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V 

Preface 

This text was prepared and used in a two-quarter course for graduate 
electrical-engineering and materials-science students at Stanford University. 
The aim of the course was to teach those parts of quantum mechanics which 
an engineer might need or find useful in his profession. To my surprise this 
made the course almost orthogonal to traditional physics quantum courses, 
which provide those parts which most physicists feel every student should 
go through. The analytical solution of the harmonic oscillator states is rarely 
useful after the course is over. I believe that it is also rare that a solution of 
Schroedinger's equation is what is needed in engineering activities. For most 
questions concerning electronic structure of molecules or solids a tight- 
binding formulation is much more to the point, along with a knowledge of 
how to obtain the parameters which are needed, and how to calculate 
properties in terms of them. We have not seen these in other quantum texts. 
It is also important to have a feeling for when one can use a one-electron 
approximation and how to include many-particle effects when they are 
needed. One needs familiarity with perturbation theory and with the 
variational method, and confidence in the use of Fenni's Golden Rule. One 
needs the elements of quantum statistical mechanics and I believe also the 
many other topics one may see from scanning the Table of Contents, 
including even the elements of the shell model of the nucleus. It is not easy 
for a student to absorb such a variety of material in a short period, but the 
more modern approach of learning only that piece of a subject which one 
needs at the moment is not a viable approach for the fundamental laws 
which govern physics. Nearly fifty exercises, listed by chapter, are directed 
at using quantum mechanics for every-day problems, rather than to illustrate 
features of quantum theory. Solutions are available as a teachers' guide from 
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the publisher. I have found it rather easy to generate problems when the 
material under discussion really has such wide use. 

Graduate students in mechanical engineering, chemistry and chemical 
engineering, in addition to the electrical engineers and materials scientists, 
took this course. Most of these had taken no physics nor mathematics 
courses beyond their sophomore year as undergraduates. For that reason it 
was essential to include Lagrangian and Hamiltonian mechanics, Chapter 3, 
and such mathematical techniques as Lagrange multipliers, which physics 
majors learn only in their third or fourth years. I assumed that a third- or 
fourth-year undergraduate engineer would also be qualified to take the 
course, since their physics and mathematics background was the same, but 
none survived to the end. It appears to me that the graduate engineers have 
grown in sophistication, partly through other technical courses, to the point 
that they can deal effectively with such an abstract subject. They of course 
do it with varying success, but I believe it is so very essential for modem 
engineers to have a systematic presentation of quantum theory that it was an 
important experience for all of them. One wonders in particular how a 
modern materials scientist can obtain a Ph. D. without ever studying the 
fundamental rules which govern the behavior of materials. Similarly if any 
engineer needs to work with very small systems, as is increasingly common, 
he certainly should be able to recognize and deal with quantum effects. 
Having a "Schroedinger-solving code" on his computer is beside the point. 

Although the text is designed for engineers, and engineering 
backgrounds, it has seemed to me that it might also be useful for physics 
graduate students who have completed a traditional, more sophisticated, 
course in quantum mechanics. If that course was light on the 
approximations which have proven successful for applications, or in dealing 
with systems which involve many electrons, this text might provide what is 
needed for that physics student to use the knowledge of quantum theory he 
has obtained. 

We generally use equations which can be evaluated in MKS units, but in 
the end the energies in atomic systems will be of the order of electron-volts 
and atomic dimensions are of order Angstroms. Thus it is easiest in all 
regards to use the composite constants h2/m = 7.62 eV-A2, with m the 
electron mass, and e2 = 14.4 eV-A, with e the electronic charge, so that 
results are obtained immediately in convenient terms. This is in keeping 
with almost all treatments of quantum mechanics so that results here can be 
matched with those in other texts. Then the interaction energy between two 
electrons a distance r apart is written e2/r . The main place where the 
customary units become problematical to one educated with MKS comes 
with the use of magnetic fields, given here in gauss. Then the parameters 
needed for evaluation are given explicitly at the beginning of Chapter 22. 
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There is a central, and hopefully appealing, feature to the text which is 
not essential to its real goal. That is the assertion that quantum theory 
follows from a single absolute truth, the wave-particle duality, stated on the 
first page. The full generality of the statement is only developed as we 
proceed, and Planck's constant which makes the connection between the two 
descriptions is obtained from experiment, but no further postulates are 
required. We do not deduce all of the consequences with elegance and rigor, 
but believe the basic derivations are all essentially correct. Then if a student 
is puzzled by some question, such as Schroedinger's cat, he may recognize 
that if he cannot understand something which follows from the wave-particle 
duality, it is that duality which he does not understand. He should perhaps 
address his concern at the source of problem and may not be likely to resolve 
it by thinking about some remote consequence. Our focus is not on the deep 
philosophical questions which quantum theory inevitably raises, but it may 
provide a basis for dealing with them which is appealing to the mind of an 
engineer. 

This view of a single postulate is not apparent in more historical 
developments where the Pauli Principle, or the Uncertainly Principle, can 
appear to be independent postulates. This is partly because they initially 
were, and partly because the teaching of quantum mechanics may be mixed 
with teaching about the unfinished theory of fundamental particles, which 
evolved simultaneously. In our view quantum mechanics does not tell us 
what nature will provide, but does tell us the behavior of anything we can 
define and specify, either as a particle or as a wave. Similarly the questions 
of the "true" meaning of measurement and the collapse of wavefunctions do 
not arise with the pragmatic approach of asking only questions which can be 
tested experimentally. We see how to ask such questions, and how to 
answer them. Quantum mechanics cannot do more, nor can any other 
theory. This reliance on a single postulate can be a comfort to a student who 
is taken rapidly through an extraordinary range of systems and phenomena 
in a brief period. Hopefully the net effect is to allow him to recognize when 
he needs quantum theory, and to know how to proceed when he does. 

Walter A. Harrison 
Professor of Applied Physics 

Stanford University 
May, 2000 
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1 

I. The Basic Approach 

Our goal in this treatment of quantum theory is to provide those aspects 
of the theory which are most needed for a modern understanding of the 
world of our experience. Central to this are the many approximations which 
have turned out to be successful for estimating the properties of matter and 
predicting the events which occur on a microscopic scale. In that sense the 
goal is entirely pragmatic, but any study of quantum theory cannot help but 
raise deep philosophical questions. Perhaps the only real understanding of 
the theory is through a familiarity with how it works out for many different 
problems. It seems unlikely that understanding comes from thinking about 
some complicated extreme case, such as Schroedinger's cat. The approach 
we take here bypasses much of the question by starting with a single 
premise of wave-particle duality, from which follows all of quantum theory 
and its interpretation. Any remaining problems are made moot by the 
quantum-mechanical view that questions are meaningful only if there is 
some conceivable experimental way to test the answers. 

In keeping with this pragmatic approach we will not emphasize 
mathematical derivations, nor carry out the detailed analysis of harmonic- 
oscillator states, hydrogen wavefunctions, or angular momentum, which are 
part of almost all texts in quantum theory. We treat the simplest case in 
detail, state the general results, and see that they are the plausible 
generalizations. We leave the more detailed analysis to other texts. The one 
we used for the course at Stanford was Kroemer's Quantum Mechanicsfor 
Engineers and Materials Scientists , which served very well. 
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Chapter 1. Foundations 

1.1 The Premise 

For the purposes of this course, quantum mechanics is based upon a 
single statement, called the wave-particle duality, or sometimes 
complementarity, which is : 

Everything is at the same time a particle and a wave. 

Simply figuring out how this apparently self-contradictory statement can be 
true will lead us to all of quantum theory. The meaning of "everything" will 
be made more precise at the beginning of Chapter 3 when we discuss, 
Hamiltonian mechanics. We take the premise itself to be an absolute truth, 
but we generate approximate ways to deal with it, such as Schroedinger's 
Equation, or the more approximate tight-binding theory. Within these 
contexts we can make predictions, and the essential predictions have never 
been found to be wrong, though the approximations (such as the neglect of 
relativity for Schroedinger's Equation) make the results approximate. 

This premise as applied to light and to electrons is quite familiar. 
Although light is certainly a wave described by Maxwell's Equations, it is 
absorbed only in quantum packages, as if it struck photographic film like a 
bullet. Although electrons are certainly point particles they are diffracted as 
waves by the grid formed by a crystal lattice. It is also true of a real bullet, 
and of the beads which make up a necklace. It is even true of the center of 
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gravity of that necklace. It is also true of sound waves and even waves in 
water. It is also true about a spinning object, such as a top, where the wave- 
like behavior of the spin limits the states of rotation. The generality of the 
wave-particle duality will be expressed mathematically, and certainly more 
precisely, when we discuss Hamiltonian mechanics in Chapter 3. 

This premise is a truly remarkable statement, remarkable first because it 
is so general. It is remarkable second because it has so many consequences. 
It is remarkable third because it is so difficult to imagine that it could be 
true. It is remarkable fourth because it is absolutely true; it has never 
failed an experimental test. It is remarkable finally because although it 
seems not to'be able to answer some questions we would like to ask, these 
all involve answers for which there is no conceivable test. There is no 
theory which goes further than quantum theory. Thus it may be as close as 
we can get to the absolute truth. 

At the same time we should point out that this is not the only way to 
formulate quantum theory. Heisenberg's matrix formulation does not depend 
upon postulating waves, appears to be totally different, but is in fact 
mathematically equivalent. We shall see more clearly how this can be when 
we treat the harmonic oscillator in Chapter 16 using only the fact the 
operator which represents momentum (Eq. (1.1 1) in the next section) cannot 
be interchanged with the position in an equation (in mathematical terms, 
they do not commute). Then we will obtain results equivalent to what we 
obtain in Section 2.5 using waves. 

1.2 Schroedinger's Equation 

We proceed from this premise, by asking how it could be true for a 
particle, such as an electron with mass m and charge -e which we imagine 
for simplicity can move along a line in space. We shall see how we can 
define an average position for a wave, and then match the rate of change 
with time of this average with the velocity of a particle. If we are to describe 
a particle by a wave, there must be an amplitude which is a function of 
position x and time t. In fact a single amplitude, such as sin(kx), is not 
enough because it does not tell which way the wave is moving. Thus for a 
water wave we need not only the height of the water surface, but the velocity 
of the water motion; for a light wave we need both the electric field and the 
magnetic field. We require two amplitudes to describe the electron and we 
choose to make them the real and the imaginary part of a complex amplitude 
w(x,t), as could also be done with a light wave or a water wave. 

For a particle we must be able to discuss its position, and the best we can 
do with that for a wave is to have the amplitude be nonzero only over a 
limited region, a wave packet as shown schematically in Fig. 1. la. We 
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1 
a. 

w 

- 

b. 

Fig. 1 . 1 .  a. The wavefunction ~ ( x )  for a wave packet is nonzero only over 
a limited range of position x .  It will spread in time. b. A packet 
multiplied by a plane wave e%x will also move, with velocity do ldk ,  
evaluated at k = ko. 

cannot say exactly where the particle represented by such a packet is, but we 
can specify an average position in terms of the squared amplitude (as we 
would do for a light wave with an energy density proportional to the square 
of the electric field plus the square of the magnetic field). In this case the 
sum of the squares of the real and the imaginary parts of y is y*y and we 
would specify the average position by weighting each position in proportion 
to y*y as 

This innocent-looking definition of what we will mean by averages, or 
expectation values , will turn out to be very far-reaching and the basic 
relation of the wavefunction to experiment. It is often interpreted to mean 
that y*(x)y(x) is the probability of finding the particle at x but we really 
only use the definition of an average from Eq. (1.1). 

For discussing the motion of waves it is helpful to go to the familiar 
plane waves 

written in terms of a wavenumber k and the angular frequency o ( k ) ,  which 
depends upon the wavenumber. We can expand any y(x, t ) ,  such as the 
packet shown in Fig. l . l a ,  in plane waves, a Fourier expansion of the 
wavefunction. It may not be necessary to follow the details, but the most 
familiar such expansion is of a Gaussian packet, 
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centered at the position x = 0, as in Fig. 1.la. Ak is a constant representing 
the range of wavenumbers included in the expansion. The contribution of 
any small interval in the integration is a term proportional to Eq. (1.2), at t = 
0, so each term will evolve with time according to Eq. (1.2). 

Of more use will be a packet which is centered around some nonzero 
wavenumber, ko . This is accomplished by replacing the Gaussian in Eq. 
(1.3) by e- [(k-k0)/2Ak l2 . The resulting packet is illustrated in Fig. l . l b  (in 
this case also centered away from x = 0). We then introduce the time- 
dependence factor e- iw(k)t from Eq. (1.2) to obtain 

Since the integrand is large only near k = ko , we may approximate o ( k ?  by 
o ( k 0 )  + ( a w / a k ) ( k  - b) and multiply by ei(h - b ) x t  . [This "a" of course 
means a partial derivative. It is no different from the usual derivative here 
because o depends only upon the one variable, k . ]  Then we find that the 
packet is given by 

We may change to a dummy variable K = k - ko and we see that the integral 
itself is exactly the integral in Eq. (1.3) except that x is replaced by x - 
d d d k  t so the center of the packet is not at x = 0 , but at x = d oldk t . Thus 
the packet is moving with velocity 

v 
ak k o '  

evaluated at k= ko as indicated. It is also multiplied by the plane wave 
ei (ko X- w(k~) t ) .  

This is a familiar result from any wave theory that the group velocity of 
a wave is given by the derivative of the frequency (in radians per second) 
with respect to wavenumber. This is the velocity we must associate with the 
particle in a state with wavenumber k o  . It is the rate that <x > = 
1 ~ ( x , t ) * x  ~ ( x ,  t)dx /I ~ ( x , t ) *  ~ ( x ,  t)dx changes with time. The factors 
e i(k0 X- w ( b ) t )  and its complex conjugate cancel in the integral and do not 
affect the result. The phase velocity, o l k  , is of no physical significance and 
in fact we shall see that simply changing our zero of energy (or adding an 
unphysical constant potential) changes that phase velocity. 



6 Chapter 1. Foundations 

We now return to the particle point of view in order to identify 
properties of the wave with those of the particle. In classical 
(nonrelativistic) mechanics the energy of a particle in free space is E = 
1/2mv 2 , so the velocity is given by (l/m) dE/& or dE/dp where the 
momentum is given by p = mv . This becomes clear as the natural and 
general choice when we review classical Hamiltonian mechanics in Chapter 
3, where the Hamiltonian H is the energy written in terms of momentum 
and position, here H = p2/2m . In any case, it must be true for a classical 
particle in free space that the velocity is given by 

dH 
v = d p .  (1.7) 

Then we can only identify the wave description, Eq. (1.6), and the particle 
description, Eq. (1.7), if the energy H is a constant times the frequency and 
the momentum is the same constant (which we call Planck's constant h) 
times the wavenumber, 

H = h ~ ,  

p = h k .  

The value of Planck's constant must be determined from experiment, and 
it will be universal for all waves since we shall find that when different 
particles interact, or scatter from each other, the sum of wavenumbers 
afterward equals that before. If momentum p = hk is to be conserved, h 
must be the same for all waves. It is, in electron-volt seconds, 

h = h l(2.n) = 6 . 6 ~ 1 0 ~ 1 6  eV-sec. (1.91 

The bar on the h indicates the division of a Planck's constant h , defined 
earlier, by 2n . Almost always our calculations will lead us to values which 
depend upon combinations of constants which are more useful if given in 
terms of electron-volts (eV) and Angstroms (A), 

- = 7.62 eV-A2, e 2  = 14.4 eV-A, (1.10) 
x2  
m 

with m the mass of the electron and e the magnitude of its negative charge. 
We developed the relations, Eq. (1.8), to relate the properties of a free 

particle to a plane wave ei(b - W ( k ) t ,  but to do that we needed to consider 
more general wavefunctions which were a combination of such plane waves, 
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as in Eq. (1.4). As we continue with these more general wavefunctions, we 
may represent the momentum by an operator, 

h a  p = - -  i ax 

and the energy by an operator, 

(1.11) 

(1.12) 

since these are the operators, operating on the wavefunction which contains 
a sum of different plane waves, which will multiply each term by the value 
of momentum or energy appropriate to that plane wave. Thus to obtain the 
expectation value of the momentum of a particle with a wavefunction y(x,t) 
we write in direct analogy with Eq. (1.1) 

(1.13) 

The expectation value of the momentum is the weighted average over that 
for all of the plane waves making up the wavefunction. Similarly the 
expectation value of the energy of the wave is 

(1.14) 

These relations will turn out to have far-reaching consequences. 
Once we are discussing wavefunctions which are not plane waves, we 

can also discuss systems for which there is a potential energy for the particle, 
V(x), which is nonzero. Clearly the expectation value of the potential energy 
is 

<V(x ) > = w. (1.15) 

We now have two operators which represent the energy of the electron, 
H = -6 li)alat and H = p 2!2m + V (x), with the momentum operator given 
by Eq. (1.1 1). We may combine these to give an equation which will tell us 
the evolution of the wavefunction with time, 
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(1.16) 

which is called the Schroedinger Equation for a particle of mass m. It 
guarantees that the time-dependence of the expectation value of any operator 
is correctly given 

We seem to have derived the equation, but really we have simply sought 
to find what must be true if the electron is to behave both as a particle and as 
a wave. That premise is exactly true, but we have made a number of 
approximations or guesses on the way. For one thing, we assumed 
nonrelativistic dynamics and if the electron energy is large enough we must 
certainly use special relativity to describe the dynamics. For a second, we 
needed at least two components (real and imaginary) for the wavefunction, 
but it turns out that the electron has a spin, and to describe the electron fully 
requires four components. These two features turn out to be intimately 
related. When Dirac (1926) sought to invent an equation for relativistic 
particles he found he needed four components, and the resulting particle 
showed an intrinsic angular moment of h/2 which is the electron spin. The 
corresponding Dirac theory is a more complete theory of the electron, but we 
will not need the extra complexity and will proceed with the simpler 
Schroedinger representation with spin added as a separate feature. 

While we accept these approximate features of the Schroedinger 
representation of the particle, we should point out that it is extraordinarily 
general. Though we invented it for an electron, it applies also to a proton 
with a different m , or a neutron, or an atom, a molecule, or a solid. It will 
apply not only to the translational motion of that solid but will generalize to 
the rotational motion. It also generalizes to a light wave, with mass equal to 
zero, to a sound wave, or to a water wave. It generalizes to everything. 
Again the full significance of this generality will only be clear when we 
present Hamiltonian mechanics in Chapter 3 .  There we will see for example 
that it generalizes to the center of gravity of an object. If that object is a 
doughnut, the center of gravity lies in a region of space where there is no 
dough. Thus where the corresponding wavefunction is largest, there may be 
no likelihood of finding any real material. Clearly, then, we have also 
invented this wavefunction. It has no independent existence, cannot be 
detected, and yet all of the predictions which we make using it will be 
correct. 
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1.3 Light Waves 

Before going on with the consequences of our formulation, it may be. 
helpful to redo it for light waves, which will also behave as a particle, but 
one without mass. It is again requiring the consistency of the wave and 
particle picture, but in this case it is the wave whose properties we know 
from classical physics. 

To specify such a wave we will need to give the electric field, which 
requires three components (x, y ,  and z components), given as a function of 
position and time. That is not enough. Just as one function (the real part of 
yr) was not enough to tell which direction the electron was moving, we must 
also specify the magnetic field as a function of position and time. The two 
are related through Maxwell's Equations. Later in this text it will be 
important to treat these fields in terms of a scalar potential @(r,t) and a 
vector potential A(r,t), so it may be best to do that here for this very simple 
analysis. With no charges present, the vector potential is enough and in 
terms of it the electric field E and the magnetic field H are given by 

(1.17) 
H = VXA. 

Then for a plane wave propagating in an x- direction we shall write 

where the amplitude A 0  might lie in a z-direction and the direction of 
propagation is specified by the sign of o. We have chosen to use complex 
exponentials because that will be the most convenient way to proceed when 
we treat light waves more completely later. The two terms are necessary 
because the fields from Eq. (1.17) are real quantities. Using Eq. (1.17) we 
see that the electric field in the z-direction is -(2oAo/c)sin(kx - o(k) t )  and the 
magnetic field lies in the y-direction and is 2qAosin(kx - w(k)t) . 

If this wave is to be regarded as a particle, or a collection of particles, 
these particle must have, according to Eq. (1.8), energy ho and momentum 
hk . We shall see this more explicitly in Chapter 18 when we treat the light 
wave as a harmonic oscillator. The relation between the frequency o and 
the wavenumber k is o = ck which gives us the counterpart of our starting 
description of the electron, H = p2/2m . It is H = cp for the light particle, 
or photon. Substituting Eqs. (1.11) and (1.12) gives us the counterpart of 
the Schroedinger Equation, which for our wave is 
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dA dA ih - - - z l i  c - . at - ax (1.19) 

The ih' cancels so no h' appears in the wave equation. A more familiar form 
comes from writing €@ = c2p2 , which gives 

(1.20) 

This is exactly the result of writing one of Maxwell's Equations , VxH = 
-(l/c) dE/& (if there are no currents present), combined with Eqs. (1.17). 
4ncj, would appear in place of the zero on the right in Eq. (1.20) if there 
were currents present, with j ,  the current density in the z-direction. 

The treatment of light and of electrons is entirely parallel, as it must be 
in accordance with the wave-particle duality. For classical physics it is the 
wave description of light which is familiar and the particle picture of the 
electron, but both descriptions are appropriate in both cases. Different kinds 
of systems have different dynamical relations between momentum and 
energy and correspondingly different wave equations. Given the equations 
for light, we can introduce a refractive index which varies with position, and 
therefore a c(r) and study the dynamics of the photons, or refraction of the 
light. 

1.4. New Meaning for Potentials 

The vector potential A which we introduced in Section 1.3 is an 
invention, just as the classical electrostatic potential @ , is an invention. In 
classical physics the vector potential only has meaning through the defining 
equations, Eqs. (1.17), which relate the observable fields to it. If we add a 
constant to the vector potential (or to the electrostatic potential) it does not 
change the fields and we regard it as a simple definition, like the definition 
of an origin to a coordinate system, x ,  y ,  z . It is playing for the photon the 
role played by the wavefunction w which we also regarded as an invention. 
It may not be surprising that in quantum mechanics these electrostatic and 
vector potentials take on real new meaning. 

This meaning is associated with the Aharanov-Bohm Effect (Aharanov 
and Bohm (1959)). They proposed two experiments, which appeared to be 
paradoxes. One is for an electron wave, illustrated in Fig. 1.2. We imagine 
an electron packet moving from the left, and then being split into two 
packets, which finally recombine on the right and produce a diffraction 
pattern on a luminescent screen to the right, just as light - or light wave 
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packets - will form a diffraction pattern with constructive and destructive 
interference on a film in a two-slit experiment. Now we add two Faraday 
cages, conducting cages shown by dashed lines, and while the packets are 
entirely within the cages we apply a potential difference between them. No 
electric field is seen by either packet; their relative potential is simply 
shifted. However, according to the Schroedinger Equation, Eq. (1.16), this 
constant shift will advance the phase of one wavepacket [i h &y/& = H y  
means that the rate of change of the phase is equal to the energy divided by h 
as we shall see more completely in Eq. 1.22).] relative to the other. If we 
keep it on long enough to shift the relative phase by n, and then again put the 
potential difference to zero, the points on the screen at which constructive 
and destructive interference occurs will be interchanged. The potential is 
removed before the packets reach the cage surfaces but the interference 
pattern is modified even though no field has ever been felt by the packets. In 
this sense the potential, or potential difference, has taken on new physical 
meaning with measurable consequences. The electrostatic potential which 
was invented to describe electric fields obtains new meaning in quantum 
mechanics. It is natural at first to try to dismiss the paradox by saying that 
there will be small leakage fields within the cages, but that is not the point. 
Effects such as that can be made as small as one likes and the physical 
consequences of the phase shift remain large. 

There is an important message from this exercise. Once one is sure that 
the argument is correctly made, there is no real need to test it 
experimentally, any more than one needs to test a proposed perpetual motion 
machine once one sees that it violates the first law of thermodynamics. One 
does better to adjust one's intuition. Our feeling that only the electric field 
has consequences is generalized here to an electron which in some sense is 
in two places, and then the potential difference between the two places has 
consequences. Considerable experimental effort goes into displaying the 

Fig. 1-2. The Aharanov-Bohm Paradox. An electron packet from the left 
is split into two packets, which pass through two Faraday cages. A 
potential difference applied to the cages, while the packets are in them, 
will advance the phase of one packet relative to the other and shift the 
diffraction pattern, though no field ever exists where the wavefunction is 
nonzero. 
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surprising consequences of quantum theory, but it is clear that one is not 
"testing" quantum mechanics, but testing one's understanding of quantum 
mechanics. We can think of the starting postulate as an absolute truth, 
certainly on the scale of the truth of conservation of energy. 

The second Aharanov-Bohm Paradox split an electron packet so that the 
packets went on opposite sides of a long coil containing a magnetic field. 
The field in such a long coil is contained entirely within the coil so that 
neither packet ever feels a magnetic field. However, the vector potential is 
nonzero outside the coil and its presence will also shift the fringes. This 
"fictitious" vector potential has physical consequences. Similarly our 
fictitious wavefunctions will have important physical consequences which 
we explore in this text. 

