a, a] = [a†, a†] = 0
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We are now in position to substitute

H =
ℏω
2
(a†a+ aa†) =

ℏω
2
(a†a+

1

2
) =

ℏω
2
(n̂ +

1

2
)

and we shall conclude that n̂ has the same eigenfunctions as H.
We demonstrate that n̂ has as eigenvalues all the integer
nonnegative numbers:

n̂ψn = nψn
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1. the spectrum of n̂ is nonnegative (left as an exercise)

2. n̂aψn = a†aaψn = (aa† − 1)aψn = (n − 1)aψn

3. â†ψn = (n + 1)a†ψn, left as an exercise

4. ⟨aψn|aψn⟩ = ⟨ψn|n̂|ψn⟩ = n ⟨ψn|ψn⟩
5. ⟨a†ψn|a†ψn⟩ = (n + 1) ⟨ψn|ψn⟩

points 2,3 connote a and a† as ladder operators, i.e.
aψn =

√
nψn−1 and a†ψn =

√
n + 1ψn+1, where the

proportionality constants are deduced from points 4,5.
Since the eigenvalues must all be positive, there must be an
eigenfunction of a such that aψn = 0, hence n must be the integer
sequence obtainable by repeated application of a†.
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It is quite easy to calculate the eigenfunctions of H, by means
either of the ladder operators or of the recursion relations they
induce, however this would spoil the real advantage of the ladder
operators, that is not having to deal with functions and integrals.
As an example, the transition dipole ⟨ψn|x |ψm⟩ can be easily

calculated recalling that x =
√

ℏ
2mω (a

† + a) and since

⟨ψm|a†|ψn⟩ =
√
n + 1δm,n+1

⟨ψm|a|ψn⟩ =
√
nδm,n−1

we can conclude that

⟨ψm|x |ψn⟩ =
√

ℏ
2mω

(
√
n + 1δm,n+1 +

√
nδm,n−1)
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We shall now consider the motion of 2 isolated masses moving
along a single axis bound by an harmonic force. We will restrain
from factoring out the center of mass motion, so that the
hamiltonian:

H(x1, x2) = −ℏ2∇2
1

2m1
− ℏ2∇2

2

2m2
+

k

2
(x1− x2)

2 = −P†M
−1

2
P+X †K

2
X

where we have substituted the explicit sum over particles with a
matrix/vector compact notation.
As before, we need to pass to weighted coordinates:

ξi =
√
mixi

ηi = −iℏ
d

dξi
=

1√
mi

pi

bringing our hamiltonian to

H =
1

2
η†η + ξ†

D

2
ξ
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We have here introduced the matrix D

D = M−1/2KM−1/2 =

(
k
m1

− k√
m1m2

− k√
m1m2

k
m2

)

We now seek the eigenvalues and vectors of D, e.g. by nullifying
the characteristic polynomial: λ2 − λ( k

m1
+ k

m2
) = 0. This yields

two solutions:

λt = 0; ξt = At

(√
m1√
m2

)
; X = At

(
1
1

)
corresponding to rigid translation, and:

λv =
k

µ
; ξv = Av

(√
m2√
m1

)
; X = Av

√
m1m2

( 1
m1

− 1
m2

)
corresponding to vibrational motion with fixed centre of mass,

frequency ω =
√

k
µ and amplitude Av .
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We have essentially factorized the hamiltonian into a set of
independent motions:

H =
1

2
η†η + ξ†

D

2
ξ = −

∇2
At

2m
−

∇2
Av

2µ
+

k

2
A2
v = Ht + Hv

by means of which we describe displacements and solutions in
terms of normal modes:

X ≡
(
x1
x2

)
= At

(
1
1

)
+ Av

( 1
m1

− 1
m2

)
ψ(X ) = ϕt(At)ϕv (Av )

Htϕt(At) = ϵtϕt(At)

Hvϕv (Av ) = ϵvϕv (Av )
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The generalization to a generic polyatomic molecule is
straightforward: from the hamiltonian

H =
∑ p2i

2mi
+

1

2

∑
xikijxj

we pass to weighted coordinates ξi =
√
mixi :

H =
1

2
η†η + ξ†

D

2
ξ

and upon diagonalization of D arrive at new collective coordinates
(normal modes), 6 of which will be degenerate roto-translation
motions, (5 in the case of linear molecules) and the remaining
representing independent vibration.