1.5 Measurement 

The discussions above have touched on the question of measurement, 
which receives considerable attention from physicists. Our more pragmatic 
view is based upon Eq. (1.1) which tells us how the average of many 
measurements (in this case of position x ) is predicted using v(x)*v(x) . 
Quantum mechanics can tell us what sets of circumstances are consistent 
with each other. It tells us what we will see on the screen in the experiment 
shown in Fig. 1-2. From a practical point of view, that is what is needed. 
We should not speculate "which path the electron followed". We could set 
up another experiment which would also detect which way it went, and we 
would predict, and find, that the interference pattern would disappear, as we 
shall see in detail in Section 23.4. 

People have sought ways to avoid the problem, as in the consideration of 
fringing fields discussed above for the Aharanov-Bohm experiment, by 
thinking of many electrons interfering with each other. However, that 
experiment can be done with so few electrons passing through per second 
that there is almost no chance of two electrons being in the apparatus at 
once, and the same result is obtained. It is again certainly better to adjust 
our intuition to fit the truth, rather than the other way around. 

We may make a classical analogy as to how quantum mechanics tells us 
what is consistent, though it may or may not be helpful to follow such an 
analogy. Imagine walking past the window of a pool hall and noting a tall 
and a short man playing pool. The tall man is about to hit the cue ball aimed 
at the five ball. You estimate that it is an easy shot and the five ball should 
go in the corner pocket. From where the cue ball will then be he will 
probably choose to put the three ball in the side pocket. After you pass the 
window you recognize that maybe the five ball will not go in and an entirely 



1.5 Measurement 13 

new scenario arises. The short man will pick up his cue and will probably 
seek to put the six ball in the other side pocket, etc. You could carry the first 
scenario, and the second scenario, as far as you like (with decreasing 
certainty of the details) and what you are really doing is determining sets of 
circumstances which are consistent with each other, but inconsistent with the 
circumstances of another scenario. 

If you turn around and pass the window again, you may note that the five 
ball is still on the table: scenario one has become irrelevant. Indeed the 
short man is standing at the table, shooting at the six ball. 

The scene is obviously chosen to indicate that the well-known "collapse 
of the wavefunction", which is supposed to occur when someone makes a 
measurement, is not a quantum phenomenon, but one of everyday classical 
experience. Schroedinger's cat should not to be of concern. More 
importantly, this analogy sets the stage: all we can do in quantum mechanics 
is to estimate sets of consistent circumstances, or scenarios, and the 
likelihood of each occurring. When we do an experiment, we eliminate - or 
make irrelevant - a large number of other scenarios. No other theory may 
ever do more than that. 

1.6 Eigenstates 

We have found that the observables position, momentum, and energy, 
are represented by operators on the wavefunction, and that a statistical 
average of measurements of such an observables 0 for a given 
wavefunction is given by <O> = hy*Ow d3r/ /yr*w d3r as in Eqs. (1.1) and 
Eqs. (1.13) through (1.15), but now written for wave functions in three- 
dimensions, w(r,t). The d3r indicates a volume integral. We are thinking 
of electrons, but this applies to the energy-density for light waves which can 
produce diffraction patterns such as we observed for electrons on the screen 
in Fig. 1.2. The mathematical consequences of this statement about 
statistical averages are extraordinary, and we turn to them next. 

We do not focus on the mathematical details until we need them, but 
must mention that we always assume some set of boundary conditions on all 
wavefunctions, such as the condition that the wavefunction be nonzero only 
inside some surface, and therefore zero on the surface. It is also necessary 
that the operators be Hermi t ian ,  which means that for any two 
wavefunctions they satisfy Jy~1*(r)Oy~(r)d3r ={~y~*(r)01yl(r)d3r}*, which 
will always be true here and is readily verified for the operators we have 
introduced, using the boundary condition such as we just gave (partial 
integrations are required to prove it for the momentum and energy 
operators). 
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We now state a mathematical fact that for any such operator 0 , with 
appropriate boundary conditions, there exist eigenstates, functions which 
satisfy Ovj(r) = hjvj(r). They are analogous to normal modes of a violin 
string, and we shall follow that analogy rather than providing the detailed 
proofs. The eigenvalues hj will be real numbers. The most important such 
operator for us is the Hamiltonian operator representing the energy, for 
which the condition is 

I 

We see that this looks like the Schroedinger Equation, Eq. (1.16), with 
-Uz a/& replaced by the energy eigenvalue, Ej . For this reason it is also 
called the time-independent Schroedinger Equation. In fact, any 
wavefunction which satisfies Eq. (1.21) can be seen from Eq. (1.16) to have 
a very simple time dependence given by 

In this way also this is closely analogous to the normal modes of a violin 
string, which are distortions which exactly retain their shape, but change in 
phase, or amplitude, with time as cos(ot + 6) . The displacements in the 
normal modes of a string of length L can be written un(t)sin(xn n/L) with n 
any integer, x the distance along the string, and un(t) the amplitude for the 
n'th mode, varying with time as un(t) = u,cos(%t + 6,). 

It is best always to normalize our wavefunctions, 

J w*(r,t)w(r,t) d3r = 1. (1.23) 

This is called the normalization condition and sets the scale of the 
wavefunction so that v*(r,t)v(r,t) is the probability density. Then 
v*(r,t)v(r,t)d3r is the probability that the electron with that wavefunction 
will be found in the small volume d3r at the position r at the time t . The 
probability density may of course shift with time, but if the wavefunction is 
normalized at one time, it will remain normalized. This is obvious for an 
energy eigenstate from Eq. (1.22), and follows in general from substituting 
the time dependence of each factor in Eq. (1.23) from the Schroedinger 
Equation, Eq. (1.16), and using the Hermiticity condition on the 
Hamiltonian. This normalization does not change any of the results we 
obtained earlier but simplifies the formulae for the expectation values in Eqs. 
(1. l ) ,  (1.13), (1.14) and (1.15) by making the denominator unity. 
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The set of all eigenstates for an operator (and the Hamiltonian operator 
in particular) form a complete set; any function satisfying the same 
boundary conditions can be expanded in this set. Further, these eigenstates 
are orthogonal to each other, written in terms of a delta function as 

The i = j  equation is the normalization condition. Again, this is just as for a 
normal mode where any displacement of the string, &(x) , which is zero at 
both ends, can be expanded as &(x) = C.n U n  sin (xn nlL) . This is one of 
the principal uses of the normal modes. If one determines the frequency On 
of each normal mode, one can expand the displacements at time t = 0 in 
normal modes and determine the future displacements directly. [ Actually, 
one must expand both the displacements and the velocities in normal modes, 
by writing 6z(x,t) = En U n  sin (xn d L )  cos (ant  + 6,) and fitting 6, and un to 
the displacement and velocity at time t = 0. The same form then gives the 
displacement and velocity at any later time. This is the counterpart of 
expanding the real and imaginary part of the wavefunction in terms of 
energy eigenstates. For the analogy we do not need this, but we return to 
such an analysis when we treat lattice vibrations in solids in Chapter 15. 
Also at that time we shall discuss normalization for the normal modes.] 
Similarly we can expand electronic wavefunctions in energy eigenstates and 
immediately obtain the expansion for future times. 

If the wavefunction of an electron v ( r )  is an eigenstate of the 
Hamiltonian, then we know that if we measure the energy we will, on the 
average, obtain 

<H> = jvj*(r)Hvj(r) d3r = Ej . (1.25) 

But even more importantly, the mean-square deviation from that average, 

<(H-&j)2> = jvj*(r)(H-&j)2vj(r) d3r 0, (1.26) 

which we obtain by expanding the expression in parentheses and using Eq. 
(1.21) to evaluate each term. This means that we would always measure 
exactly that energy Ej .  In just this way if we use a mode analyzer to 
determine the frequency of a string vibrating in a single normal mode, we 
obtain only the single mode frequency. For the electron we say that the 
electron is in an energy level , or that it occupies an energy eigenstate. 
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More generally, an electron can have any wavefunction, and if we 
expand it in energy eigenstates, we may obtain the time dependence as 

If we measure the energy at some time t we obtain on average 

In the last step we wrote HWi(r) as &iVi(r), took the Ei  out of the integral, 
and used Eq. (1.24) to eliminate all terms with i differing fromj. 

That is, we can say that we obtain the average of the energy eigenvalues, 
weighted by the probability Uj*Uj that the Jth state is occupied. We can say 
more than that. It is easy to show that we will always measure exactly one 
of the eigenvalues, and so that aj*aj really is the probability of finding the 
electron with exactly that energy Ej . [A way to show this is to evaluate the 
product <ni(H-Ei)2> using a wavefunction Cj a jvj(r)  to see that there is 
one factor of zero for every term, but if we ever measured an energy H 
different from all eigenvalues that product would be nonzero.] This is the 
same again as for a violin string. For an arbitrary vibration, a mode analyzer 
will detect vibrations at each of the normal-mode frequencies, but none 
between. Electrons only appear in energy levels because they are like other 
waves. v(r)  can be anything, but if we make a measurement we only find 
it in one of the eigenstates of the operator for the variable we are measuring. 

1.7 Boundary Conditions 

We return briefly to boundary conditions which we apply to the 
wavefunctions. Up till now we have simply limited uy to one region of space 
by requiring the wavefunction to go to zero on the surrounding surface. 
These are called vanishing boundary conditions . For one dimension they 
are like those on the violin string, for which the displacements must vanish 
at the two ends, at the stock and the bridge. Often a more useful set are 
periodic boundary conditions , which in one dimension requires that both the 
value and the slope be the same at the two ends, as illustrated in Fig. 1.3. 
This corresponds to bending the line on which an electron moves into a ring 
and requiring a continuous (or single-valued) wavefunction and no cusps 
(which would correspond to infinite kinetic energy, -(h2/(2rn))&y(x)/dx2 , 



1.7 Boundary Conditions 17 

Fig. 1.3. Periodic boundary conditions on a wavefunction require that 
v(L ) = ~ ( 0  ) and dy(x)/dx IL = dw(x)/dx 1 0  . It corresponds to bending the 
system into a ring of circumference L . 

locally). This is directly generalized to a three-dimensional box of 
dimensions Lx,  Ly,  and Lz, by requiring these same conditions on opposite 
faces of the box. Some video games have such boundary conditions such 
that an object leaving one side of the screen appears on the other. It allows 
us to use plane waves as in Section 1.2. It is important that boundary 
conditions be placed on the outside of the system, but then most properties 
are quite insensitive to which set are used. Periodic boundary conditions 
eliminate the surface of the system; the boundary planes are no different 
from other planes in the system. They are usually appropriate unless we 
really are interested in the properties of a surface. 

1.8 Sound Waves 

Application of boundary conditions is familiar for sound waves, and 
many other problems. In some ways sound waves, in gases and in solids, are 
easier to think about than light waves, or wavefunctions, and we might 
introduce them at the outset so that we can use them for illustration. They 
are of course subject to the wave-particle duality as is everything else, and 
we shall see how they are treated as particles, phonons, in Chapter 16. 

In a compressional wave propagating along an x-axis we may write 
displacements u (x, t )  of the medium in the x-direction as 

as for light in Eq. (1.18). This gives rise to a dilatation (a local fractional 
volume change) equal to the first derivative of u (x, t) with respect to x and 
a change in local pressure equal to the bulk modulus B times the negative of 
that local dilatation. That change in pressure exerts a force per unit area on a 
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slab of the medium of thickness 6x equal to 6x times the negative of the 
derivative of that pressure with respect to x , or -B$u (x, t )  6x. That force 
per unit area is equal to the acceleration of that slab, a2u (x, t)/at2, times its 
mass per unit area p6x so 

or 

o=Eq. 

(1.30) 

(1.31) 

This corresponds to a speed of sound equal to d K  For an ideal gas, the 
adiabatic B = 5/3 P , with P the pressure (e., g., Kittel and Kroemer (1980) 
p. 433). Sound actually cannot propagate in an ideal collisionless gas, but if 
we assume enough collisions to reduce the mean free path well below the 
sound wavelength we might still use the ideal gas value for B . Then the 
speed of sound is m t i m e s  the root-mean square thermal velocity of atoms 
or molecules in this classical ideal gas. 

If a gas is confined to a pipe with closed ends we could construct normal 
modes using vanishing boundary conditions on the displacements u (x, t) at 
the ends. If it was open at both ends we could use vanishing boundary 
conditions on the pressure at both ends. These modes of frequency o will 
have quantized energy in units of h'o and will be absorbed as discrete 
phonons, in spite of our classical-mechanical, granular view of their nature, 
emphasizing again the extraordinary generality of the wave-particle duality. 
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Chapter 2. Simple Cases 

Having set up the general rules for quantum mechanics, we turn to the 
simplest systems, the simplest of all being a free electron, as discussed in 
Section 1.1.  

2.1 Free Electrons in One Dimension 

We begin with an electron moving along a line of length L, and find the 
energy eigenstates. We take the potential V(x) = 0 so the energy-eigenvalue 
equation, Eq. (1.21), becomes 

The general solution is of the form ~ ( x )  = ae ih  + be-ib with energy 
&k = h'2k2J2m . If we apply vanishing boundary conditions at x = 0 and L,  
the eigenstates become a s i n k  with kL an integral multiple of n . The 
amplitude gives a normalized state, satisfying Eq. (1.24). These 
eigenstates illustrate all of the features which we discussed in Chapter 1.  
The integer zero, corresponding to k= 0 is not allowed since it gives a 
wavefunction equal to zero, and that is not a state. 

We may alternatively apply periodic boundary conditions on the same 
line. Then m e f i k x  are eigenstates with kL equal to an integral 
multiple of 2n. It is an important point that any linear combination of e i b  
and e-ikx (which can again be normalized) is also an eigenstate if its kL is 
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an integral multiple of 2n. In general if we have two eigenstates of the same 
energy, any linear combination of them is also an eigenstate, which follows 
immediately from the eigenvalue equation, Eq. (1.21). For periodic 
boundary conditions, the state with k = 0 is ~ ( x )  =m and is an allowed 
state. 

We have sketched the energy rk= h'2k212m in Fig. 2.1 and indicated the 
states satisfying periodic boundary conditions by diamond solid dots, 
continuing to arbitrarily large positive and negative values of k . The states 
satisfying vanishing boundary conditions are indicated by crosses. No states 
are indicated with negative k for vanishing boundary conditions since such 
states are the same as the corresponding states with positive k , though 
perhaps with a different sign of the normalization constant. The two are not 
orthogonal to each other and are not to be considered different states. 
However these states with vanishing boundary conditions are spaced half as 
far apart in energy so that over a sizable energy range there are 
approximately the same number of states. 

Each state can accommodate one or two electrons (of opposite spin if 
two) when many electrons are present, as we shall see for atoms in Section 
4.2 and prove in general in Section 10.5. For a finite length L and a finite 
number of electrons, the total energy, obtained as the sum of the energies of 
the occupied states, will depend upon which boundary conditions are 

Fig. 2.1. The energy, as a function of wavenumber, for an electron (or 
other particle) moving in one dimension. The states at wavenumbers 
indicated by a diamond satisfy periodic boundary conditions. Those with 
an x satisfy vanishing boundary conditions, and changing the sign of k 
does not yield a different state. 
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utilized. This is illustrated by the x-states in a benzene ring in Problem 2.1. 
These states, which will be discussed in detail in Section 6.1 in the text, are 
approximated as six free electrons in a ring 15.7 A in circumference. The 
benzene ring is broken in Problem 2.1 so that it becomes a line of the same 
length, with vanishing boundary conditions, and the change causes an 
increase in energy which may be thought of as an estimate of the energy to 
break a n-bond. 

2.2 Free Electrons in Three Dimensions 

The one-dimensional system just discussed generalizes directly to three 
dimensions. The wavefunction is now of course a function of the 
coordinates x, y ,  and z. With V(r) = 0 (or constant), the energy eigenvalue 
equation, HW(r) = EW(r), is 

We may make an important general point about such an equation. When 
we seek an eigenstate of many variables, ~ ( x l ,  x2, ...), and the Hamiltonian 
may be written as a sum of individual Hamiltonians, one for each variable, 
H(x1, x2, ...) = H l ( x 1 )  + H2(x2) + ..., then we can obtain a product solution, 

with each of the factors obtained from its own eigenvalue equation, 

and the eigenvalue for the state ~ ( x l ,  x2, ...) is the sum of the individual 
eigenvalues, 

& = & ]  + &2 + ... (2.5) 

This important result is readily verified by substituting the product form into 
the multidimensional eigenvalue equation with the eigenvalue from Eq. (2.5) 
on the right. Then for the term on the left with Hl(x1)  and the term with ~1 
on the right, all other factors ~ 2 ,  ~ 3 ,  etc., may be canceled. Thus if Eqs. 
(2.4) is satisfied, we have shown the equality term-by-term. 

One very important consequence of such a factorization is that if we 
consider a system of many electrons, each moving independently in a 
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potential field, the many-electron wavefunction can be factored into one- 
electron wavefunctions, and the energy eigenvalue for the system is equal to 
the sum of the energies of the individual electrons. This can never really be 
exactly true since the electrons interact with each other through terms in the 
Hamiltonian such as e2/1r1 - r21 which are not separable as individual 
Hamiltonians. However, this one-electron approximation of assuming a 
separation is the fundamental approximation for almost all treatments of 
many-electron systems and will be heavily used in this book. We in fact 
already made it in discussing the benzene molecule of Problems 2.1 and 2.2, 
where we took the energy of the n-electrons to the be sum of their individual 
energies, and this approximation is basic to our understanding of electronic 
structure. 

We apply periodic boundary conditions on a box, as shown in Fig. 2.2, 
and for the free-electron gas in three dimensions this factorization allows us 
to generalize the one-dimensional energy eigenstates immediately as 

where SZ is the total volume of the system. The energy eigenvalue of each 
is Ek = fJ?/(2m))(kx2 + ky2  + kz2) = @k2/(2m). The periodic boundary 
conditions restrict the wavenumbers, as in one dimension, to 

kxLx = 2nnx, kyLy = 2nny, kz& = 2nnz. (2.7) 

This makes a grid of allowed wavenumbers, with each grid cell size equal to 

For macroscopic systems the spacing of successive grid points is so 
small that the allowed wavenumbers form an almost continuous set. Had we 
similarly taken a much larger L for Fig. 2.1, the points representing allowed 

ELz LX 4 

Fig. 2.2. Periodic boundary conditions are applied on a large box, so that 
each component of the wavenumber must be an integral multiple of 271 
divided by the corresponding dimension. 
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states would have been very much closer to each other. When there is such 
an almost continuous variation from state to state, a band of energies is 
formed, and the &k when it arises in a solid is called an energy band. 

The number of states in a volume of wavenumber space d3k is then 
obtained by dividing that volume by the cell volume, as 

Thus if we had N free electrons confined to a box of volume Q, the lowest- 
energy state would place two electrons (one of each of the two spin states, as 
we shall prove in Chapter 10) in every state with wavenumber less than 
some ,+ (the Fermi wavenumber) and 

N 
- N or ,+3 = 37~2- 

252 4 n k 3  
(2n)3 3 Q '  (2.10) 

with N/Q the electron density. (As suggested by the form, this is 
independent of size or shape of the box). The surface dividing the regions of 
wavenumber space between occupied and empty states is called the Fermi 
suqace , and in this case is a sphere. In Problem 2.3, we obtain the radius, 
&, for that sphere, and the Fenni energy EF =h'2k$/2m, for Na, Mg, and 
Al, which have 1, 2, and 3, respectively, free electrons per atom. It is a 
central number determining the electronic properties of these simple metals. 

Another important quantity is the density of states, n (&)  or D(E) ,  the 
number of states per unit volume and per unit energy (including two spin 
states for each wavenumber . We calculate it as twice the number of 
allowed wavenumbers in a spherical shell of thickness 6k ,  or energy interval 
8E = 6k/(dEk/dk). It is 6N = 2[522/(2~~)3]47~k26k = 2[Q/ (27~)3]4nk2s&/ /O ,  
corresponding to a density of states, 

r 

(2.11) 

This density of states, evaluated at the F e d  energy, will determine, for 
example, the electronic specific heat of the metal. In Problem 2.4 we redo 
this derivation for electrons in a plane to get the density of states (again 
including spin) per unit energy and per unit urea . 

We can also of course obtain the total kinetic energy, per unit volume, of 
the electron gas by integrating 1 E n(&)  d& from zero to the Fermi energy. 
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The integrand there is proportional to the 312 power of energy while the 
integrand to obtain the total number of electrons is proportional to the 1/2 
power of energy, so when we obtain the average energy per electron the 
integrations give factors of 5/2 and 3/2 and the average energy per electron is 

(2.12) 

We have used periodic boundary conditions, as is usual, for discussing 
the free-electron gas. It eliminates the effects of the surfaces and our 
resulting parameters depend only upon volume. We can also apply 
vanishing boundary conditions to the box shown in Fig. 2.2. As in the one- 
dimensional case this decreases the spacing between allowed wavenumbers, 
but only allows positive kx, ky ,  and kZ so the Fermi energy, the density of 
states, and total energy come out approximately the same when the system is 
large. If we proceed more carefully we will obtain additional terms, as we 
did in Problem 2.2 for the one-dimensional case, which are proportional to 
the area of the box and can be interpreted as contributions to the surface 
energy. We consider such terms next. 

2.3 Quantum Slabs, Wires, and Dots 

Periodic boundary conditions allowed us to eliminate the effects of 
surfaces, but sometimes we are interested in the surfaces themselves or wish 
for example to discuss very thin sheets of material. Then we might take Lz 
very small and take vanishing boundary conditions at z = 0 and L, but take 
the other two dimensions large and use periodic boundary conditions on the 
lateral surfaces enabling us to eliminate any effects of the lateral surfaces. 
We then can construct free-electron states which are of the form 

(2.13) 

This is again normalized and we think of Lz as quite small but the other 
dimensions large. The energies of the states are given by 

(2.14) 

With Lz small this is ordinarily described as a set of sub-bands, numbered by 
n , each having a two-dimensional dispersion in the y- and z-directions. We 
note that if Lz is small, and there are not too many electrons, all of the 
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occupied states will lie in the first sub-band. Such a system really becomes a 
two-dimensional system as we treated in Problem 2.4. In quantum 
mechanics often the motion in some of the dimensions is pushed to such 
high energies that those dimensions become irrelevant and we have truly 
lower-dimensional systems. In classical physics a gas of atoms will have the 
same energy and specific heat even if it is confined to a very thin slab. We 
see in Problem 2.4 that the density of states retains a constant value at low 
energies, in contrast to Eq. (2.1 1). We shall see in Section 18.4 how this is 
used in solid-state lasers to enhance the laser performance. 

At intermediate thicknesses the total density of states for a free-electron 
gas, defined for Eq. (2.1 l) ,  is the sum of the density of states for each of the 
subbands, each subsequent subband giving a constant density of states 
beginning at successively higher energies, as illustrated in Fig. 2.3. Note the 
sum of these matches the free-electron density of states of Eq. (2.11) just 
after each rise. If we doubled the slab thickness a new step would arise 
between each old one, all being half as high, and this would again be true. 
In the limit of very thick slabs the slab curve approaches the free-electron 
curve, as we would expect. 

A bulk metal, corresponding to a very thick slab, as in Problem 2.3, has 
a particular F e d  energy as calculated. We might mark that on the parabola 
in Fig. 2.3. If this same metal were deformed into a thin slab, with the 
density of states represented by the stepped function in Fig. 2.3, the electrons 
could no longer be accommodated below that same Fermi energy because 
the density of states is generally below the bulk value, so we would need to 

2ndsubband 

1st subband 

E 

Fig. 2.3. The density of states for a slab is a sum of the densities of states 
for each subband, giving a stepped density of states. As the slabs are 
made thicker the steps are more frequent and not so high, approaching 
closer to the parabolic density of states shown for a very thick slab, given 
in Eq. (2.1 1). 
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fill the states to a higher Fermi energy, and the energy of the electron gas 
would be higher, just as it was when we cut the benzene ring in Problem 2.2. 
A calculation of the energy for a free-electron gas in such a slab at 
intermediate thicknesses, Lx , was made for example by Edwards and 
Mathon (1991), Edwards, Mathon, Muniz, and Phan (1991), and more 
recently by Harrison (1999). It is important in such a calculation to hold the 
number of electrons fixed as we change the boundaries, which will mean 
that the Ferrni energy at which we stop filling will vary with thickness Lz, 
but will always be higher than for the thickest slabs. 

Holding the number of electrons per unit volume fixed, by increasing the 
lateral area in proportion to l / L ,  we obtain the total energy as a function of 
thickness Lz. The term in the energy independent of I& is the <E> of Eq. 
(2.12) times the number N of electrons. The term proportional to lateral 
area (and thus to l/Lz) can be divided by two and each half associated with 
a surface energy; it turns out to be given by given by k 2 E ~ / ( 8 7 t ) .  When we 
treat electronic states later in terms of tight-binding theory we shall see that 
it is appropriate to set the vanishing boundary condition at a full interplanar 
atomic distance s beyond the last plane of atoms, rather than at half that 
distance which we tacitly assumed here by holding the lateral area times Lz 
fixed. Then there is a reduction in the energy from this relaxation of the 
surface condition leading to a surface energy of (Harrison (1999), p. 721) 

E ~ F ~ E F  ( - E) 
87t surt. - (2.15) 

We may also subtract this surface energy, and the bulk energy of Eq. 
(2.12), from the total energy, leaving only terms which drop off faster than 
l/Lz at large Lz . We may associate this remainder with an interaction 
between opposite surfaces. Such an interaction is shown in Fig. 2.4, 
showing the oscillations which arise as successive sub-bands cross the Fermi 
energy. 

These turn out also to be important and were the reason why Edwards 
and coworkers carefully calculated the surface energy. An oscillatory 
coupling between the magnetization of two iron crystals, through a simple 
metal such as copper, had been observed by Bennett, Schwarzacher, and 
Egelhoff (1990) and by Parlun, Bhadra, and Roche (1991). We shall clarify 
some of the concepts needed later, but the effect can be understood as arising 
from a ferromagnetic metal such as iron having electrons only of one spin 
moving in a [loo] direction (parallel to a lattice cube edge) at the F e d  
energy. Then if the iron on both sides of a copper slab with (100) orientation 
(perpendicular to a [ 1001 direction) has parallel magnetization, the electrons 
of the opposite spin are confined to the copper slab giving an energy varying 
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as in Fig. 2-4. If the magnetization in the two iron crystals is antiparallel, 
electrons of one spin spread out far to the right and of the other spin far to 
the left and no such oscillatory interaction arises. Only integral numbers of 
copper planes can occur so only the integral values of Np in Fig. 2.4 arise 
and the oscillation is "aliased" with the lattice spacing to produce the long 
period shown by the points in the figure and by the experiments. 

Such an oscillatory coupling can be very useful technologically. If we 
construct a system with thickness such that the energy in Fig. 2.4 is positive, 
the magnetization of the iron crystals will tend to be antiparallel. Then the 
resistance of the system parallel to the planes will be high because almost all 
electrons spend time in both the highly conducting copper and poorly 
conducting iron. If, however, a magnetic field is applied which aligns the 
magnetization on both sides, electrons of one spin are confined to the highly- 
conducting copper and provide an electrical short which greatly reduces the 
resistance, an effect in this case called a Giant Magnetoresistance . Such a 
magnetoresistance can be used, for example, in a device to read magnetic 
data stored on disks. 

Rather than constructing a slab, as above, we might construct a system 
with vanishing boundary conditions on two small dimensions, Lx, and Ly, 
and periodic boundary conditions on one very long dimension, Lz, as 

aQ -0.1 
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Fig. 2.4. A plot of the energy per unit area (in units of E~k$/87r )  of an 
electron gas, as a function of the thickness of the slab, with the value for 
infinite spacing subtracted. Parameters were taken for copper and 
thickness given as the number Np of (100) copper atomic planes. Only 
integral values, shown by diamonds, are observable. (After Harrison 
(1999)) 
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illustrated in Fig. 2.5. This would be called a quantum wire. 
eigenvalues are clearly given by 

The energy 

(2.16) 

with the integers n, and ny specifying the subband. The lowest sub-band has 
nx = ny = 1 and is the lowest band shown to the right in Fig. 2.5. There are 
two sub-bands, nx  = 1, ny  = 2 and nx  = 2, n y  = 1, degenerate (meaning 
states of the same energy) if Lx = L,, also shown, and sub-bands of larger 
energy. Electrons in each behave as electrons in one-dimension, with the 
properties as we obtained in Section 2.1. 

One property of a one-dimensional metal of current interest is its 
"quantized conductance", discussed, for example, by Landauer (1989). It is 
readily understandable in terms of the sub-bands of Fig. 2.5. We imagine a 
quantum wire as to the left in Fig. 2.5 with large metal crystals (three- 
dimensional electron gases) at each end. Then an electron reaching one end 
of the quantum wire can escape into the metal crystal and we assume for the 
moment that the transmission of the junction is one, so it will escape in all 
cases. (We return in a moment, and in Problem 2.5, to the case of partial 
transmission.) The lowest-energy state of this composite system, called the 
ground state, will have all levels filled to a Fermi energy, some height in the 
bands to the right in Fig. 2.5. The electrons in the wire at any energy below 
the Fenni energy will be flowing into the metal crystals, but they are 

E t 

Fig. 2.5. A quantum wire has vanishing boundary conditions on two small 
dimensions and periodic boundary conditions on a large one, as on the left. 
Each sub-band corresponds to fitting an integral number of half- 
wavelengths to L x  and to L ,  , and then the energy varies almost 
continuously with kZ, as shown to the right. 
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certainly flowing also into the wire at the same rate since there is no current 
flow in this ground state. 

We may immediately calculate these two identical rates of flow by a 
scheme such as we will need to use many times in this text. We sum over 
the electron states with positive k Z  in this energy range, with each 
contributing a current equal to -e times the rate it strikes the end, equal to its 
velocity [( l /h)a&k /ak, from either Eq. (1.6) or (1.7) using Eq. (1.8)] divided 
by the length of the wire . We double this to include electrons of both spins. 
This is current given by the first form in 

I a& 1 I a& 1 -2e 6 J =  2&(-e) r - -- 2-  dk, (-e) ~ JdE. (2.17) h akz Lz - 2n L z J  XakzLZ-2nh/ 

The sum is just over the wavenumber in the desired energy range. We next 
convert the sum to an integral over wavenumber, divided by the spacing 
(from Eq. (2.7)), 2nlL, between subsequent states. If the spacing is small 
enough (or Lz large enough), this will equal the sum and the energy range 
can be small enough that the variation of speed is negligible. However, 
because of the factor d&k/akz, this becomes an integral over energy and there 
are no remaining energy-dependent factors. It is customary to write the 
denominator as h = 27& (Eq. (1.9)),  one of the few times that the constant h 
arises. 

We now raise the energy of the electrons in the metal on the left very 
slightly and lower the energy of the electrons in the metal on the right very 
slightly. This corresponds to applying a voltage equal to the resulting 
energy difference (divided by the electronic charge -e). With our 
transmission of unity the metal to the left is supplying electrons moving to 
the right in the wire at energies below its Fermi energy, but the metal to the 
right is supplying electrons to the wire only below the Fermi energy on the 
right (which is lower), ifthe Femzi energy lies in the quantum-wire subband 
we are considering. The Fermi energy on the left is higher than that on the 
right by the applied voltage Cp times the electron charge -e so from Eq. 
(2.17) there is a net current in the wire due to the applied voltage of 

(2.18) 

which is to be added for every sub-band at the Fermi energy. This is a 
conductance contribution 6C = 2e2/h for every sub-band at the Fermi 
energy. For a thick wire there will be very many bands below the Fermi 
energy determined from Eq. (2.10). 
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If we shrink a wire by pulling on it so that it necks down as shown in the 
insert in Fig. 2.6, the number of sub-bands below the fixed Fenni energy will 
decrease. It is the number of nx, ny pairs leading to an energy from Eq. 
(2.16) (with kZ = 0) which lie below the F e d  energy. That number is seen 
to be in proportion to the cross-sectional area using an argument parallel to 
that which led to Eq. (2.10). Thus the conductance will decrease in 
proportion to the cross-section, LxLy , as we would expect, due to the 
decrease of the number of contributing sub-bands. However, it is decreasing 
in discrete steps, which becomes observable when the cross-section is very 
small, just before breaking. Thus the conductivity varies as shown in Fig. 
2.6. Such steps of approximately 2e2/h in the conductivity were indeed 
observed by Costa-Kramer, Garkia, GarCia Mochales, and Serena (1995). 

In this treatment we assumed 100% transmission at the ends of the 
quantum wire. We may correct for this by noting that the current J entering 
from the left would be reduced by a factor of the transmission, T,  but then 
there would also be a reflection of that current from the right, giving a 
current to the left of JT(1 - T )  which subtracts from the initial current JT. 
We should subtract that, but add the current which arises when the reflected 
current strikes the left end, JT(l  - 0 2 ,  etc. We obtain an infinite series for 
the current given by 

(2.19) 
JT 

J n e t =  JT[ 1 - ( 1  - T> + (1 - 0 2  - (1 - 0 3  + ...I =rT , 
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Fig. 2.6. A gold wire is slowly stretched, as shown above, necking down 
to a small cross-section. The conductivity decreases in proportion to the 
cross-sectional area, by steps of 2e*/h as conducting sub-bands rise above 
the Fermi energy. As it is about to break, the individual steps can be seen. 
From Costa-Warner, GarCia, Garkia Mochales, and Serena (1995). 
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where in the last step we used l/(l+x) = 1 - x + x2 - x3 + ... 
Note that the result is independent of the length of the quantum wire. 

The fact that the observed steps were close to 2e2/h indicates that the 
transmission is indeed near one, as one might expect if the taper is slow on 
the scale of an electron wavelength. Such sums of infinite series are 
frequently useful. Problem 2.5 is a redoing of this calculation when the 
transmission is different on the right from on the left. In any case the fact 
that the experimentally observed steps in Fig. 2.6 are so close to the 
theoretical 2e2/h indicates, as we indicated, that the transmission in the 
experiments was very close to one. 

Note that this analysis has predicted a minimum conductivity of 2e2Ih , 
corresponding to a maximum resistance of 

h 2 7 ~ ~ 6 . 6 ~ 1 0 - 1 6  eV-sec 
Rmax. = = 2x1.6x10-~~Coulombxe 

(2.20) 
sec.-Volt 

= 1 2 . 9 ~ 1 0 ~ ~ ~ ~ ~ ~ ~ ~  = 12.9 kilo-ohms. 

Above that, the resistance becomes infinite; it is insulating. This concept of 
maximum resistance comes up in other circumstances, but we note that it is 
predicted to be higher than this value when the transmission is less than one. 
Quantized conductance is an important concept in mesoscopic devices. 

We might go on to a quantum wire which was also very short, so that the 
energy steps were large for all three directions of motion. This is called a 
quantum dot, and has discrete states as does an atom. We consider these in 
the context of a spherically symmetric well in the following section. 

2.4 Circularly and Spherically-Symmetric Systems 

Spherically-symmetric systems are of particular importance in quantum 
mechanics, partly because they include atoms. The mathematics is simpler 
for circularly-symmetric, two dimensional systems, so we consider those and 

h 

X 
Fig. 2.7 A radial and angular coordinate system appropriate to circularly- 
symmetric systems in a plane. 
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then write the direct generalization to three dimensions. 
For such a circularly-symmetric system in a plane we take a polar 

coordinate system, as shown in Fig. 2.7, with a radial distance r in the 
direction i (a unit vector in the radial direction), and an angle @ measured 
from the x-axis. We write a unit vector @ in the direction of increasing $. 

Then we specify the wavefunction as a function of r and @ rather than x 
and y . The gradient vector of any function can also be written in the new 
coordinate system, 

A 

Similarly the Laplacian is given by 

(2.21) 

(2.22) 

Even with a circularly-symmetric potential V(r) this does not separate 
the Hamiltonian into terms depending only upon r and terms depending 
only upon $, which we used to factor the wavefunction in Section 2.2. 
However, it can be verified that we can obtain solutions of the form 
R m ( r ) P ( @ ) ,  with Ym(@) = eim@& for m = 0, +1, +2, ..., and with the 
corresponding radial function satisfying 

We have written the electron mass as m e ,  to distinguish it from the integer m 
which traditionally describes the angular wavefunction. We have written the 
angular part with a factor 1 6  so that l Y m * ( $ ) P ( $ )  d@ = 1 and the 
normalization of the full wavefunction is accomplished if JRm(r)*Rm(r) dr  = 
1 .  

We may see that these are also eigenstates of the angular-momentum 
operator L , which may not be surprising in a circularly-symmetric system. 
The angular moment is the radial distance r times the tangential momentum, 
(6 l(ir))ala@ as seen from Eq. (2.21). The angular momentum eigenvalue 
equation becomes 

(2.24) 
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where the Rm(r)  factors cancel immediately so that the Ym(@) become 
eigenfunctions of the operator, with eigenvalue m6. 

Thus we have simultaneously eigenstates of angular momentum and 
energy. This turns out always to be possible if the two operators commute, 
LH - HL= 0 . For this case it is exactly the requirement that the Hamiltonian 
be circularly symmetric, aH/a@ = 0. We number the eigenstates by their 
angular momentum index m and then determine the energy from the radial 
eigenvalue equat ion  in two dimensions, Eq. (2.23). There will be many 
solutions, subject to any given boundary conditions, and these would be 
numbered by another index n. Note that the radial equation contains what is 
called a centrifugal potential , the second term. It arises from the angular 
kinetic energy and, by diverging at small r , forces the wavefunction to go to 
zero if m # 0. It will also clearly lead to an additive term in the energy E 
from that angular kinetic energy. All of these features will generalize to the 
case of spherical symmetry. We may also note that we could generalize this 
case to a case of cylindrical symmetry, with eigenstates of the form y~(r,@,z) 
= Rm(r ) (e""@/~)Z(z )  and if the potential does not vary in the z-direction, 
Z(z) can be taken of the form elk274 Lz . 

Eq. (2.23), when V(r)  is equal to zero, is the equation for free particles 
written in cylindrical coordinates. It is a form of Bessel's equation (e. g., 
Mathews and Walker (1964), 171ff) and the solutions Rm(r) are Bessel 
functions of integral order Jm(kr ) ,  with E = h2k2/(2me). There is less 
occasion to use them in quantum mechanics than the spherical Bessel 
functions which are solutions of the similar Eq. (2.31) which we shall come 
to. However, they are used here in Problem 2.6 in the discussion of quantum 
wires with a circular cross-section. In such problems with cylindrical 
symmetry one can utilize a mathematical text, such as Mathews and Walker 
(1964), which gives their properties. We do this in Problem 2.6. 

We go now to spherical coordinates, in close parallel with the circular 
system and illustrated in Fig. 2.8. Relative to a Cartesian system (x, y,  z ) ,  r 
is the distance from the origin, the angle 8 is measured from the z-axis, and 
@ is the azimuthal angle of the plane of z and r relative to the x-axis. In 
place of Eq. (2.22), the Laplacian is now given by 

r 

Fig. 2.8. Spherical coordinates relative to a Cartesian system. 
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(2.25) 

As for the circular case if the potential is independent of angle we can factor 
the wavefunction into a radial and an angular factor, 

with the angular factor in this case called a spherical harmonic , normalized 
as jdQYlm*Ylm = jsine dejd~Yzm*(e,,)Y,"(e,@) = 1. These are given by 

(2.27) 

specified by two integers, 1 = 0,1,2 ,... m = -1, -1 + 1, -1 + 2 ,..., 1 . The leading 
sign is plus unless m is an odd positive integer, then minus. The P p  are 
associated Legendre functions, which we shall supply when needed. As for 
the circular case, these are also angular-momentum eigenstates. The angular 
momentum around the z-axis Lz is given by &' as for the circular case. The 
total angular-momentum squared, L,2 + Ly2 + L,2, eigenvalues are 1(1+1)62, 
and this limits the component which can appear along the z-axis; Z(Z+l)@ is 
always greater than m%2. Thus states in spherical systems can be chosen to 
be eigenstates of energy, of total angular-momentum-squared, and of 
component along some chosen z-axis. For a particular energy and 1 there 
will always be 21 + 1 states of that same energy, with varying m 
corresponding to 21+ 1 different orientations of angular momentum. We 
shall discuss these more completely in Section 16.3. 

States of 1 = 0 are called s-states ("sharp" from atomic spectra data). 
They are spherically symmetric and we can associate the "s" with spherical. 
Only one m-value is allowed and the spherical harmonic is 

yoo(e,@) =4WW, (2.28) 

normalized as indicated above as Isin0 de/d@ Yoo*Yoo = 1. We will 
frequently have occasion to sketch composite states made of a number of 
atomic orbitals, and then it is convenient to sketch s-states as a circle. 

States of 1 = 1 are called p-states ("principal"). That for m = 0 is given 
by Ylo(Q,@) = d m c o s e  = d m d r .  Those for m = +1 are given by 
d w s i n e  efimq but for most applications it is more convenient to take 
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combinations, (Y11 k Yi-l)/d? , which are also eigenstates so that the three 
normalized "cubic harmonics" for the p-states are 

(2.29) 

The first two are p-states with zero angular momentum around x- and y- 
axes, respectively. They are analogous to three components of a polar vector 
and we may think of the "p" as standing for "polar". They are zero in the 
central plane perpendicular to their axes, positive on one side of the plane 
and negative on the other. 

The wavefunctions corresponding to energy eigenstates are spherical 
functions Rl(r) times these angular functions. When we construct states 
which are mixtures of these it will be useful to use Dirac notation for the 
states. The Is> represents an s-state, a spherically symmetric function and 
the circle we sketch for it corresponds to a contour of constant probability 
density. For the p-states Ipx>, Ipy>, and Ipz> a contour of constant 
probability density will be a pair of closed surfaces, one where the 
wavefunction is positive and one where it is negative. They are ordinarily 
sketched as in Fig. 2.9, with the sign of the wavefunction indicated as 
shown. The s-state is ordinarily taken to have positive wavefunction at large 
distance. 

States with I = 2 are d-states ("diffuse") and the cubic harmonics can be 
chosen to have symmetry (not normalized) of 

s-s tate px-state py-state pz-state a d-state 

Fig. 2.9 The symbols which are used to represent the s-, p-, and d-states of 
the atom. The Dirac notation, Is> , etc., is described in Section 5.1. 
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(2.30) 

The second of these is illustrated in Fig. 2.9 to the far right. These will be 
of less interest to us here than the s- and p-states. 

For each 1 the radial time-independent Schroedinger Equation can be 
written (returning to m = me for the electron mass) 

As for the circular case, the second term, @Z(l +1)/(2mr2) is called a 
centrifugal potential and arises from angular kinetic energy. Note that it is 
related to the angular momentum squared as L2/(2mr2), as one might have 
guessed. The Rl(r) will ordinarily be real and are normalized as jdr r2 Rl(r)2 
= 1, since then with jdQYp*Ylm = 1 we satisfy kd3r w(r,Q,@)* y(r,e,@) = 1. 

For solving this equation, it can be simplified by defining x(r) = rRl(r), 
normalized as jx2dr = 1. If we substitute for &(r) in Eq. (2.3 1) we obtain 

(2.32) 

We will extensively use Eqs. (2.31) and (2.32) in this text, but at this point 
make only the simplest application, that to free electrons in a spherical well. 

We take the potential V(r) = 0 for r < R, V(r) = 00 for r > R , so that at 
this outer radius x(R) = 0 . Also, since x = rRi we also have x(0) = 0 . For 
1 = 0 ,  we have simply 

(2.33) 

The general solutions are x(r)  = A sin(kr) + B cos(kr), 
h'2k2/(2m). To satisfy the boundary conditions, B=O, kR = nn: . 
resulting radial wavefunction (not normalized) is 

with E = 
The 

(2.34) 

It is called the spherical Besselfunction of order 1 = 0 . (It is regular at r = 
0. There are also nl(r) = ll(kr) 1 +1 diverging as r -0; e. g., Schiff (1968), 
84ff, but we will not need them.) For higher I there is an additional term on 
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the left in Eq. (2.33), @1(1+1)~(r)/(2mr2), and the solutions which are 
regular at the origin, jl(kr) = (kr)l/(1.3.5..:(21+1)) at small r , are spherical 
Bessel functions of higher order. At large distances they vary as sin@ - 

In/2)/(kr). It can be confirmed that these same formulae apply to the I = 0 
case. For 1 = 1 the spherical Bessel function is 

sin kr  cos kr  
= (kr>2 - 7, ~ ) = j l ( k r )  r (2.35) 

j2(kr) will have three terms, etc. These are all analogous to the sinkx and 
coskx solutions we found for free electrons moving in one dimension. We 
obtain energy eigenstates by adjusting the coefficients to satisfy the 
boundary conditions and normalization. 

In particular, if we consider free electrons, confined to a spherical box of 
radius R , we find solutions by requiring thejl(kR) = 0, which will give a set 
of values of k for each 1 . The first three for 1 = 0 and the third state for 1 = 
1 are illustrated in Fig. 2.10. As will always be the case for spherical 
potentials, the lowest state of any 1 will have no nodes, radii at which w = 0 
as for the nodes in a vibrating string, except possibly at r = 0 or at the upper 
limit. Each successive n-value is a state with an additional node. The states 
can be normalized by a scale factor A such that A21dr r2jl(kr)2 = 1. In 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 0 4 
r R 

Fig. 2.10. The three lowest-energy states of zero angular momentum 
jo(kr) in a spherical cavity of radius R. Energy increases with the number 
of nodes. The heavy curve is the third-lowest j l ( k r )  satisfying the same 
boundary condition. 
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Problem 2.7 we consider the solutions and normalization when the radius R 
is very large. 

We should note also the behavior in quantum wells of finite depth, 
where the potential beyond R does not rise to infinity. For simplicity we 
consider s-states so the second term in Eq. (2.32) is zero. We let V(r) again 
be zero for r < R,  but now some positive constant value Vo for r > R. Again 
the solution for r < R is x = Asinkr and if the energy is less than Vo the 
general solution of Eq. (2.32) for r > R is Ce-Pr + De+P with h'2p2/(2m) = 
Vo - E. Only with D = 0 is the solution normalizable at large r so we have 
the unknowns, A and C and the energy E to be fixed by matching the slope 
and the wavefunction at R (since the wavefunction is to be single-valued 
there and the kinetic energy would be locally infinite with a cusp in the 
wavefunction). For this simple case, dividing the equations for the two 
conditions gives 

k 
tankR = - -  

C L '  (2.36) 

This is readily solved numerically. We may for example solve h2p2/(2m) = 
Vo - i?k2/(2m) for p in terms of k and plot the right-hand and left-hand 
sides of Eq. (2.36) against k as in Fig. 2.11. The intersections indicate the 
solutions, with the energy determined by the resulting k.  The wavefunction 
corresponding to one such solution is also shown in Fig. 2.1 1. We see that 
the electron tunnels into the barrier, thereby "relaxing the wavefunction" and 
lowering the energy. If we were to increase the height of the barrier 
(increase Vo) the heavy curve to the left in Fig. 2.11 would rise toward the 
axis, and the wavenumbers at crossing increase slightly, as does the energy. 

For a more complicated V(r) we would need to numerically integrate the 
Eq. (2.32), which is not so difficult. At small r the behavior of the state is 
determined by the centrifugal term. If we substitute the form x = Arn into 
Eq. (2.32) we obtain 

Arn-2 + V(r)Afl = ~ A r n  . -n(n-l);?m Arn-2+ ~ 

h'2 h2Z( I+ 1 ) 
2m (2.37) 

At small enough r all but the two first terms become negligible. 
Canceling (@/2m)Arn-2, we find n = Z + 1. This is consistent of course with 
the forms of j&) = x/r shown in Fig. 2.10 and with the small-r form which 
we gave for thejl(kr). 

To do the numerical integration we select the Z-value we wish to treat 
and we may set up a grid of r-values with spacing Ar , perhaps 0.0lA . At 
the first grid point, r = Ar , we may use the small-r form x =rl+1 to take x to 
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0 0 2 4 7 5  0 4 9 5  0 7 4 2 5  0 9 9  

Fig. 2.1 1. On the left we have plotted the two sides of Eq. (2.36) against 
k .  The intersections of the tankR curves with the heavy curve are the 
states in the well. To the right is shown the third state, indicated by the 
circle on the left, as well a schematic representation of the potential. 

be (Ar)I+l (scaled by any constant we wish). Then at this first grid point 
a x l a y  = ( I  + l)(Ar)l and we guess a value of energy E so that we may obtain 
&/ar2 at that grid point directly from Eq. (2.32) using the known V(r = Ar). 
We may then directly calculate the x , x' = ayjar , and x" = a2x/ar2 at the 
next grid point from 

x(r+Ar) = ~ ( r )  + X'(r)Ar + 1/2x"(r)Ar2, 

x'(r+Ar) = x'(r) + x"(r)Ar, (2.38) 

x"(r+Ar) = - 

The same procedure is repeated, step by step, to large r, giving the solution 
for the energy E we guessed. We could instead integrate with some software 
such as Mathernatica. 

We will ordinarily not have guessed the correct energy, so as we 
integrate to large r we will find that ~ ( r )  is growing exponentially, either 
positively or negatively, as illustrated in Fig. 2.12. If it is in the positive 
direction, we should increase the energy slightly, which will bend the curve 
down, and continue until it is diverging in the negative direction, when we 
begin decreasing the energy until x again goes positive. It is not difficult to 
shift up and down until we have a solution. Usually we will know how 
many nodes are in the solution we want (see Fig. 2.10 or 2.11) and we may 
need to shift the energy considerably to have the right number of nodes and 
then adjust up and down to get close to the correct energy. We will do two 
problems of this type in the coming sections, one for the harmonic oscillator 
and one for atomic states. 
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When solving this equation for weak potentials, we may note that for 
this three-dimensional case a certain strength of a local attractive potential is 
required to obtain a bound state, a state decaying exponentially with Y at 
large Y . If the potential is too weak, an integration even at zero energy 
relative to the potential outside the well will not bend the wavefunction 
within the well far enough to bring it to zero at large distances. At positive 
energies relative to the potential outside the solution will always be 
oscillatory at large enough distances so no localized state can be obtained. 
This feature arises from our boundary condition at small Y. In a one- 
dimensional case, any net attractive local potential can produce a bound 
state, if the particle can range in both directions. It will be very shallow 
(energy near zero) if the potential is quite weak. 

Fig. 2.12. An integration of the radial equation, Eq. (2.32), at an energy E 
equal to an eigenvalue, and at slightly higher and slightly lower energies. 