X =
3N∑

AiVi

where upon we factorize H into a set of 3N independent harmonic
hamiltonians

H =
∑

Hi (Ai )
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Vibrations in a simple lattice

We shall analyze vibrations in the simplest lattice we can conceive,
a linear lattice with a single atom cell.
First of all we shall cat a region of the crystal, because this is the
simplest way to avoid infinities.
We will therefore consider N consecutive sites which, without
loosing generality we may number 0..N − 1. We will also impose
the Born von Karman periodicity conditions, i.e. xi = xi+N , so that
e.g. x0 = xN .
For a better comprehension, we shall assume that each atom
interacts just with its nearest neighbour by means of elastic forces,
so that

V =
k

2

∑
l

(xl+1 − xl)
2 =

D

2

∑
l

(ξl+1 − ξl)
2

where we have introduced the mass weighted displacement
coordinates ξl =

√
m(xl − la) from the equilibrium positions.
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As before, the problem is that the potential couples together all
the variables. We shall seek for a variable transformation that
uncouples the potential function V . Such transformation is the
discrete fourier transform:

Am =
1√
N

∑
n

ξne
i 2π
N
mn

Ak=m 2π
Na

=
1√
N

∑
x=na

ξxe
ikx

where, in the second line we have substituted the dependence on
the integer m with a dependence on wavevector k, considering the
displacement as a function of position (mean).
An important property of the discrete fourier transform is:

1

N

∑
n

e i2π
ln
N e i2π

mn
N = δp+q
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Among other things, this allows us to show the inverse transform:

ξn =
1√
N

∑
m

Ame
−i2πmn

N

which brings to a new expression of V :

V =
D

2

∑
n

(
1√
N

∑
m

Ame
−i2πmn

N − 1√
N

∑
m

Ame
−i2πm(n−1)

N

)2

=
D

2N

∑
n,m,m′

AmAm′(e−i2π
(m+m′)n

N + e−i2π
(m+m′)(n−1)

N

− e−i2π (mn+m′(n−1))
N − e−i2π (m(n−1)+m′n)

N )

=
D

2

∑
m

AmA−m(2− e i2π
m
N − e−i2πm

N ) =
∑
m

AmA−m
Dm

2

where Dm = D(2− 2cos(2πm/N)).
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We apparently ended with V coupling the variables Am and A−m,
however, since the displacement must be real, the constraint
Am = A∗

−m must be satisfied, so that Am and A−m are indeed one
only complex variable.
The B operators:

Bm =
1√
N

∑
n

ηne
−i2πmn

N

are conjugates of the operators Am, that is they satisfy the
commutation relation [Bm,An] = iℏδmn. Therefore we can finally
rewrite the hamiltonian:

H =
1

2

∑
n

B2
n + DnA

2
n

i.e. a sum of oscillators with angular frequency
ωm =

√
D(2− 2cos(2πm/N)).
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▶ Exercise: solve the problem with V extended to second
nearest neighbour interactions.

Now, we consider a general lattice. Every cell will generally consist
of M atoms, contributing so with 3M freedom degrees
(independent displacements). Also, we will have N = N1N2N3

cells, with V coupling all the 3MN variables.
Upon fourier transformation we arrive at a set of N independent
problems, each involving 3M variables. Each of these problems is
analogous to the problem of dynamics of an M atom molecule and
brings to essentially the same solutions, except that
rototranslations are substituted by motions in which all the atoms
of a cell move coherently.
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-π/α 0 π/α
k

ω

-π/α 0 π/α
k

ω

-π/α 0 π/α
k

ω

In simple crystals, left picture, a single curve appears in the
dispersion plot. The value of ω(k = 0) is always 0. The slope dω

dk
is the propagation speed for acoustic waves in the solid. In fact,
the small k vibrations are what is perceived as sound. Actually,
there are three acoustic branches, corresponding to 3 translational
degrees in molecules. One of these represents longitudinal waves,
the others transverse waves.
In the case of cells with more atoms, the branches are 3M: 3
acoustic and 3M − 3 so called optical phonons. The optical
phonons are analogous of molecular vibrations and exhibit the
same properties for IR excitation.
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The rightmost picture, represents what happens when the cell is
actually reducible. In this case, the branches exhibit degeneracy at
the boundary of the brillouin zone. Indeed the dispersion curve
constitutes a ”repeated representation” of the elementary cell
dispersion curves.
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electronic structure

The hamiltonian of a system of nuclei and electrons dictating the
shape of matter, discarding relativistic and magnetic field
corrections:

H =
∑
a

h(ra) +
∑
A

h(RA) +
1

2

∑
a ̸=b

1

|ra − rb|
+

1

2

∑
A ̸=B

ZAZB

|RA − RB |

−
∑
A,a

ZA

RA − ra

where uppercase letters pertain to nuclear variables and lowercase
letters to electronic coordinates, so that

h(r) = −∇2
r

2
− V (r)

h(Ra) = −
∇2

Ra

2Ma
+ ZaV (Ra)

where V is an external electric field.
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The electron mass is smaller than nuclear masses by a 103 ÷ 105

factor, this brings to the so called Born-Hoppenheimer
approximation, which amounts to factorizing the wavefunction in a
product of nuclear and electronic terms.