2.5 The Harmonic Oscillator 

The third important system, in addition to free particles and spherically 
symmetric systems, is the harmonic oscillator. This is partly because each 
mode of sound vibrations, discussed in Section 1.8, can be treated as a 
harmonic oscillator, as can each cavity mode of electromagnetic waves - or 
light waves. The energy of a simple harmonic oscillator of mass M , with 
displacement coordinate x, and spring constant K is l / 2 a  + l/2Wc2, which 
we write in terms of momentum p = M i  as the Hamiltonian (to be 
generalized in the following chapter). Then the energy-eigenvalue equation 
becomes 

(2.39) 
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It is also exactly Eq. (1.21) for one dimension and with a potential given by 

We may guess a form of the solution, and confirm that it is correct. The 
1/2Kx2. 

correct guess is the form 

~ ( x )  = A exp(-x2/(2L2)) . (2.40) 

Substituting this form in Eq. (2.39), and evaluating the derivative, gives 

(2.41) 

The factors ~ ( x )  cancel so this is indeed a solution if @/(ML4) = K. Then E 
= @/(2ML2) . It is more convenient to write this in terms of the classical 
vibrational frequency u (in radians per second), with 0 2  = K/M = 
h'2/(@L4). The first step in this equation is simply the classical expression, 
the second gives w = fi/(ML2), and the energy is given by 

1 
E = - h .  2 (2.42) 

This is the ground state (lowest-energy state) of the simple harmonic 
oscillator and the energy is called the zero-point energy of the oscillator. We 
obtain the normalization, A2J-,,,exp(-x2/L2)dx = A 2 U f i  = 1,  so 

A = 1 / d x  (2.43) 

It is also interesting to obtain the mean-squared fluctuation, <x2> = 
A2/-,,,exp(-x2/L2) x2dx = L2/2. Thus U 42 is the root-mean-square 
deviation, called the zero-point fluctuation, and sometimes written a 0 2  = 
&b. The state arises from a compromise between kinetic energy, which is 
lower if the state is spread out and therefore slowly varying, and potential 
energy, which is lower if the wavefunction is strongly concentrated at the 
bottom of the well near x = 0. In this ground state the expectation value of 
the kinetic energy and the potential energy are the same, as they are 
classically, at 

1 L2 1 L2 1 6 0  - M & -  = - K -  =-- 2 2 2 2 2 2 '  (2.44) 

Higher-energy solutions are given in terms of Hermite polynomials, Hn, 
in most quantum texts (e. g., Kroemer (1994), p. 85) as 
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H,,(x/-\lZL)exp( -x2/2L2). (2.45) 

The only one of these excited states which we will actually use is the first, 
and Hl(Q) = 2Q. The successively higher Hermite polynomials are 
successively higher-order polynomials and alternate between even and odd 
functions. The energies of these harmonic oscillator states are well known, 

As for many discussions in this text we have solved the simplest 
problem (the ground state) and quoted the more general results without the 
mathematical details. In fact, once the solutions are obtained, the techniques 
for solving the general problem are rarely used. In Problem 2.9 we take an 
energy appropriate to n =: 7 and integrate the Schroedinger Equation 
numerically using Ax = O . l &  adjusting the energy to an accuracy of about 
1% . We see that there are seven nodes and that the x-value for the largest 
peak is not so far from the maximum of the classical vibration, obtained 
from E =: 1/2 Kxmax.2 

This ladder of equally spaced energy eigenvalues is characteristic of the 
harmonic oscillator. It is often said that there are n vibrational quanta in the 
state v n .  One consequence of the equally-spaced levels is that if we 
construct a wave packet of many harmonic-oscillator eigenstates, 
corresponding to a fixed displacement of the oscillator at the center of the 
packet, that packet will return to its identical shape every classical period 
2nlw since each state will have changed phase by an integral number of 
2n’s, as seen from Eq. (1.22). [The relative phases of the terms need to be 
chosen correctly to have the packet remain intact over the entire period; e. g., 
all in phase when the packet is at its extreme displacement.] 

When we describe sound vibrations in a pipe, as in Section 1.8, we can 
regard the u =u(O,t) of Eq. 1.29 as the displacement of a harmonic oscillator. 
The total potential energy is proportional to u2 and the total kinetic energy 
proportional to Ci 2.  Thus each mode corresponds to a harmonic oscillator, 
with a classical frequency given by the w = m p  q of Eq. (1.31). It is seen 
that the initial statement that everything is both a wave and a particle applies 
here as does all of the succeeding analysis. The excitation is then quantized 
with some number of phonons , which we think of as particles, in each 
mode. 

This is a considerable conceptual leap, in talking of waves as a function 
of amplitudes u , rather than as a function of position as we have before. 
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This leap may have first been made by Debye (1912) in applying quantum 
theory to sound waves in a solid, as we shall discuss in Section 10.2. We 
began here with a classical sound wave, pressure as a function of position, 
and described it with a quantum wavefunction, as a function of amplitude u,  
which is a harmonic oscillator with quantized excitations. Finally, we 
called these phonons. This extends to sound waves propagating in three- 
dimensional space, and each phonon has an energy and momentum, H = lh, 
p = fik. These phonon particles are indistinguishable since it has no 
meaning to "interchange them", a fact which we will make use of when we 
discuss their statistics in Section 10.2. We can trace the origin of this new 
particle back to the molecules which made up the air which was vibrating in 
the pipe. We shall make this generality of the wave-particle-duality 
statement explicit when we discuss Hamiltonian mechanics next. 

The same analysis will apply to light waves, where we may write a 
quantum wavefunction as a function of the amplitude (vector potential A or 
electric field E) and the energy in each mode is quantized, corresponding to 
some number of photons in each mode. This is a much more familiar 
particle than a phonon, but no more rigorous nor valid. The photon also is 
modified by the dielectric properties of the air through which it moves. 

Finally, we may easily extend the simple harmonic oscillator to three 
dimensions, as for an object in a bowl, or an atom which can vibrate in any 
direction in a well in which it is trapped. If the restoring forces are 
spherically symmetric,V(r) = l/2Kr2 = l/2K(X2 + y2 + 22) the Hamiltonian 
becomes separable in the three coordinates and, as in Section 2.2, we can 
write a product wavefunction Y(r) = wl(x)w2(Y)w3(z). Each of the wi are 
harmonic oscillator states. The energy can be written 

E = (nx + ny + n Z  + 3/2)h'w. (2.47) 

The state v o ( x ) ~ o @ ) ~ n ( z )  is vibrating in the z-direction. Since the 
system has spherically symmetry, it is also possible to write the states 
v(r)Ylm(0,@) if we choose. Thus the ground state can be written 

(2.48) 
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Chapter 3. Hamiltonian Mechanics 

When we generalized the harmonic-oscillator states to sound waves in 
the preceding section, we saw the extraordinary generality of the wave- 
particle-duality statement of Section 1.1. The mathematics in which that 
generality is expressed is Hamiltonian mechanics. We have used the word 
"Hamiltonian " for the energy, expressed in terms of the coordinates and the 
momenta. The coordinates could be x, y ,  and z ,  or they could be Y, 8, and @. 
Hamiltonian mechanics allows us to write the equations of motion in either 
set of coordinates, or many other sets. In Section 2.5 we saw that we could 
even write equations of motion in terms of amplitudes, and these amplitudes 
might even be electric fields. The real generality of the wave-particle 
duality is that for any system for which we write the equations of motion in 
terms of a Hamiltonian, with its coordinates and associated momenta, that 
system may be represented by a wave as a function of the coordinates, and 
the momentum may be represented by6 li times the derivative with respect 
to the coordinate, operating on that wavefunction. Then all of the quantum 
effects we have discussed are present for that system. This is one rather 
precise way to state the wave-particle-duality premise, though there are 
certainly other ways. 

Since this mechanics is so central to quantum theory, and since it is not 
generally included in the early physics courses which are taken by engineers, 
it is essential to outline the main features here. The history is also of interest 
(e. g., Thornton (1995)). This dynamics was in some sense developed as 
independent philosophically from Newtonian mechanics, by seeking a 
minimum principle to describe dynamics. That had its own appeal, but of 
course the results are mathematically equivalent to ordinary Newtonian 
mechanics. The first such principle was for optics, given by Hero of 
Alexander, in the second century BC. He asserted that light followed the 
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shortest distance between two points. This led to the equal angles of 
incidence and reflection, but failed for diffraction. Fermat in the 17th 
century postulated that it was the time of flight which was to be minimized, 
giving the correct law of refraction as well as of reflection. Maupertius in 
the 18th century first formulated dynamics this way, saying that particles 
follow a path of minimum action. This then led to Lagrangian mechanics 
later in the 18th century, and Hamiltonian mechanics in the 19th century. 
Here we bypass that formulation and given the resulting dynamics, showing 
that it duplicates ordinary mechanics. 

3.1 The Lagrangian 

As we indicated, Hamiltonian mechanics is based upon Lagrangian 
mechanics, another method using generalized coordinates. It may be helpful 
to think of a specific model system as we write quite general statements, as 
illustration and to confirm that the correct results are obtained. For that 
purpose we consider a classical problem of a bead strung on a wire as in Fig. 
3.1. We also let the wire rotate on an axis vertical in a gravitational field, 
and the bead may slide without friction along the wire. It would be awkward 
to work out the dynamics of the bead using force equal to mass times 
acceleration in Cartesian coordinates. However, it is possible to work it out 
in terms of a general coordinate such as q giving the distance along the wire, 
as shown, and Lagrangian or Hamiltonian mechanics. We will not work out 
this model in detail, which would require specifying the exact shape of the 
wire, but will illustrate the methods in terms of it. 

The first step is to write the kinetic energy T in terms of generalized 
coordinates, {qj}, and their time derivatives {q } , and time t ,  T({qj},{q },t). 
[It is conventional to use the brackets { } to denote a collection of values.] 
For the system in Fig. 3.1 the kinetic energy includes the kinetic energy of 
motion perpendicular to the wire, depending upon q , as well as I/Nq 2.  In 
the simplest case, motion along a straight line, it is of course 1/2M 2.  If the 

I 

9 

Fig. 3.1. A bead moves without friction along a wire, which rotates 
around a vertical axis. Its motion could be described in terms of a general 
coordinate q which is the distance along the wire, measured from the 
bottom. 
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forces Qj along the generalized coordinates are derivable from a potential, 
Qj = -aV({qi},t)/aqj then the Lagrangian is given by 

equal to 1/2m. 2 -V(x) in the simplest case. In the model of Fig. 3.1 the 
potential is the gravitational potential, but needs to be reexpressed in terms 
of q . It is also possible to construct a Lagrangian when there is a force 
applied which is not derivable from a potential, such as the force -evxH on a 
charged particle due to a magnetic field, and we shall do that in Section 3.3. 
We will not make use of it, but Lagrange's Equations of motion are 

For the simplest case, aL/aq = Mx' and Eq. (3.2) becomes M i '  +aV/dx = 0, 
the usual equation of motion. A momentum, conjugate to each coordinate is 
defined from the Lagrangian by 

equal to Mx' in the simplest case. pj is called the canonical momentum 
conjugate to the coordinate qj. All is equivalent to traditional mechanics for 
the simplest case, but the Lagrangian method could be used for waves in 
water, or dislocations in crystals, and we shall see that it gives the correct 
forces when we use it for motion of a charged particle in a magnetic field. 

3.2 Hamilton's Equations 

The Hamiltonian is given in terms of the Lagrangian by 

written as a function of the generalized coordinates, their canonical 
momenta, and time, H({pj},{qj},t). We need to use Eq. (3.3) to write each 4j 
in terms of pj. In the simplest case it is H(p,x)  = p2/(2M) +V(x), equal to 
the energy as we have used it up to now in our discussions, and we always 
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think of it as the energy. Note that qj does not necessarily have the units of 
length, but q p j  will always have the units of energyxtime, as does h' . 

There are two Hamilton's Equations for each generalized coordinate, 

For the simplest case they are x' = p/M and 6 = M i '  = -dV/&, 
respectively. One again relates p tox' and the other gives the equation of 
motion. We can do classical mechanics by solving the boxed equations, just 
as we can with Lagrange's Equations or with mass times acceleration 
equaling force. 

One important classical example may be helpful. To describe a rotating 
body, we usually specify the rotation with an angular generalized coordinate 
4. In terms of it the kinetic energy is written 1/214 2, with I the moment of 
inertia obtainable (see Fig. 2.8) from the mass density p(r) as 
I = kd3r r2sin2e p(r). A generalized force along the angular coordinate is a 
torque t given by t = -aV($)/a@. The Lagrangian is L = 1/21 6 2- V(4) and 
the canonical momentum is the angular momentum, p = &/a 6 = Z 6 . Then 
the Hamiltonian is H(p,@) = p2/(2Z) + V(4).  The first of Hamilton's 
Equations again relates 6 and p ,  and the second says that the rate of change 
of angular momentum is equal to the torque. All of this is traditional 
classical mechanics. Note that the coordinate 41 is dimensionless but the 
angular momentum has the units of energyxtime. 

When we go to quantum mechanics, we may proceed just as we did 
when the coordinates were ordinary spatial position. We write the 
momentum operator as 

as in Eq. (1.1 1) and the energy operator as 

The classical Hamiltonian is written with the pj replaced by an operator 
using Eq. (3.6) and we have the Schroedinger Equation in terms of the 
generalized coordinates as 
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This is what we did for Cartesian coordinates. If we do the same for the 
angular coordinates, for the case of free rotation, we seek a w(+) and 
Schroedinger's Equation becomes, as in Eq. (1.16), 

(3.9) 

If we seek energy eigenstates, they are given by ~ ( 0 )  = e i m @ / G  , and if 
they are to be single-valued and continuous, m must be an integer. These 
are also eigenstates of angular momentum @i )a/&$ , with eigenvalues 6m . 
We would have found this same quantization if we considered a particle of 
mass M moving on a circle of radius R with no potential energy, equivalent 
to our free electron in one-dimension with periodic boundary conditions 
which we treated in Section 2.1, so this may not be surprising. However, we 
note that we are now applying the wave-particle duality to the rotary motion 
of a rigid object, which is again a major conceptual leap. We shall return to 
this when we discuss spins of particles in Section 10.4 and 10.5. 

3.3 Including the Vector Potential 

When we include magnetic fields in the dynamics of charged particles, 
it is convenient to use the vector potential, as we did when we wrote out the 
fields associated with a light wave in Section 1.3. There we noted that the 
magnetic fields H and electric fields E could be obtained from the vector 
potential A by Eqs. (1.17), 

H = VxA(r,t) , (3.10) 

and 

1 aA(r,t) 
at . E = - -  (3.1 1) 

It may be inconvenient for an engineer to work in terms of these units which 
are almost universally used in quantum physics. Even there one cannot 
count on formulae being equivalent. Kroemer (1994), for example uses B 
equal to Wc in vacuum, and a vector potential equal to our A divided by c 
so that it is B which is equal to VxA and E is equal to -aA/at. We give here 



3.3 Including the Vector Potential 49 

the defining equations for our fields, and they can be used in each case to 
define the properties we predict. A(r,t) is to satisfy Maxwell's Equations, as 
in Eq. (1.20), and we will not need them further here. We shall need the 
energy density (total energy for a volume L2 divided by that volume) 
associated with uniform fields in vacuum, and it is 

(3.12) 

Any effects of dielectric media are treated as additional terms rather than in 
terms of displacement and induction fields. We write the interactions 
between an electron of charge -e and the fields as a force F given by the 
Lorentz force, 

( - e )  r F = (-e)E + ~ xH c (3.13) 

These are enough to define our use of electromagnetic fields. When we 
actually want to obtain values for forces and accelerations, and magnetic 
fields are given in gauss, we will need to substitute e in electrostatic units, as 
indicated at the beginning of Chapter 22 on magnetism. 

To include the force, Eq. (3.13), in our dynamics, we need a Lagrangian 
or a Hamiltonian which will reproduce the dynamics using Lagrange's or 
Hamilton's Equations. We shall confirm that this is accomplished for a 
particle of charge -e and mass m by replacing the momentum p in the 
Hamiltonian without fields by p - (-e/c)A(r,t). There can be additional 
forces, as arising from an electrostatic potential @(r,t) which are included in 
any potential energy V(r,t) in the starting Hamiltonian. Thus the classical 
Hamiltonian including the effects of the vector potential is 

(3.14) 

Confirming this leads to some important intermediate results. We write 
the first of Hamilton's Equations (Eq. (3.5)), 

(3.15) 

The meaning of aH/ap is aH/ap,? + aH/ap,f + aH/ap, 2 , with i , 9 , and 
5 unit vectors in the three directions. This is a shortcut which could be 
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confirmed by writing all vector equations out as three scalar equations. The 
velocity r retains its usual meaning, but we note that the momentum is no 
longer m r but has acquired an additional term. It is a complication, but we 
may proceed. The second of Hamilton's Equations becomes 

(3.16) 

[Here the final dot product is with A, and dx is obtained from the aIax.1 We 
want the acceleration, which we obtain by taking the derivative of Eq. (3.15) 
with respect to time to obtain 

(3.17) 

[Here dAldt = aA/& + aA/ar . r and the dot product is with a/&. Then px 

is obtained from Ax, etc..] We may multiply by m and substitute for p from 
Eq. (3.16) to obtain 

(3.18) 

We may confirm, by separating the equations into components all the way 
through, that this is equivalent to 

.. av er 
ar c m r =  -- - - x H - e E .  (3.19) 

[We use Eqs. (3.10) and (3.1 1) and, for example, to have H in the z-direction 
we can take A, = Hx . Then an r in the y-direction gives an m r in the x- 
direction as it should according to Eq. (3.13).] The final term is the electric 
field arising from the vector potential, according to Eq. (3.1 l), in addition to 
any field arising from other charges, and their resulting potential, which 
might be included in avlar. 

We have confirmed that the Hamiltonian of Eq. (3.14) describes a 
classical charged particle in an electromagnetic field. In quantum mechanics 
we follow the procedure of Eqs. (3.6) through (3.8) to obtain the 
Schroedinger Equation, 

(3.20) av( rJ )  w(r,t) + V(r,t)w(r,t) = ih at , 2m 
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which we shall have many occasions to use, both for the interaction of 
electrons with light and for the motion in the presence of a magnetic field. 
In the case of magnetic fields, we may use units given at the beginning of 
Chapter 22. 

The use of Lagrangians and canonical momentum is illustrated in 
Problem 3.1 where we consider the quantum mechanics of a ball, translating, 
spinning, or rolling without slipping. 
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11. Electronic Structure 

Perhaps the greatest accomplishment of quantum theory was providing 
an understanding of atoms, molecules, and solids in terms of the electrons, 
which had only been discovered in 1897. Classical physics was not even 
close to describing their behavior, whereas quantum theory did so 
quantitatively. It provided an essentially exact description of the hydrogen 
atom, which includes only a single electron, and which we discuss first. 
Exact treatment when more than one electron is present is impossible, but 
very quickly a one-electron approximation was introduced, which was 
extraordinarily successful, and which provides the basis of our modern 
understanding of the electronic structure and properties not only of atoms, 
but of molecules and solids. 
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Chapter 4. Atoms 

The electronic states in atoms, which we think of as spherically 
symmetric, correspond to the simplest electronic structure. The 
factorization of the wavefunctions using spherical harmonics, angular- 
momentum eigenstates which we introduced in Section 2.4, provides the 
classification of the states and the organization of the subject. The hydrogen 
atom, with a single electron, is the simplest such atom. We shall then see 
that an approximate description of the states in other atoms is essentially as 
simple. 

4.1 The Hydrogen Atom 

Having just completed a discussion of generalized coordinates and 
Hamiltonians, we should proceed carefully. The hydrogen atom consists of 
an electron and a proton so it is describable by the vector position of each 
particle, six Cartesian coordinates. However, we may transform coordinates 
to a center-of-mass position R and the relative coordinate r from the proton 
to the electron. The Hamiltonian contains a lunetic energy for the center of 
mass motion and for the relative motion (with a reduced mass equal to the 
product of the two masses divided by their sum) and a potential energy of 
interaction between them, V(r) = -e2 /r .  Since there are no terms depending 
on both R and r , the wavefunctions for the eigenstates can be factored as 
Y(R)y(r), as we saw in Section 2.2. The equation for the center-of-mass 
wavefunction is just that for a free particle with a mass equal to the mass of 
the atom moving in free space, and all of the solutions we have obtained for 
free particles apply. This explains why we can ignore the internal structure 
of atoms and molecules and apply quantum mechanics to the atom or 
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molecule as a whole. Everything is at the same time a particle and a wave. 
The energies of these states add to the internal energies of the atom, which is 
the part in which we are interested. v(r) is really in terms of a relative 
coordinate, but because the mass difference is so large, the reduced mass is 
almost exactly equal to the electron mass, and the nucleus moves very little 
in comparison to the electron. Thus it may be simplest to think of the 
nucleus as a classical positive charge at a fixed R and the electron orbiting 
in the potential -e2/r relative to that position. It is easier to think about it 
that way and the only error we make is in using a mass slightly too large, 
which we could correct if we chose. This treating of nuclei as classical 
charges when doing electronic structure is sometimes called the Bom- 
Oppenheimer Approximation, and we make it here. 

With spherical symmetry the wavefunction in the relative coordinate can 
be written 

with x ( r )  determined from a radial Schroedinger Equation for the function, 
Eq. (2.32), which becomes 

We shall, as with the harmonic oscillator, treat the simplest case, and 
~ ( r )  = re-Pr write the results for the rest. 

(corresponding to y(r) 0~ e W). Eq. (4.2) becomes 
For I = 0 we may try 

This will be a solution if the second and third terms cancel, @p/m = e2 , 
which fixes p as e2mL@ = 14.417.62 A-1 = ll(0.529 A). Then the energy is 
given by 

(4.4) 

This is the Rydberg, 14.42/(2~7.62) = 13.6 eV, using Eq. (1.10). This is the 
ground state, with normalized wavefunction given by 
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[Note that this is R(r)  times Yoo(8,Q) = l / G  .I 
The higher-energy s-states, obtained from Eq. (4.2) with again 1 = 0, are 

successive polynomials in r times e -W, closely analogous to the higher 
states of the harmonic oscillator. The energies are 

for polynomials of order n -1  . They are obtained analytically in most 
quantum texts, can be easily obtained as we did the n = 1 ground state for 
small values of n, or can be obtained numerically by the method we use in 
Problem 4.3. 

The index n is the principal quantum number, n = 1,2,  .... States of 1 # 0 
are obtained from Eq. (4.2), including the second (centrifugal) term. At 
small r they approach rl , rather than the constant for s-states. Their 
energies are found also to be given by Eq. (4.6), but for p-states there are 
solutions with energy En only for n = 2, 3 ,  ... In general the lowest 
eigenvalue corresponds to n = 1 + 1, and there are 21 + 1 eigenvalues for 
each, corresponding to different orientations of the angular momentum The 
corresponding eigenvalues are sketched in Fig. 4.1. 

These results obtain only for a potential equal to V ( r )  = -Zez/r, with an 
increased charge Z scaling the wavefunction and the energy. However, we 
shall see that all atoms can be approximately represented in terms of a more 
complicated V(r )  . Making that change shifts each of the energies shown in 
Fig. 4.1, the extra attractive potential near the nucleus lowering the s-state 
energies relative to the p-state energies of the same n in particular. Each 
level can be followed as the nuclear charge is increased from element to 
element and successive levels are occupied, providing the organization of 
the electronic structure of all of the atoms, as we shall see. 

1 = 0  1 = 1  1=2 

n =  1 

Fig. 4.1. The atomic term values, or energy eigenvalues or levels, for the 
hydrogen atom. Levels of the same n make up shells, sometimes 
subdivided to s-shells and p-shells. 
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4.2 Many-Electron Atoms 

We may move on to the second atom in the Periodic Table, helium with 
two electrons per atom. It is then necessary to describe the system with a 
wavefunction depending upon the coordinates of the two electrons, 
Y(ri ,r2) and the Hamiltonian operator becomes 

with ZN = 2 the nuclear charge. It is the final term which causes the 
problem. Without it the Hamiltonian would be of the form H(r1) + H(r2) 
and the wavefunction could be factored as y(r1,ra) = y(rl)y(r2) , but with 
that term the six-dimensional problem is only tractable numerically, and 
becomes quite impossible as we go to heavier elements, more electrons, and 
therefore more coordinates. 

In the early days of quantum mechanics it was recognized that only such 
separable problems can be solved, so it was asked how good an 
approximation can it be to treat it as a separable problem. That question can 
quite unambiguously be answered with a variational calculation, a general 
and powerful method for quantum mechanics. 

The general idea of the variational calculation is that any Hamiltonian H, 
such as Eq. (4.7), has a set of eigenstates Yj with energies Ej, which we may 
not know. However, any approximate state can be expanded in the complete 
orthogonal set, {Yj}, as Y = Cj u j  Yj. Then for the particular case of two 
particles, for that approximate state Y (rl,r2), the expectation value of the 
energy is 

The form on the right is obtained by noting that the terms with 

kd3r1 d b 2 Y  i (r 1,r2) *HYj (r 1 ,r2) = ~jjd'rl d%2Y i (r 1, r2)*Yj (r  1,r2)) for i and j 
different give zero, by the orthogonality of different eigenstates. The result 
will always be higher than the ground state energy, the lowest Ej, since every 
other contribution to the final form is higher. Thus the best possible 
approximate solution of any given form for the ground state energy can be 
obtained by minimizing the left side of Eq. (4.8) for the approximate form. 
The result generalizes immediately to any number of electrons. We shall in 
fact see that this variational calculation ordinarily gives not only an estimate 
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of the ground-state energy, but the next-lowest state orthogonal to the 
lowest, etc., giving approximate estimates of the entire range of states. Thus 
the variational method provides a complete, though approximate, theory of 
the electronic structure of many-electron systems. A simple variational 
calculation for the hydrogen ground state is carried out in Problem 4.1. 

For the two-electron problem, we make the one-electron approximation 
for the state, " (1 -1~2)  = y ( r i ) y ( r 2 ) ,  which would be correct if it were 
possible to separate the Hamiltonian as H(r1)  + H(r2).  In some sense this 
variational approximation for the wavefunction embodies the physical idea 
which we expressed at the end of the last section, that the hydrogen-like one- 
electron states retain meaning throughout the periodic table. When the 
physical concept is sound, the variational calculation tends to be successful. 
In this case, it provides the basis for our understanding of atoms, molecules, 
and solids. 

We are, then, to minimize 

with respect to y1 and y 2 ,  using the Hamiltonian H from Eq. (4.7). This is 
done by adding 6 y l * ( r l )  to y i * ( r i )  and asking that the result be stationary 
with any arbitrary 6y l* ( r i ) .  [This is simplest if we take y l * ( r l )  and y l ( r 1 )  
to be independent of each other, and it can be confirmed by writing out real 
and imaginary parts that this yields the correct result.] This leads to the 
Hurtree Equations, which are much like the energy eigenvalue equation, 

(4.10) 

and the corresponding equation for y 2 ( r )  is obtained the same way. Here 

(4.11) 

is an average potential from the other electron, which arises in the one- 
electron approximation, but is not meaningful otherwise. A real electron 
sees another point-like electron moving in the system. However, this 
approximate description enables us to solve the one-electron equation, Eq. 
(4.10). We may need to iterate the result, obtaining the probability density 
y l ( r ) * y l ( r )  from a solution of Eq. (4.10), using it to obtain a new Vee(r2) 
from the counterpart of Eq. (4.1 l), which is used in the y 2 ( r )  counterpart of 
Eq. (4.10) to obtain y2( r )  and therefore y2(r)*y2(r),  etc.. 
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The Wi(ri) obtained in this way would be used to evaluate the energy E 
from Eq. (4.9). We might hope that we could obtain that total energy as the 
sum, over occupied states, of the one-electron energies Ej as 

E =Cj E j ,  (4.12) 

as was true when we factored the three-dimensional states in Eq. (2.5). This 
we shall in fact assume, but there are a number of complications which we 
discuss, though briefly, because they are so fundamental to our 
understanding of real systems. However, for almost all of this text, the one- 
electron eigenvalue equation, Eq. (4. lo), and the interpretation, Eq. (4.12), 
of the eigenvalues will be all that we need. 

The first complication is that Eq. (4.10) includes in ~1 the Coulomb 
interaction between the two electrons, and that energy is included again in 
the evaluation of ~ 2 .  It is necessary really to subtract that interaction 
counted twice, and that will also be true when we treat collections of atoms. 
For these collections we must also add the Coulomb repulsion between the 
nuclei. However, it turns out that as long as the atoms remain approximately 
neutral, the change in energy as the atoms are moved is quite well given by 
the change in the sum of eigenvalues, as given in Eq. (4.12). Thus we will 
ordinarily be able to make this tremendously simplifying approximation, Eq. 
(4.12). We will need to be careful and make corrections when the 
approximation of neutral atoms is not good. 

There is a second complication in that the real many-electron 
wavefunction for electrons, Y ( r 1  ,r2), is antisymmetric with respect to the 
interchange of the two electrons, 

as we shall see in Section 10.5. We can incorporate this antisymmetry in our 
variational calculation by using an approximate wavefunction 

(4.14) 

An immediate consequence of this form is the Pauli Exclusion Principle that 
two electrons cannot occupy the same state, since then the wavefunction 
becomes zero. We have used this before, but this is the origin. Eq. (4.14) is 
called the Hartree-Fock Approximation, and it leads to an additional term in 
the V,,(r) of Eq. (4.10) which is called the exchange interaction and adds an 
exchange energy which we shall need to mention at various points. This 
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exchange energy arises from the fact that the two-electron wavefunction, Eq. 
(4.14), clearly approaches zero as r l  is close to r 2  and as a result the 
expectation value of the Coulomb repulsion - 1-21 is reduced. We shall 
see in Section 10.5 that this reduction applies only to electrons of the same 
spin, since the states for electrons of opposite spin are already antisymmetric 
due to the opposite spins, and the spatial wavefunction of Eq. (4.14) has the 
minus replaced by a plus. We shall also in Section 10.5 extend these 
antisymmetric wavefunctions to systems involving many electrons. 

An important consequence of this exchange energy is Hund's Rule 
which states that when only some orbitals of the same energy (as in Fig. 4.1) 
are occupied by electrons, the energy will be lower if their spins are the 
same as each other. Then the corresponding magnetic moments line up to 
produce magnetic properties for the atom. The same effect in metals such as 
iron produces ferromagnetism in those metals as we shall discuss in Chapter 
22. 

Another important feature of the exchange energy in Hartree-Fock 
theory is the fact that we can add to the electron-electron interaction, Eq. 
(4.11), the interaction of each electron with its own electric charge 
distribution, if we also add the exchange interaction of each electron with 
itself; the two self-interactions cancel exactly in Hartree-Fock theory and 
have the advantage that then the Hamiltonian entering the Eqs. (4.10) for 
different electrons is exactly the same, while Eqs. (4.10) and (4.11) in 
general produce different potentials for different electron states. Working 
with a single potential is a considerable simplification, partly because the 
different one-electron states are then automatically orthogonal to each other. 

Modem calculations for systems with many atoms seldom use Hartree- 
Fock, but use what is called Density-Functional Theory and an 
approximation to it called the Local-Density Approximation. In this 
approximation the exchange interaction, as well as all the corrections to 
making a one-electron approximation, Y ( r l , r 2 )  = ~ ( r i ) y ( r 2 ) ,  in the first 
place, are incorporated in an effective potential Vee(r) which is assumed to 
depend only upon the electron density p ( r )  at the point r .  The largest 
contribution to this potential is the exchange interaction, which is usually 
evaluated for a free-electron gas at the same density. It is found to be 

3 e 2 k  
Eex = -- per electron, 4n (4.15) 

where k~ is of course the Fermi wavenumber for a free-electron gas at that 
density. It is a numerical constant times e 2 k  as one can see from the form 
of the integral. [A discussion of Local-Density Theory, with references, is 
given for example by Hafner (1987), 3 15ff.l 
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As we indicated at the outset, for our purposes the result is that for 
helium, and for all other heavier atoms, there exists an eflective potential 
which appears in the Schroedinger Equation and the eigenvalue equation, 
Eq. (4.10), and using it we may proceed in a one-electron approximation, 
treating the total energy as the sum of the one-electron eigenvalues. 

This effective potential for the atoms is taken to be spherically 
symmetric, so that the electronic states can by factored into radial functions 
and spherical harmonics, and classified according to the angular-momentum 
quantum numbers 1, and m, and numbered by the principal quantum numbers 
n according to the scheme given for hydrogen in Section 4.1. Such a 
potential exists for each element, and the resulting eigenstates, or energy 
levels, are filled with the appropriate number of electrons for that element. 
We fill the 1s levels (with terminology given for spherical systems in 
Section 2.4, 1s- meaning n = 1, 1 = 0) first and then the s- and p-levels for n 
= 2, then successively the n = 3, n = 4, ... levels corresponding to successive 
rows in the periodic table. For each row the levels of the particular n which 
are being filled are called valence states, as distinct from those of lower n 
which are called core states. In the midst of these series, we fill d-levels ( 1  
= 2) through the transition-metal series, and f-levels ( 1  = 3) when they are 
low enough in energy, but we shall do little with these systems in this text. 
Extensive treatment is given in Harrison (1999) in much the same spirit as 
we use here for s- and p-levels. The levels which determine the chemical 
and physical properties of the elements are the valence levels, in the shells 
which are partially occupied in the atom, the highest occupied and lowest 
unoccupied energy levels. Core levels, much lower in energy, are of no 
consequence since they are so closely tied to the nucleus that they do not 
change as the atoms are rearranged; higher levels are empty and do not 
affect the total energy, Eq. (4.12). 

The corresponding valence electronic energy levels for the atoms: 
obtained by Mann (1 967) in the Hartree-Fock Approximation, are listed in 
Table 4.1. They may be thought of as the removal energy for the 
corresponding electron from the isolated atom, taking that electron to large 
distances at rest, as would be anticipated from Eq. (4.12). This is only 
approximate; the experimental removal energies for sodium through argon 
are [ionization potentials from the CRC Handbook (Weast (1975)l in eV, 
5.14, 7.64, (both corresponding to s-states), 5.98, 8.15, 10.48, 10.36, 13.01 
and 15.75 (all for p-states). These give a fair assessment of the degree of 
validity of these numbers. Removal of a second electron will require several 
electron volts of additional energy since it comes from a positively-charged 
atom. The needed correction is a consequence of the approximations in the 
treatment of electron-electron interactions discussed above. 

It is usual to represent the states occupied in the atom (the configuration 
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Table 4.1. Hartree-Fock term values for valence levels (Mann (1967)). 
The first entry is E ~ ,  the second is rp (values in parentheses are highest 
core level; values with * are extrapolated). All are in eV. Transition 
metals would appear to the left of Cu, Ag, and Au; f-shell metals would 
appear to the right of Ba and Ra. 

I I1 111 IV V VI VII VIII IA IIA 

He Li 
n = l  -24.98 -5.34 n = 2 

Be B C N 0 F Ne Na 
n = 2 -8.42 -13.46 -19.38 -26.22 -34.02 -42.79 -52.53 -4.96 n = 3 

-5.81* -8.43 -11.07 -13.84 -16.77 -19.87 -23.14 (-41.31) 

Mg Al Si P S CI Ar K Ca 
n = 3  -6.89 -10.71 -14.79 -19.22 -24.02 -29.20 -34.76 -4.01 -5.32 

-3.79* -5.71 -7.59 -9.54 -11.60 -13.78 -16.08 (-25.97) (-36.48) 

Cu Zn Ga Ge As Se Br Kr Rb Sr 

-3.31* -3.98* -5.67 -7.33 -8.98 -10.68 -12.44 -14.26 (-22.04) (-29.88) 
-6.49 -7.96 -11.55 -15.16 -18.92 -22.86 -27.01 -31.37 -3.75 -4.86 

Ag Cd In Sn Sb Te I Xe Cs Ba 
-5.99 -7.21 -10.14 -13.04 -16.03 -19.12 -22.34 -25.70 -3.37 -4.29 
-3.29* -3.89* -5.37 -6.76 -8.14 -9.54 -10.97 -12.44 (-18.60) (24.60) 

Au Hg TI Pb Bi Po At Rn Fr Ra 
-6.01 -7.10 -9.83 -12.49 -15.19 -17.97 -20.83 -23.78 -3.21 -4.05 
-3.31* -3.83* -5.24 -6.53 -7.79 -9.05 -10.34 -11.65 (-17.10) (-22.31) 

of the atom) by giving the quantum number n of the level, followed by its 
orbital momentum, s, p, d, or f, and an exponent indicating the number of 
electrons. Thus the ground state of boron is 1 ~ 2 2 ~ 2 2 ~ .  The cores are 
sometimes written in parentheses (1  s2)2s22p, or omitted. 

The systematics of the values are quite simple and are worth noting. The 
first element in the IA column is lithium and its 2s-state E~ value would be 
that of the hydrogen 2s-state, e4m/(8@) = -3.4 eV, except for the effects of 
the extra attractive potential from the additional two protons in the nucleus 
and the extra two core electrons close to the nucleus. These drop the energy 
to -5.34 eV for Li, and the corresponding shift gets smaller as we move 
down in the periodic table. -3.4 eV is roughly right for the IA series, 
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particularly if we remember that they are somewhat deeper at the top of the 
table. 

As we increase the nuclear charge in each row, going from Li to Be to B 
to C, etc., it is customary to write the number of valence electrons (rather 
than the total nuclear charge ZN) as Z = 1,2 ,  3 , 4  ..., so 2 is now the Roman 
numeral at the top of the columns in Table 4.1. The additional attractive 
potential continues to lower the s-state energy and we see that E~ increases 
almost linearly with Z , 

e4m 
ES = - 8h'z z = -3.42 eV, (4.16) 

This is not a prediction, but a plausible empirical trend. This works 
particularly well with the lower rows, such as Na, Mg, Al, etc. where Eq. 
(4.16) gives -3.4, -6.8. -10.2, -13.6, -17.0, -20.4, -23.8, and -27.2 for 
columns I through VIII. A final rule of thumb is that for the entire table, 

Ep = EJ2. (4.17) 

We shall confirm that this is expected from pseudopotential calculations in 
Problem 4.lb. The two rules are so simple that we can always remember 
approximately the energy levels for all of these elements. They will prove 
very useful when we begin studying molecules and solids. 

4.3 Pseudopotentials 

The similarity of the energy levels in successive rows, quantified by 
these approximate rules for the atomic term values, is the ultimate basis of 
the periodic table of the elements, which classifies the elements by the 
valence I through VIII at the top of Table 4.1. In one way the similarity is 
surprising since in each successive row there is additional structure, 
corresponding to an additional node, in the wavefunctions. It is a fact that 
this additional structure in the wavefunction, associated with the atomic 
core, does not greatly affect the energy of the states, nor therefore most 
chemical and physical properties of the atom. This fact is made explicit in 
the concept of a pseudopotential  which replaces the true intricate 
wavefunction by a simple pseudowavefunction. 

There are many ways to formulate such pseudopotentials (for discussion 
see Harrison (1966)), but one of the simplest, and the one we use here, is the 
Ashcroft (1966) empty-core pseudopotential. In this approximation the 
potential for the free atom is replaced by the true potential outside some 
"core radius" and zero inside, with the core radius adjusted so that the 
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lowest-energy s-state for that modified potential has energy equal to the 
valence s-state. We may illustrate this using the hydrogen 2s-state, shown in 
Fig. 4.2, along with the hydrogen potential. A pseudopotential w(Y) ,  also 
shown, may be constructed such that the 1s-state is raised in energy up the 
original 2s-state energy, -1/8rn&@. This nodeless pseudowavefunction is 
also shown in Fig. 4.2. In the same way, the core radius could be adjusted 
such that the pseudowavefunction had energy equal to any of the valence s- 
state energies for the alkali metals Li, Na, K, etc., listed in Table 4.1. 

The resulting pseudopotential can be used to describe the valence states 
of the corresponding metal, but has eliminated the core states. The 
pseudopotential will be much the same for all elements in one column of the 
periodic table, since they have similar valence s-state energies, though the 
real wavefunctions are quite different in the core region. In that way it 
makes explicit the periodicity of the elements. More importantly, this 
pseudopotential is sufficiently weak that it becomes understandable that the 
electrons in metals are so much like free-electrons, as discussed in Section 
2.2, in spite of the fact that the potentials are so large that they introduce 
several nodes in the true wavefunction near each nucleus. 

More generally a pseudopotential can be constructed for elements from 
the 2 'th column in the periodic table as 

Fig. 4.2. v(r) is the potential -e2/r for hydrogen, and w is the 
corresponding 2s-state, with one node. The empty-core pseudopotential 
w(r) has the core radius rc  adjusted such that its 1s-state, the 
pseudowavefunction @, has the same energy as the hydrogen 2s-state. 
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f o  for r <  rc 

I -Ze2/r for r >  rc, 
w(r) = 1 (4.18) 

with generally an additional potential for r > rc to approximate the potential 
arising from the charge of the other valence electrons (perhaps even 
approximated by a uniform charge density). Since the core radius turns out 
to lie generally outside the region where the electron density of the cores is 
appreciable, they do not affect the potential. In Problem 4.3 we obtain the 
core radii for lithium and sodium, using the s-state energies from Table 4.1. 
This can be done with a numerical integration of the radial Schroedinger 
Equation just as we obtained the harmonic-oscillator function in Problem 
2.9. We also use this same pseudopotential for sodium to calculate the 
lowest p-state energy, to be compared with the E~ = ~ ~ / 2  of Eq. (4.17). We 
find that generally the empty-core pseudopotentials obtained in this way give 
the valence p-states in accord with Table 4.1 roughly on the scale of 
accuracy of the agreement between that table and the experimental 
ionization potentials. 

When we put these atoms together to form solids, the representation of 
the atomic potentials by weak pseudopotentials will turn out to be an 

0 2 4 r(A) 6 8 10 

Fig. 4.3. The pseudopotentials for sodium atoms, obtained in Problem 4.3 
and similar to that shown in Fig. 4.2, are added for atoms at the sodium 
spacing of 3.66 A to give the W ( r )  shown. The lowest electronic 
pseudowavefunction in the metal is given approximately by a sum of the 
corresponding atomic pseudowavefunctions, shown as $(r). 
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extraordinary simplification. We shall see in Chapter 13 that it is a good 
approximation to simply add the pseudopotentials for all of the atoms, as 
illustrated in Fig. 4.3. Then the pseudowavefunction for the electronic state 
in the metal is approximately given by the sum of atomic 
pseudowavefunctions, just as the full wavefunction is written as a sum of 
full atomic states in Chapter 6. This pseudowavefunction is shown also in 
Fig. 4.3. We may note in passing that the net effect of the pseudopotential is 
a repulsion, reducing the pseudowavefunction near the atomic site. The sum 
of pseudowavefunctions in a metal is nearly enough constant (in strong 
contrast to a sum of full atomic states) that we can approximate it as a 
constant, and correct for the effect of the weak pseudopotential, making 
many calculations for the solid elementary. For treating molecules in 
Chapter 5 ,  we return to a description in terms of full atomic states. 

4.4 Nuclear Structure 

For most purposes in this text, the only properties of the nucleus which 
will be needed are its mass and its charge. However, the nucleus does have 
structure on its own, which is heavily influenced by the quantum-mechanical 
effects we have discussed. Further, we shall see in Section 10.4 that the 
nuclear structure will actually determine how molecules can tumble, and the 
zero spin we shall find for helium is responsible for its superfluidity which 
we discuss in Section 10.3. Here we give only the most basic aspects of the 
application of quantum theory to nuclear structure. More details are 
available from many sources, such as Nuclear Structure Theory by Irvine 
(1972). 

The nucleus is composed of nucleons, the positively charged protons and 
the neutrons, without charge. Both have a spin angular momentum of 1/2h, 
as do electrons, and very nearly the same mass as each other, about 2000 
times that of the electron. The small difference is important because the 
neutron, being slightly heavier and having therefore greater rest energy, can 
beta-decay (with a half-life of several minutes) into a proton by emitting an 
electron (beta-ray, or P-ray) and a neutrino, as we shall discuss in Section 
9.5. This need not occur in the nucleus where the Coulomb energy from the 
other protons raises the energy of the proton. They both have magnetic 
moments but, not surprisingly, they are different. They are held together in 
the nucleus by strong, short-range forces, which are very much the same 
between any pair, protons with protons, protons with neutrons, and neutrons 
with neutrons. We shall describe the origin of these forces, n-mesons, in 
Section 17.4. 
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The experimental properties of the ground state of the nucleus are very 
reminiscent of that of a drop of ordinary liquid, on a very much smaller 
scale; the diameter of the nucleus as determined by scattering experiments is 
several times 10-13 cm. The corresponding view is called the liquid-drop 
model, discussed in the earliest days by Bohr. These drop-like properties 
are that the nuclei are approximately spherical and the volume, as measured 
by scattering experiments, is approximately proportional to the number of 
nucleons making up the nucleus. Further, the binding energy of the nucleus 
- the energy required to separate it into individual nucleons - is also 
approximately proportional to the number of nucleons. Since the diameter 
of the nucleons is small on the scale of the nucleus, the nucleus might best 
be thought of as a drop of liquid metal, in which the distance between 
nucleons, thought of as ion cores, is large compared to the core diameter. 

Much more detailed properties of the nucleus can be obtained by taking 
the same one-particle view which we developed for electrons in Section 4.2, 
called the shell model for the nucleus. This approximation can be justified 
by the same variational calculation which we used for electrons. Then we 
say that each nucleon moves in the average potential arising from the 
interaction with all of the other nucleons. This potential should be 
spherically symmetric for the spherical nucleus and the liquid-drop model 
would suggest a square-well potential such as we discussed in Section 2.4. 
Then the one-particle states for a proton will again have the angular 
dependence of the spherical harmonics and the radial wavefunctions, jl(kr), 
and energies can be calculated just as we calculated the states for electrons. 
Further, the protons have half-integral spin and will obey the Pauli Principle, 
filling the lowest-energy states just as they were filled with electrons in 
atoms and metals. Since the neutrons have almost the same strong 
internuclear interaction, the neutron states will have very similar energies, 
with the shifts due to lack of charge being quite small. The neutrons also 

1 r- M Oxygen 
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P N  

Fig. 4.4. The one-nucleon potential in the shell model is a spherical well 
of approximately constant depth. The ls-state is lowest, and can be 
occupied by two protons and two neutrons, giving the helium nucleus. 
The next level is a p-state, which can accommodate up to six additional 
protons and six additional neutrons. For successive additional protons 
this gives Li, Be, B, C, N, and 0. The full shell is 0l6, oxygen-16. 
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obey the Pauli principle, and fill the neutron states independently of the 
filling of the states by protons since the neutrons and protons are not 
identical to each other and can both occupy the same states. This is just as 
electrons - or protons - of different spin can occupy the same orbital. 

This shell model immediately suggests some of the most important 
properties of nuclei. First, as in atoms, there will be shells of levels of 
increasing energy. If there are two protons in the nucleus, helium, they will 
occupy the lowest s-state, as in Fig. 4.4. We see in Problem 4.2 that the 
next highest state in the spherical cavity is a p-state, so in lithium, with three 
protons, the third will go into that p-state at considerably higher energy. 
This gives a correction to the liquid-drop model, indicating that the total 
binding of the nucleons is not exactly proportional to the number of 
nucleons, but those with a newly filled closed shell will be extra stable. This 
happens again with a total of eight protons (oxygen) where the p-shell is 
filled (Fig. 4.4) and in the fluorine nucleus the additional proton must go into 
the 2s-state. 

At the same time that we are filling the proton states, it will be favorable 
to fill the neutron states, of very nearly the same energy. If in lithium (three 
protons) we had not put two neutrons into the neutron 1s-state, this third 
proton would decay by emitting a positron (the antiparticle version of beta- 
decay) to transmute the nucleus to helium with an additional neutron. There 
must always be approximately the same number of protons and neutrons for 
these light nuclei. In particular, the helium nucleus with two protons and 
two neutrons filling the 1s-nuclear states is especially stable, as is the 
oxygen nucleus with eight protons and eight neutrons, both shown in Fig. 
4.4. When a nuclear shell of protons is partly filled, the same shell of 
neutrons can be partly filled with a different number of neutrons without 
producing the instability mentioned for lithium, allowing different isotopes 
of the same element, nuclei with the same number of protons, but different 
numbers of neutrons. 

As we move to increasingly large numbers of protons and neutrons in 
the nucleus, the depth of the square well binding the nucleons remains 
approximately constant because the nucleon-nucleon interaction is of so 
short a range that each nucleon sees only a few neighbors at one time. Thus 
the well expands in volume and the one-particle states become closer 
together. As in adding atoms to a metal the Fenni energy remains about the 
same, as does the cohesive energy per nucleon, and the volume increases, 
all as suggested by the liquid-drop model. However, as there are more and 
more protons, the Coulomb interaction between them raises the proton 
energy more and more above the neutron energy and it becomes favorable to 
have more neutrons than protons, up to 50% more for the heavier elements. 
Otherwise the protons would emit positrons to produce more neutrons. 
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This simplest shell model also describes excited states of nuclei, 
analogous to excited electronic states of atoms. Also as in atoms a nucleus 
in an excited state can emit photons and drop to the ground state. These 
processes can be calculated just as we calculate them for electrons in atoms, 
molecules, and solids. In the case of nuclei, which are so strongly bound, 
the energy differences are huge and the photons have energies of the order of 
millions of electron volts, gamma rays, rather than a few electron volts for 
electronic transitions in atoms. 

The shell model provides an understanding of the magnetic moments of 
nuclei. In particular, in the helium nucleus with the proton 1s-state filled 
with both spins, and of the neutron 1s-state filled, the nucleus has no net spin 
and no magnetic moment. The same is true of the nucleus of oxygen with its 
2p-shells completely filled. We shall discuss some of the consequences of 
these zero spins in Chapter 10. The magnetic moments of other nuclei allow 
nuclear magnetic resonance (NMR) when magnetic fields are applied and 
microwave radiation is used to cause transitions between different 
orientations of the nuclear magnetic moment. 

The shell model also provides the basis for the theory of fission and 
fusion of nuclei. It is of course an approximate theory as is our theory of 
electronic states in atoms, but again a very successful one. For the case of 
fission of a heavy nucleus, such as uranium with a ratio of neutrons to 
protons of 1.6, into two lighter nuclei, with smaller ratios for the stable 
isotopes, it is not surprising that extra neutrons are emitted. These neutrons 
causing fission of other uranium nuclei is of course the origin of the chain 
reactions in nuclear reactors and bombs. Much more detailed theory is 
necessary to describe such processes well. One of the most important 
refinements of the theory is the addition of spin-orbit coupling, which we 
shall describe for electronic systems in Section 22.5. 