ψ(R, r) = X (R)Φ(R, r) (3)

When Φ solves the S.E. for electrons at fixed nuclei:

HeΦ(R, r) = ϵ(R)Φ(R, r) (SE:el)

He =
∑
a

h(ra) +
1

2

∑
A̸=B

ZAZB

|RA − RB |
−
∑
A,a

ZA

|RA − ra|
+

1

2

∑
a ̸=b

1

|ra − rb|

and X (R) solves the equation:(∑
m

h(Rm) + ϵ(R)

)
X (R) = EX (R)

then:

HX (R)Φ(R, r) = EX (R)Φ(R, r)− X (R)
∑
A

h(RA)Φ(R, r)︸ ︷︷ ︸
cross diagonal
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So that X (R)Φ(R, r) solves the problem of nuclear and electronic
motion except for the “cross diagonal” term. The diabatic position,
eq.3 requires knowing the electronic wavefunction at each nuclear
position. More commonly one adopts the “adiabatic” factorization

ψ(R, r) = X (R)Φ(R0, r) (4)

in which the electronic wavefunction pertains to fixed nuclear
coordinates R0, usually the lowest energy configuration.
The “cross diagonal” correction term to the B.H. approximation is
small but fundamental, determining the shape of the wavefunction
near the crossing points of adiabatic electronic wavefunctions.
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Fundamental to the computation of a many-particle wavefunction
is the idea of factorizing the S.E. solution into a product of
single-particle functions (orbitals).
Each electron is described by 4 variables, in real space:

x ≡ r , s

3 coordinates and a spin variable.
The temptative factorization for an n electron wavefunction:

ψ(x) =
∏
a

ϕa(xa)

representing a system of independent electrons is not acceptable
for such identical particles (fermions); for fermions the
wavefunction must instead satisfy the antisymmetry relation:

pa,bψ(x) = −ψ(x)

where pa,b represents an operator switching the variables xa and xb.
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An antisymmetric wavefunction can “generally” be obtained from
a wavefunction by means of application of an operator A

A =
1

N!

∑
p

σpp

vhere p are the N! permutations of the N particle indexes and σp
is the p signature, that is 1 for even permutations, -1 for odd
permutations.
It is easy to see that A will zero products where the same function
appears more than once and hence also any product where an
orbital is a linear combination of others appearing in the same
product.
The antisymmetrized product of orbitals is also called the Slater
determinant.
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If we now wish to calculate the energy expectation value for such a
single determinant wavefunction, we have:

E =
⟨A
∏

a ϕa(xa)|
∑

a ha +
1
2

∑
a,b

1
rab

|A
∏

a ϕa(xa)⟩
⟨A
∏

a ϕa(xa)|A
∏

a ϕa(xa)⟩
(5)

that apparently involves the summation of N!N!N2 terms, clearly
unmanagable for even small values of N: e.g. 10!10!102 > 1015.
However, one can easily show that AA = A, i.e. A is idempotent (a
projector), so that we can drop either of the A in eq.5. Moreover
all the remaining products involving permutations of indexes not in
the operators integrate to 0, for the canonical condition
⟨ϕa|ϕb⟩ = δab, so that we are left only with

E =
∑
a

⟨ϕa|h|ϕa⟩+
1

2

∑
a,b

⟨ϕaϕb|
1

rab
|ϕaϕb⟩−

1

2

∑
a,b

⟨ϕaϕb|
1

rab
|ϕbϕa⟩

(6)
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Now that we have all of the energy expectation value in N2 terms,
we shall attempt to minimize it, seeking for an S.E. solution
through the variational principle. However we must ensure that the
wavefunction be properly normalized, e.g. by means of the
orthonormality condition on orbitals and we must find a convenient
representation for orbitals.
The usual suspect:

ϕa =
∑
β

ΦaβBβ (7)

ϕa is a linear combination of the basis B the coefficients being
stored in the row a of matrix Φ.
Usually the basis is fixed and one is left with the problem of
optimizing the coefficient Φ, subject to orthonormalization
condition:

⟨ϕa|ϕb⟩ =
∑
α,β

Φa,αΦb,βSαβ

where Sαβ = ⟨Bα|Bβ⟩, the overlap matrix takes into account non
orthogonality in the basis set.