There is also structure to the nucleons, each being constructed of three 
quarks, held together by gluons. Indeed the quarks may be without mass, so 
the nucleon mass arises from the binding of the quarks together. The 
corresponding Standard Model of fundamental particles is beyond the scope 
of this text, and of this author. Isolated quarks have not been observed, and 
indeed they may be unobservable in principle. Just as the ends of a string 
cannot be isolated, pulling quarks apart may require enough energy to 
produce the new quarks needed to form new nucleons. This may be the 
most suitable point to stop the discussion at the fundamental-particle end. In 
this realm nature has given us an extraordinary variety of systems, but again 
quantum mechanics governs the behavior of those systems. 
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Chapter 5. Molecules 

When we bring atoms together to form molecules, we may use the same 
one-electron approximation which we used for atoms, and the potential, or 
pseudopotential, is approximately a superposition of atomic potentials, V(r) 
= Cj v(r  - rj), summed over the positions r j  of the nuclei. However, we have 
lost the spherical symmetry, the corresponding factorization of the 
wavefunction, and reduction to a simple radial Schroedinger Equation. An 
alternative approximation has proven very successful, the representation of 
the states as Linear Combinations of Atomic Orbitals, the LCAO method. It 
allows meaningful molecular states even including only the valence atomic 
states, those listed in Table 4.1, in that representation. Further, it is 
applicable to solids as well as to molecules. Strictly speaking, we shall not 
use the LCAO method here, but the concept of the LCAO method, and 
obtain some of the parameters needed for the calculation from other sources. 
Such an approach is generally called Tight-Binding Theory. We apply this 
theory first to a molecule composed of two lithium atoms, which is a simple 
prototype of molecules in general, and then move on to other molecules with 
new features. The hydrogen molecule, H2, might be simpler, but with no 
cores it is scarcely any kind of prototype. 

5.1 The Li2 Molecule 

For the lithium atom the valence s-state was obtained from 
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For the molecule we add the potentials centered at two positions, rl and r2, 
giving again a one-electron equation, Eq. (5.1), but with v(r  - r j )  replaced 
by V ( r )  = v(r  - r l )  + v(r  - r2),  shown at the bottom in Fig. 5.1. This 
Hamiltonian is symmetric around the nuclear midpoint (r + - r  relative to 
this center) and it follows that the eigenstates can be taken as symmetric or 
antisymmetric relative to this point. [ This follows because if v(r) is an 
eigenstate of H , then v ( - r )  is an eigenstate of the same energy, as are v(r) & 
v ( - r )  each of which is either even or odd or zero.] Thus if we are to 
approximate the eigenstates of the molecule as linear combinations of the 
atomic s-states, we shall approximate them by 

The combination with the plus has lower energy, is the bonding state, 
and is plotted in Fig. 5.1. The combination with the minus is the 
antibonding state, has one more node and therefore has higher energy. We 
might expect these tight-binding states to be more accurate when the two 
atoms are further apart, but they turn out to be meaningful at the observed 
spacing of the molecule, 2.67A. 

We may estimate the energy of either state as the expectation value of 

Fig. 5.1. Below is a plot of the potential for a Li2 molecule, plotted along 
the z-axis through both nuclei, and measured from the midpoint. Above is 
the even (bonding) combination of lithium 2s-states. 
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the Hamiltonian with respect to this approximate state, <H> = /y*(r)Hyf(r) 
d3r / Iy*(r)y(r) d3r as in Eqs. (1.13) and (1.14). This is a good point to 
introduce the Dirac notation for the states and expectation values which we 
showed in Fig. 2.9 and which we shall use throughout the text. Each state 
y ( r )  is represented by a ket , written Iy>, usually with the symbol y 
replaced by a symbol distinguishing the state. We used such symbols for 
states in spherical potentials for Fig. 2.8. Here the atomic state y24r - rl) 
might be written Il>. The complex conjugate of this state is written as a bra, 
<lI. When the bra and the ket face each other (a bracket), we are to integrate 
over all coordinates involving these states, 

The numbers Hij = <ilH[j> are called matrix elements, making up a matrix, 
with as many rows and columns as we have states. 

In terms of this notation, we have written our bonding state as ( \ I>  + 
12>)/fi. Note that if the states Il> and 12> are normalized, <111> = <212> = 
1, the bonding state is approximately normalized, (<111> + <112> + <211> + 
<212>)/2 = 1 if the overlap <112> = <211> is small. In tight-binding theory 
we will take these overlaps, representing the nonorthogonality of the two 
atomic states, to be zero. We shall partly correct for this approximation by 
adjusting other parameters which enter our calculations, and partly by 
introducing shortly their real effect in holding the atoms apart. If we do 
neglect these overlaps, the energy of the bonding state of Eq. (5.2) becomes 

We have taken <21HIl> = <llH12> , which is true if the two states are 
real functions. This is obvious for the integration over the potential, and 
proven by two partial integrations for the kinetic energy operator. The 
mathematical statement is that <21Hll>* = <llH12> , being called the 
Hermitian property of the Hamiltonian matrix, and it will apply to all 
operators we consider. We further note that <1 IHI 1> is the energy of the first 
atomic state, which we write E~ , though it could be shifted from the free- 
atom value by the potential from the neighboring atom. Finally, we write 
the matrix element <1 IH12> between two neighboring atomic s-states as 
Vsso, a notation we shall use in the remainder of the text. The (3 subscript is 
redundant in this case, in representing the component of angular momentum 
around the internuclear axis as m = 0, always zero for s-states. When there 
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is one unit of angular momentum around this axis we shall use the subscript 
n, analogous to the "p" in p-states, etc. This set of standard approximations, 
which has proven very useful, leads us from Eq. (5.4) to 

The same approximations for the antibonding state, the minus in Eq. (5.2), 
leads to &A = E~ - Vsso. 

We shall find in Section 6.2 that in solids there is a simple approximate 
formula for this Vssa for two atoms separated by the distance d , which 
should also apply approximately in molecules. It is 

It is negative as we might expect since <11H12> is 

In the first step we noted that 12> is an eigenstate of the Hamiltonian with 
only the potential v(r-r2), and in the final step we again neglected <112>. In 
the final form, we note that I1> and 12> are of the same sign where they 
overlap and the potential is negative, leading to a negative <11Hl2>. Further, 
V,,, decreases at large spacing, as we should expect. 

If we are willing to use this approximate expression, Eq. (5.6), and the 
approximations which led us to Eq. (529,  we obtain the electronic structure 
of this Li2 molecule, in the same sense we obtained the electronic structure 
for the isolated atoms, but the predictions for the molecule are much richer. 
We saw in Eq. (4.12) that the total energy may be thought of as the sum of 
the energies of occupied states in the system. At least any change in energy 
of the system as the atoms are rearranged can be estimated as the change in 
that energy. Each lithium atom began with one electron in a state with 
energy F ~ ,  and with two electrons in core states with energies which have 
negligible change as the atoms are rearranged. Thus we now have the ability 
to calculate the total energy of the molecule, which allows us to calculate the 
molecular binding energy and the vibrational frequency, as well as the 
electric polarizability and the optical spectra. Some of these are carried out 
in Problems 5.1 and 5.2 
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5.2 The Variational Method 

For Liz we could use the symmetry of the molecule to write down the 
molecular electronic states directly, but when that symmetry is not present, 
we use the variational method, which we introduced in Section 4.2. We 
again wish to write the molecular state as a linear combination of atomic 
orbitals b>, 

but now we do not know the coefficients. If we did, we would evaluate the 
energy as in Eq. (5.4) as 

The idea of the variational method is that the energy obtained from Eq. 
(5.9) will always be higher than the real ground-state (lowest) energy 
eigenvalue, as we showed in Section 4.2. The best estimate of the ground 
state which we can make is the lowest expectation value we can obtain using 
that form. This was illustrated in Problem 4.1 by approximating the 
hydrogen atomic state by a form A e -ar2 and adjusting a to obtain the lowest 
energy state. The form is not very close to the real hydrogen state which we 
described in Section 4.1, but by doing the variation we obtain a reasonable 
estimate of the ground state. 

Returning to the approximate expansion in atomic states, the best 
estimate we can obtain for the ground state is the lowest possible energy 
from Eq. (5.9). Thus we should vary the ui in Eq. (5.9) to obtain the lowest 
energy to get the best estimate of the ground state energy. When we do this, 
we will find not only our best estimate of the ground state, but the lowest 
possible energy of a state orthogonal to our ground-state estimate, which is 
our best estimate of the second-lowest state. Similarly, we obtain estimates 
for as many eigenstates as we have terms in our expansion, Eq. (5.8). 

We can easily obtain the minimum by setting the derivative of Eq. (5.9) 
with respect to each ui equal to zero, but we shall obtain the same result 
using Lagrange multipliers (e. g., Mathews and Walker (1964), p. 313), a 
method which will be very useful at other points in the book, particularly for 
statistical physics in Chapter 10. We develop it first for a case with only two 
terms in the expansion, Eq. (5 .8) ,  and take the coefficients ui to be real, 
which is not an important limitation. In tight-binding theory we neglect the 
nonorthogonality <1(2> as we did for Li2, and normalize the states, g(ul,u2) 
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= u12 + u22 - 1 = 0. Then the denominator in Eq. (5.9) is one, and we must 
vary the u l  and u2 (the variations are written dul and du2) subject to 
retaining the normalization condition aglauidui + dg/du2 du2 = 0. The 
condition for a minimum E from Eq. (5.9) is then aElauldu1 + ar/au2 du2 = 
0 . We take the two terms to opposite sides of both equations and divide, to 
see that 

(5.10) 

with the common ratio h 
equations with h are, 

called the Lagrange multiplier. These two 

aE:/aul  - hagiaul = 0 ,  

aE:/au2 - hagiau2 = o , 
(5.1 1) 

exactly the conditions we obtain if we minimize the energy <ylHlp - 
h(<yIy > - 1) as if u l  and u2 were independent variables without any 
condition. The two equations are solved together to obtain the state. For 
this case, the two equations, using <wIHIv> = CjiUj*ui<jlHli>, are 

(5.12) 

(We have divided out a factor of two and noted that <11H12> = <21Hll> for 
this case and written the form which is the proper generalization to other 
systems.) If we multiply the first equation by u1 and the second by u2 and 
add the two equations, we see that h is our estimate of the energy, E in Eq. 
(5.9), and so we may replace h by E in Eq. (5.12). 

For the more general case where we expand the state in a large number N 
of terms, as in Eq. (5 .8) ,  we write <jlHli> = Hji and these variational 
equations generalize to the matrix equation 

I I 

with N equations, numbered by j . Solving these N linear algebraic 
equations yields N eigenvalues E with their N orthogonal eigenstates { ui} . 
The lowest eigenvalue E is our estimate of the ground state, the next is our 
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estimate of the first excited state (the lowest energy state of the form of Eq. 
(5.8) and orthogonal to the approximate ground state), etc. 

This is an extraordinarily useful and powet-ful method. No matter how 
difficult the problem, if our physical intuition suggests the nature of the 
states we may write an approximate state Eq. (5.8) corresponding to that 
intuition and obtain aigebraically the best solutions consistent with that 
intuition. One reason it is as accurate as it is, is that because of the 
variational condition, if we have made some small error 6~ in the state, the 
error in the energy eigenvalue will only be of order 6 ~ 2 ,  and even smaller. 

We used a variational method to obtain the Hartree Equations for many- 
electron systems, which should give the best product wavefunction, and the 
Hartree-Fock Equations which give the best one-electron approximation 
with antisymmetric states. Similarly, the Bardeen-Cooper-Schrieffer (1957) 
ground-state wavefunction gives the best "paired" electron state (allowing 
for uncertain electron numbers, as we shall see). Here we use the variational 
calculation to obtain the best approximate one-electron states based upon 
linear combinations of atomic orbitals. 

5.3 Molecular Orbitals 

The first generalization we make is for an expansion again in only two 
states, but with different energies. In a molecule NaLi it is based on the s- 
states from each atom, having energies from Table 4.1 of ~1 = -4.96 eV for 
sodium and ~2 = -5.34 eV for lithium. Making the same approximations as 
for Li2, the two variational Eqs. (5.12) become 

They may be solved together by eliminating the u l  and u2 to obtain 

(5.14) 

(5.15) 

We see that this leads to the correct result, E = E~ k Vsso, for the case in 
which ~1 = & 2  = E ~ ,  and substituting either of these values into Eqs. (5.14) 
yields u2 = +ul , with magnitude equal to 1/42 for normalization. Eq. (5.14) 
also gives the correct results when Vsso= 0; they are E = ~1 and ~ 2 .  

This problem of two coupled levels arises so frequently that it is 
convenient to write it in general form. For two levels, coupled by a covalent 
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energy of magnitude V2, and differing in energy by twice a polar energy V3 
= (&2 - E1)/2, the resulting state energies are as in Eq. (5.15), 

& =  E iq-2, (5.16) 

with of course E = (E2 + &1)/2. The energy may be substituted back into the 
variational equations to obtain the coefficients ui. It may be readily verified 
that the results may be written in terms of the polarity 

as 

for the lower, or bonding, state and 

(5.17) 

(5.18) 

(5.19) 

for the upper, or antibonding, state. We may easily confirm that these lead to 
the correct results for the case V3 = 0 and for the case V2 = 0, and that the 
bonding and antibonding states are orthogonal to each other and normalized. 

An interesting application of such equations is the calculation of the 
polarizability of the Liz molecule, carried out in Problem 5.2. V3 is zero, but 
if we apply an electric field E along the internuclear axis d , an energy 
difference for the two states arises equal to &2 - ~1 = -(-e)E. d.  This then 
gives rise to a dipole p = -ed(u$ - u12)/2 for each of two electrons. In 
Problem 5.2 we obtain the polarizability a defined by p = a E  , neglecting 
higher-order terms in E. 

It is instructive to look briefly at the effects of the nonorthogonality 
<ib> of the two atomic states, which we have thus far neglected. We can in 
fact include them in the variational energy of Eq. (5.9), which we do for the 
case of two coupled states with V3 = 0. We write ~1 = <11H11> = <21H12> 
and note <211> = <112> if both are real and correspondingly <21Hll> = 
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<11H12>. Then for this case, we have seen that because of the symmetry 
states can be written with u2 = +ul . Eq. (5.9) becomes 

(5.20) 

Half the energy difference between the antibonding state (u2 = - u l  if the 
atomic wavefunctions are the same on the two sites) and the bonding state, 
which we identify with the covalent energy, is 

E l  + <1(H(2> & I -  <1(H(2> 
2(1+<112>) - 2(1 - <112>) v2 = 

(5.21) 

In the final step we used the first equality in Eq. (5.7). 
We may also obtain the average of the bonding and antibonding states 

from Eq. (5.20), substituting the V2 from the second form in Eq. (5.21), to 
find that it is given by exactly &l  + <112>V2 . This is illustrated in Fig. 5.2 
where we confirm that if we neglect the nonorthogonality <112>, the 
antibonding and bonding states are split equally up and down, and that the 
effect of the nonorthogonality is simply to shift both levels upward. In Li2, 
with two electrons in the bonding state this nonorthogonality adds an 
overlap repulsion to the system, an increase in energy as the atoms are 
brought together, of 

(5.22) 

To obtain the final form we note that Hoffmann (1963) speculated that 
<llH12> could be related approximately to <1)2> by keeping the first term 
in the middle form in Eq. (5.7) , rather than the second term as we did. 

El 

<112>3 

Fig. 5.2. When two levels at energy ~1 are coupled, they split to a bonding 
energy level at &b and an antibonding level at E,, differing in energy by 
twice the covalent energy V2 . The average energy shifts up by the 
product of this covalent energy and the nonorthogonality <112>. 
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Making it symmetric and inserting a scale factor K , he wrote the central 
assumption of Extended Hiickel Theory, 

(5.23) 

This has turned out to be sufficiently successful that we might use it to 
suggest that both terms in the numerator of the middle form in Eq. (5.21) are 
proportional to <112> so that if <112> is not too large in the denominator, 
both factors in Eq. (5.22) may have similar dependence upon d as in Eq. 
(5.6). It then follows that the repulsion Vo(d) is approximately proportional 
to lld4 as we wrote in Eq. (5.22). 

This overlap repulsion is essential to the understanding of the molecule. 
Without it the energy from the two electrons in the bond (with energy given 
by Eq. (5.16) with in this case V3 = 0 and with the minus sign) would 
continue to drop as d decreases and V2 increases as Ud2. However, the 
overlap repulsion, varying as A/d4 will always win at low enough d , and we 
may adjust the coefficient A so that the minimum comes at the observed 
spacing. This is all we shall need to calculate the energy gained in the 
formation of the molecule, given the spacing of that molecule, as we see in 
Problem 5.1, where the repulsion cancels half the gain from bond formation. 

When the two atomic levels have different energy, so V3 is not zero, a 
similar analysis (Harrison (1980) Appendix B) shows that we must modify 
V3 to 1/2(&2 - ~1)/4/1-di2TZ and then the splitting is again correctly given 
by Eq. (5.16) and again the overlap repulsion is given by Eq. (5.22) and the 
V2 of Eq. (5.21). 

The extension of this approach to the effects of nonorthogonality when 
there are more than two coupled levels is considerably more complicated 
(Van Schilfgaarde and Harrison (1986)). It will be adequate here to continue 
treating the atomic states as orthogonal, and to approximate the effects of 
nonorthogonality by an overlap repulsion as given in Eq. (5.22). Then the 
problem is reduced to the solution of a set of algebraic equations, Eqs. 
(5.13), one for each orbital included in the expansion. The energy 
eigenvalues are obtained by solving the secular equation, setting the secular 
determinant equal to zero. 

Det(Hij - E6ij) = 0. (5.24) 

We obtain N solutions &k if there are N rows, and N columns, of the 
Hamiltonian matrix. For each eigenvalue &k we substitute back in Eq. (5.13) 
to obtain the corresponding eigenvector Ik> = ( u l ,  u2, ...)k. We note here a 
generality of the definition of states Ik> in Dirac notation. We have thought 
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of such states as functions of position yk(r), but now can equivalently think 
of them as vectors in N-dimensional space with components u l ,  u2 .... 

5.4 Perturbation Theory 

We imagine a starting Hamiltonian Ho which is sufficiently simple that 
we can calculate its energy eigenstates b> and their energies EjO . This 
might be the Hamiltonian for an isolated atom. Then we add a small 
correction, a perturbation, H1 which might be a small change in potential. If 
the perturbation is small enough that we may neglect any change in the 
eigenstates themselves, there may still be a change in the energy. We 
evaluate that energy as <jlHo + Hllj> = EjO + <jlHl[j> , and the second term 
is called thefirst-order term in perturbation theory for the energy of the 
state. Any other correction to the energy must come from changes in the 
state itself. 

We may actually obtain those corrections directly for the case of two 
coupled levels, for which we obtained the exact energy in Eq. (5.15), by 
regarding the coupling V,,, as the perturbation and expanding Eq. (5.15) in 
Ifsso. This yields 

(5.25) 

for the plus sign, and the same final form for the minus sign with 1 and 2 
interchanged. The shift given by Vsso2/(&l - ~ 2 )  is called the second-order 
term in perturbation theory for the energy of the state. There are higher- 
order terms, but if the perturbation is small compared to the difference in the 
energies of the coupled states they will be smaller, and they are usually not 
included. This correction has arisen entirely from the changes in the state. 

expansion of the state by expanding the coefficients given in Eq. (5.18) for 
small VSso . We then find that the state [ I>  is modified as 

We may also obtain the change in the state itself by making a similar 

vss, 
E l  - E 2  

[ I > +  11>+-12>+ ... (5.26) 

The second term is called the first-order correction to the state. 
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These results may be directly generalized to many coupled states by 
systematically expanding the Eqs. (5.13) in a perturbation H I  which is 
small. It leads to an energy 

and a state given by 

These are useful only if the matrix elements <ilHlb> are small 
compared to the energy differences EjO - EiO so that the expansions converge 
and the discarded terms are smaller. If the energy differences are not small, 
we must return to the square-root form in Eq. (5.25) for those two levels, 
sometimes called "degenerate perturbation theory". Frequently then the 
coupling with the remaining states can be included using the perturbation 
theory of (5.27). 

We note from the final term in Eq. (5.27) that if the state b> is lower in 
energy than the state li> the denominator will be negative and then since the 
numerator <jlHl(i><ilHl[j> = l<jlH1li>12 is always positive the energy of the 
state b> will be further lowered. Similarly the energy of the higher state will 
be raised further. This repulsion of the levels is illustrated in Fig. 5.3. This 
same effect occurs in classical physics. If two harmonic oscillators of 
different frequency are coupled by a term bilinear in the two displacements, 
~ u l u 2  , the lower-frequency mode will be lowered further in frequency and 
the frequency of the higher-frequency mode will be raised. 

We may similarly interpret the perturbation theory correction to the 
state. We see from Eq. (5.28) that if the state b> is lower in energy than the 
state Ji>, the denominator will again be negative. If the coupling is negative, 
as is Vsso, then the second state will be added in a bonding relationship, with 

Fig. 5.3. Two coupled levels shift their energies away from each other, 
according to Eq. (5.27), an effect called the repulsion between levels. 
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no node between the atoms, consistent with a lowering in the energy. If the 
second state is of lower energy, it will be added in an antibonding 
relationship, consistent with a raising of the energy. 

The perturbation theory corresponding to Eqs. (5.27) and (5.28) has 
proven to be extremely fruitful and will be used extensively here. In Chapter 
7 we shall generalize it to include perturbations which depend upon time. In 
Problem 5.3 we apply it to calculate the polarizability of the Li2 molecule by 
noting that an electric field couples the occupied bonding levels to the 
antibonding levels, thereby lowering their energy in proportion to the square 
of the electric field according to Eq. (5.27). The corresponding change in 
energy of the molecule is equated to the change of energy -1/2aE2 of a 
system of polarizability a to obtain that polarizability, an alternative method 
to that used in Problem 5.2. This same approach is also used in Problem 5.3 
to find the polarizability of a quantum-well state in a semiconductor. 

5.5 N2, CO, and C02 

We turn next to molecular orbitals in a series of other molecules, each of 
which introduces important new features. The nitrogen atom has a 
configuration (defined in Section 4.2) of (ls2)2s23p3 so that clearly p-states 
will be involved in the molecular orbitals. We are still making the 
approximation that the orbitals can be written as a linear combination of 
atomic orbitals, IMO>= Cj U j  b> , but now the sum can contain eight terms, 
the 2s-orbital and the three 2p-orbitals on each atom. We again neglect any 
effect of the molecular formation on the 1s-core electronic states. In 
principle, this requires the solution of eight simultaneous equations, Eqs. 
(5.13), but the high symmetry of the molecule greatly simplifies the 

d =  1.098, 

"Z 

Fig. 5.4. The N2 molecule shown to the right has reflection symmetry ox 
and oy in  two perpendicular planes through the two nuclei and oz in the 
plane bisecting the internuclear vector. All p-states on both atoms are 
taken to be odd under either the ox, the oy, or the oz reflection in a plane 
containing the atomic nucleus. 



82 Chapter 5. Molecules 

calculation. The molecule, and therefore the Hamiltonian, has three 
independent reflection planes, illustrated in Fig. 5.4, and every molecular 
orbital can be chosen to be even or odd under each of the reflections. 

We consider first states which are odd under the reflection oy shown. In 
fact only the two Jpy> states are odd under that reflection so any molecular 
orbital odd under that reflection must contain only those two atomic states, 
as illustrated in Fig. 5.5. The molecular orbitals will be even under the 
reflection ox; there are no states based upon these atomic orbitals which are 
odd under both ox and oy, though atomic d-states would allow such 
symmetry. This becomes just like the Li2 molecule, with bonding and 
antibonding states (even and odd, respectively, under 0,) of energies equal 
to the atomic-state energy plus or minus the matrix element between them, 
which in this case is called Vppn. The two subscripts "p" are because it is a 
coupling between p-states, and the n represents one unit of angular 
momentum, m = f l ,  around the z-axis.(Section 2.4) If we construct such 
atomic states with one unit of angular momentum around the molecular axis, 
(kX> f ilpy>)/d2, their matrix element is called Vppn and it is equal to the 
matrix element between two states Ipy>. We shall see in Section 6.2 that its 
magnitude is approximately the same as Vsso, given in Eq. (5.6). Thus the 
energy of the resulting two "n-states" is 

En = E p  f vppn. (5.29) 

Obviously the energy of the n-states based upon atomic orbitals Ipx> is the 
same. We have used symmetry to obtain four of the eight states 
immediately. 

We proceed to the remaining four, which are even under ox and oy. 
They will be linear combinations of the states Ipz> and Is>. We may in fact 
take even and odd combinations of the s-states which, exactly as for Liz, 
have energy <yIH(y> = E~ f Vsso, though we shall see that they are coupled 
to the corresponding states ([pzl> f lpz2>)/d2, which have energy E~ f Vppo 
with VpPo given by the same form as in Eq. (5.6) but, as we shall see in 
Section 6.2, -n2/8 replaced by +3n2/8. The subscript o again refers to zero 

Fig. 5.5. Only the Ipy> states are odd under (J and can therefore enter a 
molecular orbital which is odd under that reKection. These molecular 
orbitals will be even under IS, and can be even or odd under oZ. 
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angular momentum around the internuclear axis, and in this case it is chosen 
by convention to correspond to both orbitals having the same orientation, 
which we represent graphically as 00 00. Where the two orbitals overlap 
they are of opposite sign so, with a negative potential, we have a positive 
matrix element Vppo by the same argument which gave a negative Vsso and 
a negative VPpn. 

Now, if we seek a molecular orbital which is even under the reflection 
o2 , it must be a combination of the bonding s-state, and the symmetric 
combination of p-states,O@ 00, as illustrated in Fig. 5.6. This is called the 
bonding po-state, and the matrix element between the two p-orbitals is the 
negative -Vppo. We may easily evaluate the coupling between these two 
bonding states, (l/d2)(<si( + <s2()(H(((P~i> - (pz2>)/d2 = -Vspo, where VSp, 
is a coupling between an s-state and a p-state, with orientation @ 00. Vspo 
will be taken in Section 6.2 to be given by Eq. (5.6) with -n2/8 replaced by 
+n/2. It is positive since the wavefunction of the s-state is taken positive in 
the region of overlap while the p-state is negative. The coupling between 
orbitals with the opposite orientation, 00 0, is negative. The energy of 
these two coupled bonding states is obtained as in Eq.(5.15) as 

")' + Vspo2 . (5.30) 
Es +vsso + Ep - Vppo 

2 & =  

We may construct a state from the antibonding combination of s-states and 
of p-states in the same way, and obtain exactly the same expression but with 
the sign changed in front of Vsso and Vppo. This gives the other four states, 
called o-states, in addition to the n-states. 

It can be helpful to illustrate this calculation with an energy diagram, as 
in Fig. 5.7. On the left are the starting levels, with the introduction of 
couplings as we move to the right. The 1s-levels lie far below. We have 

x $J @ &, +vsso 

Fig. 5.6. Construction of the bonding o-states in N2 from s-states and o- 
oriented p-states (no angular momentum around the internuclear axis). 
The bonding state is even under all three reflections of Fig. 5.4. 
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Occupied 

Fig. 5.7. A schematic energy-level diagram illustrating the formation of 
molecular levels in nitrogen. First the n-bonds and antibonds are formed, 
then the o-bonding and o-antibonding s- and p-levels, which are then 
coupled to form the final set. The ten valence electrons per molecule fill 
the lowest five levels. 

five valence electrons from each nitrogen atom which fill the lowest five 
levels, each with a spin-up and a spin-down electron, as indicated. 

We may evaluate each of these energies, using the s- and p-state energies 
from Table 4.1 and evaluating the couplings for the formulae given with d = 
l.09A. These are listed in Table 5.1, along with values obtained from a 
much earlier, but much more complete calculation. They are listed with 
standard notation as (J or n, and indicating g for even (gerade in German) if 
the state is even under inversion through the midpoint between the atoms, 
and u (ungerade) for odd. (This is different from reflection symmetry for the 
n-states). 

The comparison is informative. The values for the deeper levels are of 
the correct general order although the calculation done here was almost 
trivial. It is usual that the higher-energy states, which in fact are in the range 
of other atomic states which were not included in the calculation, are very 
poorly given. It is often not important since the highest occupied levels 
(called HOMO’S, Highest Occupied Molecular Orbitals, by chemists), and 
the lowest empty levels (called LUMO‘s, Lowest Unoccupied Molecular 
Orbitals), are most important. The effects of nonorthogonality, which we 
include only as a separate overlap repulsion, are not included and our values, 
deeper than the full calculation, are partly explained by that. All of these 
discrepancies seem usually to be much worse in the first row of the periodic 
table, and would be less for the heavier elements. In Problem 5.4 we 
calculate the change in the sum of one-electron energies in forming the 
molecule, and divide by two (approximate correction for overlap repulsion) 
to estimate the cohesion. Usually we overestimate couplings Vsso, etc., 
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Table 5.1, Energies, in eV, of the molecular orbitals for N2 calculated in 
the text, compared with values from Ransil (1960). 

Simple Theory Ransil 
3% 13.1 30.0 
1% -5.9 8.2 
2% -21.5 -19.4 
1% -21.8 -14.8 
3% -25.6 -15.1 
2% -46.1 -38.6 

and bond energies by a factor of two for first-row systems, but here it is a 
considerably greater over-estimate in comparison to the observed 9.7 eV per 
molecule, and we may expect to do better on other systems than N2 and the 
CO treated in Problems 5.4 and 5.5. 

There is a short cut, which is of no importance here but becomes 
essential in other systems. It is the use of hybrid orbitals, combinations of 
two orbitals of different energy on the same atom. We are assuming that the 
o-molecular orbital can be expanded in terms of the four nitrogen orbitals, 
and we could equally as well use sp-hybrids, 

(5.31) 

on each atom. These four hybrids, each with energy expectation value of ( E ~  

+ ~ ~ ) / 2 ,  are equivalent for expansion, but they allow an approximation. We 
note that the s-state and the p-state wavefunctions are both positive to the 
right of the atom (0 + 00) and add, while they cancel on the left. In that 
sense the orbital with the plus in f "leans" to the right and that with the 
minus leans to the left. We might expect the coupling between the inward- 
pointing hybrids (Vsso - 2Vsp0 - Vppo)/2 = -4.04h2l(m&) to be much larger 
than that between outward-point hybrids (Vsso + 2Vspo - Vppc3)/2 = -0.90 
h2/(rnd2) , and it clearly is. We may in fact neglect any coupling with an 
outward-pointing hybrid, leaving them at their hybrid energy and include 
only the coupling, with magnitude which we called the covalent energy V2, 
between hybrids directed into the bond. If we do that, we obtain two hybrid 
energies (nonbonding states) at ( E ~  + ~ ~ ) / 2  = -20.0 eV and a bond and 
antibond at -45.9 eV and +5.9 eV. This is not so far from the corresponding 
-21.5, -25.6, -46.1, and +13.1 which we obtained for the first column in 
Table 5.1. We see in Problem 5.4 that it of course also predicts a very 
similar cohesion to that of the full calculation. 
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It may not be worth making the approximation when the symmetry is so 
high that we can obtain a solution by the solution of quadratic equations, Eq. 
(5.30). However, if we go to carbon monoxide, which has the same number 
of electrons per molecule but no reflection symmetry, we must solve four 
simultaneous equations to obtain the o-orbital energies. However, in 
Problem 5.5 we form sp-hybrids on the oxygen and carbon, and can obtain 
the bond and antibond energies from the solution of a quadratic equation. 
This enables a simple estimate of the cohesion, as for N2. The use of 
hybrids is of even greater advantage in crystalline diamond or silicon, where 
it allows the approximation of treating the crystal as made up of independent 
bonds. 

We may consider one more molecule, CO2, which forms with the three 
nuclei in a straight line, equally spaced, with carbon in the center and with a 
carbon-oxygen distance of d = 1.16 A, as shown in Fig. 5.8. We now have 
twelve orbitals, but all three reflection symmetries of Fig. 5.4. We proceed 
part way with the analysis, which is straightforward, though a little intricate. 
Beginning with states which are odd under the reflection oy, there is one py- 
state on each atom . If we seek a molecular orbital also odd under the 
reflection oz it cannot include the py-state on the carbon atom (which we 
number as 2) in the center and will simply be (Ipyl> - Ipyp/d2, with 
molecular-orbital energy ~ ~ ( 0 )  since it contains no state coupled to these 
two atomic orbitals. The states even under oz will contain an even 
combination (Ipyl> + Ipyp/u'2 coupled to the carbon p-state Ipy2> by 
fiVppn and have energy 

(15.32) 

This, and the Ipx> counterparts, are multicenter bonds, involving orbitals 
from three atoms. The energy could be directly evaluated from the orbital 
energies from Table 4.1 and Vppn evaluated in terms of the oxygen-carbon 
spacing d. 

Fig. 5.8. The carbon dioxide molecule is linear, as shown to the left. The 
three Ipy> orbitals form three n-states, as shown to the right, each 
degenerate with the n-states based upon the Ipx> orbitals as shown. 
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The remaining six molecular orbitals are even under both ox and or and 
are based upon an s- and a p,-state on each atom. The molecular orbital 
even under oz contains only the carbon s-state, the even combination of 
oxygen s-states (Isl> + lsp)/d2 and the even combination of oxygen pz- 
states. Similarly the 
molecular orbital odd under o, contains only the carbon pz-state and the odd 
combinations of oxygen s- and p-states, again requiring solution of a cubic 
equation. In fact the oxygen s-states are so deep in energy that it would not 
be a bad approximation to neglect their coupling to the carbon states and 
take them as two states at energy E~(O), leaving only quadratic equations and 
solutions of the form of Eq. (15.32), but with VPpn replaced by Vppo for the 
odd molecular orbital and with Vppn replaced by Vspo and E ~ ( C )  replaced by 
E ~ ( C )  for the even molecular orbital. These would again represent three- 
center bonds. A further approximation, which would be less accurate and of 
no advantage, would be to make sp-hybrids on the carbon atom as we did for 
CO, pointing to right and to left. Even if we neglect the coupling of the 
right-pointing hybrid to orbitals on the left oxygen, we have three coupled 
orbitals and solution of a cubic equation is required. We now have a 
formulation in terms of two-center bonds, but nothing is gained from the 
further approximation. 

In this case, and in the case of more complicated molecules, the tight- 
binding approximation should have similar validity to that for the diatomic 
molecules, and all of the parameters are obtainable in the same way. It is 
also possible to estimate all of the same properties for these other molecules 
which we estimated for Li2 in Problems 5.1 and 5.2. 

This requires the solution of a cubic equation. 
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Chapter 6. Crystals 

The same tight-binding expansion in atomic states which we used for 
molecules is applicable also to crystalline solids. However, in solids we may 
also use an alternative description in terms of free-electron states because of 
the fact, which we saw in Section 4.3, that the effect of the atomic potentials 
can be represented by that of a weak pseudopotential. In fact, when we 
combine the two approaches, in analogy with the complementarity principle, 
it will provide us the parameters, such as Vsso = -(n2/S)l?/(m&), needed to 
carry out the calculations. We begin with a one-dimensional chain of atoms. 

6.1 The Linear Chain 

The simplest generalization to many-atom systems is a chain of lithium 
atoms, illustrated in Fig. 6.1. It is convenient to use periodic boundary 
conditions, as in Section 1.7, which corresponds to bending the chain into a 
ring so that the last atom is coupled to the first. As for Liz we approximate 
the orbital for the entire chain as a sum of N s-states, one on each atom, Iy> 
= CjUj lS j> ,  and the variational equations, Eq. (5.13), become 

vs so vs so 

j =  o o o m o c r  1 2 3 ... j N 1 

Fig. 6.1. A row of N lithium atoms, each with a valence 2s-state of energy 
E ~ .  coupled by Vsso to the s-state on each of its neighboring atoms. With 
periodic boundary conditions, the Nth is also coupled to the first. 
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since Hi j  is only nonzero for i = J  at E ~ ,  and for nearest neighbors at Vsso. 
There are N such equations. We guess a solution Uj = eikdJh% , with the 
factor l/m for normalization. (Cje'kdJlsj>lJX is called a Bloch sum.) 
Substituting this form into Eq. (6.1), a factor eikdJ/@ cancels out, leaving 

We have added labels on the energy E. Since the dependence upon J 

canceled out Eqs. (6.1) is satisfied for all j within the chain, but we must 
choose kdN equal to an integral multiple of 2n so that it is satisfied for j = 
1 and j = N . This is the same condition on k as with periodic boundary 
conditions for free electrons in Section 1.7. 

We have found the best tight-binding estimate for the energy eigenstates 
in the chain. The results are illustrated in Fig. 6.2 for a chain of N = 8 
atoms. Then the 8kd must equal an integral multiple of 2n, and points 
indicate the wavenumbers at which this is true. Two points which differ in 
n by eight, or a multiple of eight, give coefficients U j  = eikdJ/@ which are 
identical (differing by factors of ei2n), so they are the same state, and of 

N = 8  
I I I I I  I I I I I  

Brillouin one 

-6 -4 -2 0 2 4 6 
n = 8kU2n 

Fig. 6.2. The energies of tight-binding states for a row of eight lithium 
atoms are indicated by points. The n values -3, -2, ... 3,4 represent the full 
set of eight states, and all other integers repeat these states. 
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course have the same energy. We limit the values -N/ 2 < n 5 N/ 2, or -n/d 
< k 5 n/d , which is called the Brillouin Zone, the set of smallest 
wavenumbers for each state. This same limitation to a Brillouin Zone will 
apply to three-dimensional systems. 

The n-states in benzene, which we discussed in Section 2.1, are exactly a 
case of a chain with periodic boundary conditions, in this case with N = 6. 
The benzene molecule is flat, as illustrated in Fig. 6.3, and the molecular 
orbitals which are odd under reflection in the plane will consist entirely of 
]pz> states if the z-axis is normal to the plane. Each is coupled to its 
neighbor and the n-bands are obtained exactly as in Eq. 6.2 as 

In this case, with N = 6, the allowed states are at k = 2 n d 6 d ,  with n = 
-2, - 1 ,  0, 1, 2 ,  and 3 in the Brillouin Zone. There are six electrons available 
to occupy these states. Because these energies are given relative to the free- 
atom states, we may obtain the change in energy of these six electrons as 
they doubly occupy the lowest levels in the formation of the benzene. These 
give the n-bonding contribution to the cohesion of benzene, as calculated in 
Problem 6.1. This calculation of cohesion was not possible for the free- 
electron description without the E~ reference. However, the free-electron 
description is also meaningful, and the levels in the Brillouin Zone in Fig. 
6.2 are qualitatively similar to a free-electron parabola. We note from Eq. 
(6.3) that for this to be true Vppn must be negative so that it is minimum at k 
= 0. Further, if we match up the band width of -4Vppn from the Eq. (6.3) to 
the free-electron width for wavenumbers at the Brillouin Zone boundary, 
-h2(n/d)2/(2m) we obtain the Vppn = -(n2/8)h2/(m&) which we used in the 
preceding chapter. We shall explore this comparison in detail for a three- 
dimensional structure in the next section. 

We chose periodic boundary conditions so that we could obtain solutions 
uj  = e i k d j m a n d  this eliminated the effects of ends to a chain. We can, 
however, treat finite chains by noting that we could also satisfy the Eqs. 
(6.1) within the chain using solutions uj = eikdl - e -ikdJ = 2i sin(kdj), or 
sin(kdj) normalized. Then if we choose boundary conditions such that uj is 

Fig. 6.3. A benzene molecule, viewed from the side, with six n-orbitals 
oriented perpendicular to the plane giving rise to six n-states. 
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zero for j = 0 and j = N+l,  as illustrated in Fig. 6.4, we will satisfy the 
equations f o r j  = 1 to N even though there are no terms in the state f o r j  = 0 
a n d j  = N+1. We have obtained a solution for a finite chain. From a free- 
electron point of view the allowed k's are for vanishing boundary condition a 
distance d from the last atom, rather than d/2 from the last atom as we 
assumed in Problem 2.2 when we broke the benzene chain. In Problem 6.1 
we redo the breaking of the benzene chain for this more appropriate, tight- 
binding, view. We noted also the change in boundary conditions when we 
treated metal surfaces in Chapter 2. 

The generalization to an s-band in a three-dimensional system is 
immediate. For a simple-cubic lattice, in particular, each atom has a nearest 
neighbor at +d in the x-direction, and the same in the y- and z-directions. 
The states are again written as a linear combination of s-states on atoms at 
position rj with coefficients uj = elk. rjl.\rN , and with nearest-neighbor 
coupling the bands become 

We imagine a large crystal in the shape of a rectangular parallelepiped, Nx 
atoms along the x-direction, Ny and NZ along the other two, since it is the 
simplest case and most results are insensitive to the boundary conditions, as 
we have seen. With periodic boundary conditions, the restrictions on k are 
the same as for free-electrons in a rectangular box of dimensions, Lx = Nxd, 
L,  = Nyd, and Lz = NZd which we treated in Section 2.2 and the density of 
states in wavenumber space is the same. If we wished to study surfaces we 
could use vanishing boundary conditions but it is clear that we must apply 
these conditions a distance d from the last atoms as in Fig. 6.4, so the 
effective dimensions are Lx = (Nx+l)d, etc. This also allows us to construct 
explicit wavefunctions valid even at the comer atom in the crystal, and such 
wavefunctions can be used to study electron tunneling from a metallic tip, as 
we shall see in Section 8.3. 

The generalization to more realistic structures than simple cubic is 
straightforward, and discussed in Section 13.2. Of more immediate 

Fig. 6.4. Solving the tight-binding equations for a finite chain of N = 6 
atoms, by requiring the coefficients to go to zero a t j  = 0 and 7. 
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importance is the incorporation of p-states, as we did in going to the nitrogen 
molecule and we turn to that next. 

6.2 Free-Electron Bands and Tight-Binding Parameters 

We see that the boundary conditions determine the wavenumbers at 
which states occur, but the bands themselves, &kS = F~ + 2Vsso coskd in one 
dimension, depend only upon the crystal structure and the electronic states 
on the atoms which make up the crystal. We have replotted our tight- 
binding s-band for a chain of atoms as the heavy line in Fig. 6.5. We may 
argue that because of the weakness of pseudopotentials a free-electron 
description is also meaningful and we have also drawn in a free-electron 
parabola with the k = 0 energy adjusted to the s-band minimum, and Vsso 
chosen equal to -(n2/8) hY(rnd2) such that the two bands match also at the 
edges of the Zone. When we include Vspo we shall see that this is the 
appropriate point for matching. 

The free-electron bands extend to wavenumbers beyond the Brillouin 
Zone, as shown in the figure. By the convention used in tight-binding chains 
we would translate these bands back, by some multiple of 2 d d ,  so that they 
were plotted in the Brillouin Zone, also shown in Fig. 6.5. They must have 
some correspondence to tight-binding bands from other atomic orbitals for 
the constituent atoms. 

In particular, we might imagine tight-binding bands arising from p-states 
oriented along the chain axis. They are calculated just as were the s-bands 
leading to &kP = &p + 2Vppocoskd. They would in fact match the (translated) 
free-electron bands at the Zone center and Zone edges if Vppo = 
+(3&8)@/(rnd2) and E~ is suitably chosen, as illustrated above in Fig. 6.5. 
Indeed, this is a sensible relation to make since p-states oriented along the 
chain, each have a node at the atomic site. Thus the state at k = 0 has one 
node at each nuclear site and one midway between each atom, two per 
distance d.  This is to be compared with a free-electron state, sinkd for k = 
27dd (the wavenumber of the state translated to k = 0) which also has two 
nodes for each distance d .  The identification requires a positive Vppo but 
that is just what is expected for these p-states, as we indicated in Section 5.5, 
because the wavefunctions have opposite signs in the region where they 
overlap. 

One thing has been left out, the coupling between neighboring s- and p- 
states Vspo which coupled, for example, the bonding s-state and the bonding 
p-state in the N2 molecule. It is not difficult to see that for tight-binding s- 
and p-band states at k = 0 there is no coupling between the tight-binding 
band states. This follows because an s-state on one atom is coupled to a p- 
state to the right by V,,, and to a p-state to the left by -Vspo (because the 
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cg 

k 
1 Brillouin Zone I 

Fig. 6.5. The free-electron and tight-binding bands for a chain of atoms. 
The heavy line is an s-band, &ks, for nearest-neighbor coupling, with 
parameters adjusted so that it fits the free-electron band at the center and 
edges of the Brillouin Zone. The free-electron band which continues 
beyond the Zone is redrawn within the zone, by the convention used in 
crystals, and parameters for a p-band, &kP, are adjusted to fit these 
translated free-electron bands. 

positive lobe of the p-state is nearest) and the two terms cancel. Similarly at 
the Brillouin Zone edge the two coupling terms cancel. However, at other 
wavenumbers, the two are only partly out of phase and the cancellation is 
not complete, but given by 2i Vsposinkd. The net effect is that the s-bands 
and p-bands of Fig. 6.5 (or the simple-cubic counterpart) are combined as 

We see that the sp-coupling does not shift the bands where we matched 
them to obtain Vsso and Vppo , but it causes the bands at intermediate 
wavenumbers to move away from each other and become more free- 
electron-like. Everything has worked out to make this matching of free- 
electron and tight-binding bands appropriate and matching at the Zone edge 
as in Fig. 6.5 was the appropriate choice. 
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Fig. 6.6. Energy bands in a simple-cubic crystal, for k in a [ 1001 direction 
to the Brillouin Zone face. Light lines are free-electron states, reduced to 
the Brillouin Zone. Heavy lines are tight-binding sp-bands with 
parameters fit to match the free-electron bands. The top two complete 
bands shown are n-like and are doubly degenerate, two bands at the same 
energy. 

There are various ways to adjust Vspo to fit the free-electron bands, but 
probably the best is to note that the magnitude of the coupling between s-and 
p-bands, 2 Vsposinkd , grows linearly with change in wavenumber from the 
Brillouin-Zone edge. Thus it can be adjusted to make the bands linear in k 
at the Zone edge, with slope equal to that for the free-electron bands, rather 
than horizontal, as the tight-binding bands are seen to be in Fig. 6.5. This is 
simple to do. Writing the energy at the Zone boundary E Z B  = 
(n2/2) h2/(m&), and keeping terms only linear in the 6k measured from the 
edge, Eq. (6.2) becomes Ek = EZB f 2Vspo d 6 k .  Setting this equal to EZB + 
a&k/dk 6 k  = h2(n/d)6k /m gives Vspo = (n/2) h2/(rnd2), chosen positive 
because with the orientation of orbitals chosen by convention, @ 08, the 
orbitals are of opposite sign where they overlap. The resulting tight-binding 
sp-bands are given by the lowest two heavy-lines in Fig. 6.6. An alternative 
matching would be to adjust Vspo such that the curvature of the band 
a2&k/ak2 at the bottom of the band has the free-electron value of h*/m , as 
done in Problem 6.2c, giving a value nearer 1.9 hV(rnd2) than the 1.57 
hV(md2) we find here. It can be seen from Fig. 6.6 that the larger value is 
needed to lower the s-like tight-binding band further to the free-electron 
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band. One might also suggest the geometric mean of Vsso and Vppo, equal 
to 43 (n218) hZI(md2) = 2.14 h2/(m&). 

Before collecting these results together, we should consider a three- 
dimensional, simple-cubic system. We gave the s-band for such a structure 
in Eq. (6.4), and we see that it yields the same band width from k = 0 and k 
equal to nld in an x-direction, so the predicted Vsso is unchanged from one 
dimension, and the same applies to the po-bands, p-states oriented along k, 
so in fact even our fit of Vspo remains appropriate. However, the free- 
electron bands have an important new feature in three dimensions. We are 
translating all free-electron states back to wavenumbers within the Brillouin 
Zone, -nld < kx i nld, -n/d < k ,  I nld, and -nld < kZ I nld . The Brillouin 
Zone has become a cube in three-dimensional wavenumber space, centered 
at k = 0. For our bands along the x-direction, from k = 0, we have translated 
those at k = ( k ,  - 2nId )2 to 01 k$ I ~6 Id, with 2 a unit vector in the x- 
direction. We must also translate the states for k = k& - (2nld)f , with f a 
unit vector in the y-direction, back from the side to the same line. These 
states have energy h2[(2nld)2 + kx2] /2m and are shown as the higher light 
line in Fig. 6.6, emerging horizontally from the vertical axis, and rising 
parallel to the lowest free-electron band. There are in fact four such bands 
of the same energy, translated to this line by k(2nld)yi and f ( 2 n l d )  times a 
unit vector zl in the z-direction. At k = 0 one combination of these states is 
the state we identified with the po-bands, but with p-states oriented along the 
y-direction. As we increase kx, these become exactly n-like bands, pptates ,  
with the phase of the coefficients changing along the x-axis. Adding the 
coupling with all six neighbors we obtain bands, &kP = &p + 2Vppo + 2Vppn( 1 
+ cosk,d ). Adjusting these to fit the free-electron bands h2[(2nld)2 + 
k X 2 ] / 2 m  at the Zone center and edge, we find that Vppn = - ( n 2 / 8 ) h ~ l ( m & ) ,  as 
we found for the n-bands in benzene. Combining all of these results we 
have the "universal" parameters for sp-bonded systems, 

I (6.6) 

Another combination of these four free-electron bands can be 
identified with the pz n-bands along the k x  axis. The other two of these 
free-electron bands would need to be identified with atomic d-states and the 
highest free-electron band, rising linearly from the vertical axis, would need 
to be identified with at atomic s-state of higher quantum number than that 
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identified with the lowest free-electron band. None of these additional bands 
will be of interest here. 

We might note one other remarkable feature of the three-dimensional 
bands. We saw that the s- and p-band states were not coupled at the center 
of the Brillouin Zone nor at the face of the Brillouin Zone, (nld, 0, 0), 
because of the symmetry of the states. This is of course true at the center of 
the other five faces of the Brillouin Zone. This justified our use of those 
points for determining Vsso and Vppo. It is not difficult to show that, in 
addition to the face center with energy (7~212) hYm&, there are two other sets 
of points within the Brillouin Zone for which the s- and p-band states are 
uncoupled. They are at the center of the cube edges, with energy 
2(n2/2) hVmd2 , and at the cube corner, with energy 3(n2/2) h2/m&. 
However, we see from Eq. (6.4) that in going from the cube center 
successively to these three points, the tight-binding energy rises by -4 Vsso at 
each step so that we would have obtained exactly the same formula for Vsso 
had we used any two of these four points. Furthermore, the states based 
upon p-states oriented along k are found to have energies identical to the s- 
band energies at these points with the parameters of Eq. (6.6) and therefore 
again, any pair of the four points could have been used to obtain the same 
values. It appears also that the n-like states at these four points are also 
consistent with the free-electron bands, a remarkable consistency. 