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

The expansion in a basis set eq.7, transforms the differential S.E.
into a matricial equation and the energy expectation value into:

E =
∑
m

Φ∗
mhΦm +

1

2

∑
m,n

(ΦmΦngΦmΦn − ΦmΦngΦnΦm)

hij = ⟨Bi |h|Bj⟩

gijkl = ⟨Bi (r1)Bj(r2)|
1

|r1 − r2|
|Bk r1Bl r2⟩

where h and g or J−K are now matrices of expectation values
over the basis set.
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Also, I wish to make sure that ⟨ϕi |ϕj⟩ = δij , which in my new
representation becomes:∑

mn

ΦimSmnΦnj = δij

so that we arrive at the lagrange function

L =
∑
m

Φ∗
mhΦm +

1

2

∑
m,n

(ΦmΦngΦmΦn − ΦmΦngΦnΦm)

+
∑
ij

ϵij(⟨Φi |S |Φj⟩ − δij)
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We cannot directly solve this equation, but we can solve for:

L =
∑
m

Φ∗
mhΦm +

1

2

∑
m,n

(ΦmΦ̃ngΦ̃mΦn − ΦmΦ̃ngΦ̃nΦm)

+
∑
ij

ϵij(⟨Φi |S |Φj⟩ − δij)

=
∑
m

Φ∗
mhΦm +

1

2

∑
m,n

Φm(J−K)Φn +
∑
ij

ϵij(⟨Φi |S |Φj⟩ − δij)

where we have substituted the unknown inner Φ in the coulomb
and exchange expectation values with guessed values.



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Now, making profit of some freedom in the choice of orbitals (the
wavefunction does not change under unitary transformations of
occupied orbitals), we can rearrange our problem:

L =
∑
m

Φ∗
mFΦm +

∑
i

ϵi (⟨Φi |S |Φi ⟩ − 1)

F = h+
1

2
(J−K)

FΦi = ϵiΦi

so that we remain with a diagonalization problem. We then will
use our solution for reevaluating the J and K matrices up to self
consistency.
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Analogously, for the periodic system solutions, the hartree-fock
equations must be solved for at least a set of NM orbitals, where
N is the number of cells compricing the supercell and M the
number of orbitals spanning each cell.
However, as anticipated (Bloch theorem), the orbitals can be
indicized m by m by means of N k-vectors:

FΦkn = ϵknΦkn.

The set of energies and solutions at fixed n is called a band. Up to
now, the orbitals where actually functions Φ(x = r , s), also called
spinors. Actually, the most common representation of spinors is
that of pure eigenstates of s2,ms , i.e. Φ = ϕα(r)α and
Φ = ϕβ(r)β.
One can in many cases resort to the assumption that the spin
density is 0, so that he can make the simplification ϕα = ϕβ
reducing the size of the problem (RHF). This at least requires an
even number of electrons and full occupation of eventual
degenerate orbitals (closed shell).
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In any case one must face the problem of orbital occupation, which
usually is performed in energetic order, though no general
demonstration actually exists that this brings to the lowest energy
for the system.

k

EF

E

k

EF

E

In the crystal the problem may be tougher, the bands possibly
crossing near the Fermi energy, separating the occupied from the
free bands at 0 K temperature.
Solids are insulators when occupied and free bands are well
separated, conductors when the density of states at the Fermi
energy is not null, which may happen because the unit cell has an
odd number of electrons or because band spreading is larger than
separation.
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electron correlation

While Hartree-Fock theory is surprisingly good, correlation may
make the difference in many cases. The monodeterminantal
representation turns out too restrictive even in closed shell systems.
In solid state, most of modern computation makes use of density
functional theory, DFT, in the so called Kohn-Sham approach.
The Kohn-Sham method applies the single determinant
representation to both obtain n-representable densities (densities of
some n electron wavefunction) and to approximate the kinetic
energy of the true wavefunction as expection values of the kinetic
operator over occupied orbitals.

E = T + V + C + Exc

= −
∑
i

⟨ϕi |
∇2

2
|ϕi ⟩+

∫
V (r)ρ(r)dr

+

∫∫
ρ(r1)ρ(r2)

1

|r1 − r2|
dr1dr2 +

∫
Fxc [ρ(r)]dr
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