The evaluations for these points with wavenumbers not parallel to a 
cube axis required a construction of matrix elements between p-states which 
we have not needed before, but will need in the next section and it should be 
explained at this point. A p-state oriented along the x-axis, described in 
Section 2.4, can be written Rl(r)rZ.r , with Rl ( r )  a function only of radial 
distance and xi a unit vector in the x-direction. Then clearly a p-state 
oriented along a direction2 cos@ + 9 sin@, with 9 a unit vector in the y- 
direction, can be written Rl(r)(ri cos@ + 4 sin@).r = cos@ Rl(r)2.r + sin@ 
Rl(r)f . r  so that the p-states can be divided into components just as vectors 
are. If we have a p-state with axis and angle @ from the internuclear axis to 
an s-state, we simply divide it into a o-oriented component with a factor 
cos& and coupling fVspo and a n-oriented component which is not coupled 
to the s-state. This is illustrated in Fig. 6.7. Similarly, for two coupled p- 
states we may divide both into o- and n-components (two orientations of n- 
components) to obtain the matrix elements for the two p-states, also 
illustrated in Fig. 6.7. For d-states the decomposition is more intricate and is 
given in the Slater-Koster (1954) tables. 

These fits to the free-electron bands also lead to values for E~ - cs 
which are proportional to h2/(m&), as seen in Problem 6.2. These values are 
in some accord with experiment, but vary much more with spacing than real 
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Fig. 6.7. p-states can be decomposed like vectors into a-oriented and n- 
oriented components with coefficients cos$ and sin$, respectively. Only 
the a-component is coupled to an s-state, so the coupling between the 
orbitals shown to the left is cos@Vspo. Between those to the right, which 
are coplanar, the coupling is cos$1cos$2Vppcr+ sin$1sin+2Vppx If one was 
rotated out of the plane by an angle Qp, there would be an additional factor 
of cosQp in both terms. 

systems. It is of some interest that such a relation can be used in reverse to 
predict equilibrium spacings for solids in terms of the free-atom term values, 
and is in semiquantitative accord with experiment for elements. However, it 
would not allow us to distinguish the different atoms in compounds, for 
which we use the free-atom term values as we did for molecules in the 
preceding chapter. Similarly, we use the free-atom term values for the 
elements rather than free-electron fits to the term values. 

Eq. (6.6) for the s- and p-state couplings was derived for a simple-cubic 
structure, for which the calculation is particularly simple. The results are 
quite similar, but not identical, if the same calculation is carried out for a 
different structure. For example, in the tetrahedral structure of diamond and 
silicon, the fit yields Vsso = (9n2/64) h2/(rnd2), only 1.5% larger than the 
simple-cubic value. If we are specifically treating such tetrahedral solids, 
we can as well use these tetrahedral results, or in fact coefficients fit to the 
known band structures of the semiconductors themselves. That is what was 
done in Harrison (1980) and (1999), using an average from silicon and 
germanium. It is just as easy to use such a coefficient, taken as universal, as 
to use -n2/8, but for the purposes of this text we take the values from Eq. 
(6.6). 

It seems also reasonable to use these couplings for molecules since they 
represent the coupling between atomic orbitals and these change little in the 
formation of molecules or solids. That is in fact exactly what we did in 
Chapter 5 in treating N2, CO, and C02. If on the other hand, we go to 
structures with more neighbors, such as the face-centered-cubic structure of 
copper and aluminum with twelve nearest neighbors to each atom, our 
coefficients lead to bands which are much too broad, and a fit of free- 
electron bands to those structures yields smaller - and more appropriate - 
values to be used there. The difference appears to come from our neglect of 
the nonorthogonality , and its absorption into an overlap repulsion. 
Including nonorthogonalities systematically is much more complicated, as 
discussed in Section 5.3, but it avoids this difficulty of tight-binding theory 
in carrying over parameters to much different circumstances. 
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Finally, we should note that the variation of each coupling as l /d2 can 
only apply near the observed spacings, which are much the same in different 
structures. indeed it is only near the observed spacings that the bands are 
free-electron-like. At much larger spacings the couplings drop exponentially 
as the wavefunctions do and at smaller spacings the nonorthogonalities grow 
and modify the couplings. However, for a very wide range of calculations 
we are only interested in spacings near equilibrium and the theory is very 
powerful. It even has remarkable physical predictions, such as that we can 
estimate the change in some properties of silicon with pressure by 
interpolating, as a function of spacing, between that property for unstrained 
silicon and for diamond. 

6.3 Metallic, Ionic, and Covalent Solids 

We give a very brief account of the electronic structure of solids, 
described much more fully, by a factor of fifty, in Harrison (1999). The goal 
in Applied Quantum Mechanics is to provide the tools which make such an 
analysis possible, not to carry it out. 

It is remarkable that both the free-electron and tight-binding limits are 
meaningful for describing solids, but for particular solids they are not 
equally convenient. When the energy bands are partly occupied, the 
defining property of metals since then a small electric field shifts electrons 
between states to allow current to flow, the free-electron limit is ordinarily 
much simpler. When for example we sum the energy over occupied states, it 
is very simple for a free-electron gas, as we saw in Section 2.2. When the 
energy bands are each either completely full or completely empty, 
characteristic of insulators since then a small field cannot cause 
redistribution of the electrons, a tight-binding view is ordinarily simpler. 

For this distinction it is useful to look again at the Periodic Table of the 
elements, the central part of which is shown in Fig. 6.8. All elements 
outside of Columns IV and VIII are metals, and those shown are considered 
free-electron metals, with weak pseudopotentials and as many valence 
electrons per atom as the column number, as assumed in Problem 2.3. To 
the left of Cu, Ag, and Au are the transition metals, with partly-filled d- 
shells (atomic states with I = 2). The electron states based upon these d- 
states are best treated in tight-binding theory. [Extensive analysis of 
transition metals, and ail other types of solids in these terms is given in 
Harrison (1999).] Similarly, to the right of Ba are the rare earths and to the 
right of Ra are the actinides, all with partly-filled f-shells (I = 3). The f-  
states are also best treated in tight-binding theory. 

Elements in Column VIIi have eight valence electrons, filling the s- 
states and all of the p-states. [Helium has no valence p-states, but the 
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Fig. 6.8. The periodic table of the elements, arranged to show the 
electronic structure of solids. The nonmetals in the center are bounded by 
Column-IV elements which form covalent semiconductors based upon 
two-electron bonds, and by Column-VIII elements which form insulators 
based upon ful l  electronic shells. Listed elements beyond these two 
columns are simple metals. Those to the left form covalent compounds 
with the nonmetals; those to the right form ionic insulators with the 
nonmetals. To the left of Column I are the transition (d-shell) metals, to 
the right of Column IIA are the rare earths and actinides (f-shell metals). 

situation is similar.] The states above these are empty and far removed in 
energy. In this situation the atoms are chemically inactive. They cannot 
accept electrons from other atoms, nor can their electrons be easily removed. 
When these atoms interact with each other, any bonding energy is canceled 
by an antibonding energy. Thus they form inert gases. Even as solids, held 
together by van-der-Waals forces which we discuss in Section 12.2, 
electrons cannot move from atom to atom and the crystals are insulating, and 
transparent to visible light, which does not have photons of sufficient energy 
to excite the electrons. 

Elements in Column IV form semiconductors, which are insulating for a 
different reason. Though they have only two of the six p-levels per atom 
occupied, they form completely filled and completely empty bands. This is 
most easily understood in terms of the hybrid states we introduced in 
Chapter 5 .  Instead of forming two orthogonal hybrids from a p-state and the 
s-state, as we did for N2, we form four orthogonal hybrids on each atom, 
each oriented in the direction of one comer of a tetrahedron with the nucleus 
at the center. Then if the atoms are arranged such that each has four 
neighbors in these same directions, the diamond structure, we may form 
independent bonds with each neighbor, using the two hybrids directed into 
the bond, just as we formed the o-bond in nitrogen. Each atom contributes 
one electron to each bond, filling all bonding states and leaving all 
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antibonding states empty. With the formation of four hybrids, there are no 
nonbonding states left over. 

The bond states are coupled to neighboring bond states, just as the 
lithium s-states were coupled to their neighbors in Fig. 6.1, and broaden into 
fully occupied bands called valence bands for a semiconductor. The 
antibonding states are coupled to their neighbors forming empty bands, 
called conduction bands. In this case the gap between valence and 
conduction bands is only an electron volt or so and some electrons are 
thermally excited into the conduction band, as we shall see in Chapter 10, 
making them weakly conducting, semiconductors. 

One construction of four hybrid states on an atom is given by 

The three p-states in the first can be added, as in Fig. 6.7, and seen to be a p- 
state 43 Ip> oriented along a cube diagonal in the cube defined by the x-, y-, 
and z-axes. It is normalized, with a probability 3/4 on the p-state and 1/4 on 
the s-state, called an sp3-hybrid, in contrast to the sp-hybrids in nitrogen. 
The other three are along other cube diagonals and are orthogonal hybrids, 
<hlJh2> = (<sJs> + <pxJpx> - <pypy> - <pyJpy>)/4 = 0. From these four 
orthogonal atomic states, Is>, Ipx>, Ipy>, and Ipz>, only four orthogonal 
orbitals can be constructed. In a similar way three orthogonal hybrids (sp2- 
hybrids) can be constructed from the Is>, Ipx>, and Ipy> states, oriented in 
the direction of the three neighboring atoms in a graphite xy-plane, or the 
two neighboring carbon atoms and a neighboring hydrogen atom in benzene. 
Again fully occupied valence bands are formed, and the n-states are formed 
from the remaining Ipz> orbitals as we saw in Section 6.1. In the case of 
tetrahedral bonds, Eq. (6.7), the coupling between the two hybrids directed 
into one bond is -V2, with V2 the covalent energy given by 

V2 = (-Vsso + 263 Vspo + 3Vppo)/4 = 4.44hY(mdr), (6.8) 

where in the last step we used Eq. (6.6). An analysis with couplings based 
upon the known energy bands of silicon and germanium (Harrison (1999)) 
gives a slightly smaller value of 3.22 hY(md2). This covalent energy 
characterizes the strength of the covalent bond which separates the occupied 
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and empty states in these covalent semiconductors. The other nonmetals 
between Columns IV and VIII in Figure 6.8 find other ways to make 
covalent bonds. In Column V three bonds are formed with neighbors with a 
doubly occupied nonbonding state. In Column VI (Se and below) two bonds 
are formed with two doubly-occupied nonbonding states per atom, and in 
Column VII, one bond is formed so that they are molecular gases. 

Many compounds can be understood from the same point of view, using 
"theoretical alchemy". For example, when compounds are formed between a 
nonmetallic element and a metal to the left, it is ordinarily in a tetrahedral 
structure for which we may again construct an sp3-hybrid on each atom, but 
the hybrids have different hybrid energies, <hilHlhl> = ( E ~  + 3 ~ ~ ) / 4 .  Half 
the difference in the two hybrid energies is called the polar energy, as 
described in Section 5.3, and doubly-occupied polar bonds are formed, 
leading again to semiconducting behavior, and properties calculated in terms 
of the parameters we have given (Harrison (1999)). Such a series of 
compounds can be made from a single row of the periodic table by starting 
with the Column-IV element, Ge, and transferring one proton from alternate 
nuclei to those between, leaving the first as a Ga nucleus and transmuting the 
second to As. (See Fig. 6.8.) The bonds shift slightly toward the As, but are 
qualitatively the same. A second transfer produces Zn and Se nuclei, and the 
third transfer produces Cu and Br nuclei. This is a series of isoelectronic 
compounds of increasing polarity, Ge, GaAs, ZnSe, and CuBr, with similar 
electronic structure. The "covalent" in Fig. 6.8 indicates the formation of 
such compounds with metals to the left. 

Similarly if compounds are formed with equal numbers of metal atoms 
from the right (columns IA, IIA), they can be understood beginning with 
inert-gas atoms placed in a crystalline array and transferring protons to make 
a series such as Ar, KCl, CaS, understood as was the inert gas atom, as made 
up of closed-shell ions (charged atoms), in this case full-shell configurations 
but charged, rather than neutral atoms. In these cases the atoms which 
receive protons become metals, while in the covalent solids the atoms which 
lost protons became metals. In the case based upon inert-gas atoms the 
tetrahedral arrangement needed for covalent-bond formation is not useful 
and these ionic solids form in more closely-packed structures, such as the 
rock-salt structure which would arise from beginning with simple-cubic 
inert-gas atoms. The "ionic" in Fig. 6.8 indicates the formation of such 
compounds with metals to the right. 

The ionic compounds turn out in some ways to be the simplest to 
understand. Proceeding not from theoretical alchemy, but from for example 
potassium and chlorine atoms, we could imagine bringing them together to 
their final structure, and transferring one electron per atom pair, to gain 
E ~ ( K )  - ep(C1) equal to 9.77 eV from Table 4.1, not far from the observed 
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cohesion of KCl of 6.9 eV per atom pair (Harrison (1999), p. 337). Further, 
the lowest-energy excitation for the system might be expected to be this 
same 9.77 eV, not far from the observed band gap of 8.4 eV (ibid. p. 333). 
We shall see part of the reason that such a simple analysis works in Section 
20.1, but a further discussion is beyond the scope of this text, as is a 
discussion of the extraordinary variety of other compounds which can be 
understood using these same covalent and ionic concepts (Harrison (1999)). 

Before leaving the electronic structure of crystals, we should note an 
important difference which arises when we consider systems with d- 
electrons or f-electrons. The difference is the strong localization of these 
states around the nucleus, which greatly reduces the coupling between such 
states on neighboring atoms. Because of this they form bands very narrow 
in comparison to the free-electron bands arising from s- and p-states. 

The reason for this can be seen already classically. The d-states have 
two units of angular momentum, as we saw in section 2.4, but in transition 
elements they have energies near the s-state energies (since we are 
successively filling d-states as we move across the series with a single 
electron, or two electrons, in the s-state). If we then think of this d-state 
orbit as a classical circular orbit, as illustrated in Fig. 6.9, we then imagine 
an orbit with no angular momentum, an s-state, at the same energy. It is 
oscillating through the nucleus, moving always radially if it has no angular 
momentum. However, when it is at the radius of the circular d-state orbit it 
has the same kinetic energy, directed now inward or outward, as in Fig. 6.9. 
Thus it will move far out from the radius of the d-state orbit, corresponding 
to a much larger orbit. The argument for localization of f-states, with three 
units of angular momentum, is even stronger. 

This effect not only makes the orbit for d-states much more localized, 
but it causes the coupling between d-states on neighboring atoms to drop 
much more rapidly with increasing distance d . It is in fact found to drop 

Fig. 6.9. An electron in a d-state represented as a circular classical orbit, 
has all of its kinetic energy directed tangentially. An electron in an s-state 
at the same energy, represented as a classical orbit passing very close to 
the nucleus, has the same kinetic energy when at the same radius, but 
since it is directed outward (or inward) it carries the electron much further 
from the nucleus. This explains the high localization of d-states in 
transition-metal atoms. 
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approximately as l lds  . The coupling between neighboring d-states with no 
angular momentum around the internuclear axis is given, for example, by 

with rd a "d-state radius" 
in Harrison (1999) (e. g., 
coupling VddE is given 

characteristic of the element in question, tabulated 
1.03 A for Ti, 0.74 A for Fe, 0.69 A for Cu). The 
by the same expression, with the leading factor 

repiaced by 30/n:, and Vdds by the same expression with the leading factor 
replaced by -15/(2n). We will not have occasion to use these expressions. It 
is interesting to note that the element-dependent parameter rd3 was necessary 
to obtain the units of energy, with a lld5 dependence. For f-states the 
coupling drops more rapidly, as rf5/6/ with the f-state radius providing the 
correct units. For the s- and p-states with coupling varying approximately 
as l ld2 the corresponding orbital radius would enter to the zero power, 
suggesting correctly that the formulae for the coupling are independent of 
element, as given by Eq. (6.6). We note, however, that in all cases these 
formulae for couplings are only approximations. 
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111. Time Dependence 

Electronic structure is primarily concerned with the lowest-energy state 
of a system, the ground state. This encompasses many properties, but often 
we are interested in higher-energy states, and transitions between different 
states. Up the this point it might appear that the goal of quantum mechanics 
was to find solutions, or approximate solutions, to the Schroedinger 
Equation. For the rest of the text we move on to other problems. The 
parallel in classical mechanics would be first addressing the calculation of 
normal modes of vibration, and then moving on to trajectories, collisions, 
and the myriad of other problems an engineer or scientist must deal with. In 
quantum mechanics the basic premise is still the wave-particle duality, with 
h providing the relation between the two, but we now seek the answer to 
different questions. 
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Chapter 7. Transitions 

7.1 A Pair of Coupled States 

We have seen already in Eq. (1.22) that the time dependence of an 
energy eigenstate of energy Ej is given by a factor e-i&jfi. If a state is 
expanded in states of more than one energy, each term varies with its own 
factor. This leads to complicated time dependence, just as when a classical 
violin string vibrates in several modes. In the case of two coupled electronic 
states, as in the polar molecular orbital described in Section 5.3, we may see 
that it gives an oscillation of the electron between the two atoms. We write 
the state as a sum of the bond state, with coefficient ub at t = 0 and time 
dependence e-i%vh, and the antibonding state, with coefficient U a  and time 
dependence e-i%h. 

(7.1) 

We may confirm that the electron will be on atom 1 with probability 
one, at t = 0, if the expansion coefficients are chosen as ub = 4- and 

Ua = 4-2. The terms in Eq. (7.1) may then be rearranged to obtain 
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with 00 = ( E ~  - &b )/(2h). The probability density on atom 2 is 

cos200t ) (7.3) 

and on atom 1 is one minus this. We see that a fraction 1-ap2 of the charge 
oscillates back and forth with a frequency given by the bonding-antibonding 
splitting divided by Planck's constant, 24-2 h. For two coupled 
atomic states of the same energy (V3 = 0), the transfer is complete each 
period. If the energies of the atomic states are different, and the coupling V2 
between the two atomic states is very small, the amount of the transfer is 
proportional to the square of that coupling and the frequency is determined 
by the energy difference as 0 = 2V3h = (E2 - Ei)h. 

This latter case will be of most interest since we shall see that the 
corresponding oscillating dipole will radiate energy with a frequency ( ~ 2  - 
&l)/h , corresponding to ho = ~2 - ~1 , and at a rate proportional to the square 
of the electron-light coupling. In the process, the electron drops (or makes a 
transition) to the lower-energy state. However, in the model we are 
discussing, without light, no transition occurs - the system simply oscillates. 
We shall see that a real transition can occur only when there is a range of 
energies for the final states, a range of frequencies of light in the case of 
emission of light. 

The requirement for a range of frequencies is already there in classical 
physics. A pair of coupled oscillators, of different frequencies, will transfer 
vibrational energy back and forth between the two oscillators. However, if 
an oscillator is coupled to a system with many frequencies, as in the 
oscillator coupled to a taught wire, illustrated in Fig. 7.1, the vibrational 
energy of the oscillator will be dissipated into the modes of the wire. 
Similarly an electron in a quantum-well state can tunnel into a continuum of 
electronic states beyond the barrier, also illustrated in Fig. 7.1. 

7.2 F e d ' s  Golden Rule 

In order to understand quantum transitions, then, we consider a 
Hamiltonian which has a state lo> at energy EO coupled by matrix elements 
Hoj to states b> with a range of energies Ej. This could be the system in Fig. 
7.lb. We expand the wavefunction in all of these states, including the time 
dependence e-imjt with Loj = E j h ,  but allowing additional time dependence of 
the coefficients which will arise from the coupling, 
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Fig. 7.1. Part a. A classical oscillator, coupled to a system with many 
modes of similar frequency, will dissipate its vibrational energy into those 
modes. Similarly, Part b, an electron in a quantum well can tunnel into a 
range of continuum states, treated in Problem 7.2. 

We shall set uo equal to one, and all other coefficients to zero, at time t = 0, 
and calculate the rate that the coefficients uj grow with time for small t. 

We substitute Eq. (7.4) into the Schroedinger Equation, ihdlv>lat = 
HIv> . We obtain uj(t) by multiplying on the left by a particular , noting 
<j(i> = 6ij, to obtain 

The additional terms would be from any coupling Hji between the state b> 
and others, Ji>,  of that collection of states. We shall see that the ui will be of 
first order in the coupling so these terms would be second order, written 
O(Hji2), and can be dropped at small t. The terms inhmj and Ej cancel and 
at small times we can take uo(t) equal to uo(0)  = 1. We multiply the 
remaining term on each side by e iwjt to obtain 

The final term indicates the second-order terms which we have neglected. 
We may integrate directly from t=O to get 

or 

(7.8) 
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The right-hand fraction is a function of the energy difference E = h(00 - 
Oj) between the two coupled states which is very interesting. It is peaked at 
E = 0, more so as time proceeds, and has an integral over E which is 2nht . 
In other words, as time proceeds its properties approach the mathematical 
properties of 2.nht times an energy delta function, 6 ( E )  = ~ ( E O  - Ej). This 
Dirac delta function 6(E) is defined to be nonzero only near E = 0, and to 
have JG(E)dE = 1 (to be distinguished from the Kronecker delta function 
defined in Eq. (1.24).) This is illustrated by the plot of the final factor in Eq. 
(7.8), divided by 2 d t  in Fig. 7.2. Thus the total probability of a transition 
having occurred increases linearly in time, and is more and more 
concentrated in the energy-conserving states as time proceeds. If we sum 
uj*(t)uj(t) over all states b> we obtain the total probability that a transition 
has occurred, and if we divide the result by t we obtain the transition rate, 
which we might write l / ~  = (a/at)Ejuj*(t)uj(t) or Ejjuj*(t)uj(t)/t. We obtain it 
by replacing the final factor in Eq. (7.8) by 6(Ej - ~0)/(27ch) and summing 
over j to obtain Fermi's Golden Rule, or the Golden Rule of Quantum 
Mechanics. Sometimes it is also referred to as time-dependent perturbation 
theory since it carried terms only to second order in the perturbation which 
coupled the starting states. Thus the transition rate is 
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Fig. 7.2 A plot of D(E) = 2h sin2[Et/2h]/(nt@), for which IdE D(E) = 1, 
is given for different times. 
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As its name implies, it is one of the most important equations in 
quantum theory. The sum over states coupled by Hoj will always be 
converted to an integral on energy over a density of states, and the integral 
over the delta function will give a one, with Hoj evaluated at the energy for 
which the argument is zero. Since !dE 8 ( ~  - EO) is dimensionless, 8(& - EO) 

has the units of reciprocal energy. With Hoj having units of energy, and h of 
course energy-times-time, the right side of Eq. (7.9) has units of one over 
time as it must. The meaning of the z is that the probability of occupation of 
the initial state is dropping as e-uz . We shall see in Chapter 19 (Eqs. (19.7) 
and (19.15)) that an equivalent form can be derived for the absorption of 
energy in a classical system such as that illustrated in Fig. 7. la. 

7.3 Scattering in One and Three Dimensions 

It is important to illustrate the use of the Golden Rule immediately, and 
we return to the simple case of a the one-dimensional chain of lithium atoms 
discussed in Section 6.1 and sketched in Fig. 7.3. We gave the equations 
from which the states could be determined in Eq. (6.1), 

The eigenstates were given as Uj = e i k d J / m .  If we change one lithium atom 
to a sodium atom, with an s-state differing in energy by 8~~ = 0.38 eV (Table 
4.1), the expectation value for the energy of each such state is shifted by 
only ~ E J N ,  but there is also a coupling introduced between any two states of 
wavenumbers k and k' of H K k  = 6Ese i(k-k)di/N if that impurity is at the 
position j = i . This perturbation can produce a transition of an electron 
initially in the state k to a state k' moving in the opposite direction with the 
same energy. We calculate the rate directly using Eq. (7.9). It is 

(7.11) 

In the first step we noted that the two matrix elements were the complex 
conjugate of each other so the phase factors canceled. In the second step we 

00000000000000 
J = 1  2 3 i N 

Fig. 7.3. The one-dimensional chain of Section 6.1, with the atom at the 
positionj = i replaced by an impunty. 
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noted that the spacing between successive wavenumbers allowed by periodic 
boundary conditions is 2n/L = 2nlNd so that the number of states in the 
interval dk' is Nd dk' l(2n) and the integral as written, times the factor 
Ndnn, is equal to a sum over those states. We substitute for dk' using the 
differential relation dEy = -2dVssosink'd dk' (from Ek = E~ + 2Vsso coskd ). 
Then the integral can be performed, giving a contribution from the delta 
function where E y  = Ek of 

(7.12) 

In the final form we used the electron speed v = (lh)dEk/dk , and that form 
is correct also if we use the form Ek = h2k2/(2rn) throughout, rather than the 
tight-binding form, since the corresponding factors came from changing 
variables from k'  to EY for the integration. 

We may check that the units are correct and that the rate goes to zero as 
8~~ goes to zero, as it should. We may also note that the scattering rate is 
proportional to 1/N, which it should be since the probability per unit time of 
hitting the impurity is inversely proportional to the length. We might have 
expected the rate to increase with velocity for the same reason, but in this 
case we seem to have found that the chances of reflecting upon impact are 
proportional to l lv2  . We shall confirm that this result is correct at the 
beginning of the next chapter when we evaluate the reflection from an 
impurity in a chain in a more direct and accurate way. We might have 
thought of calculating scattering to states moving in the same direction as the 
initial state, forward scattering, but then the delta function takes us to the 
same state and it would not be regarded as a scattering event. Note that we 
have calculated the density of states in wavenumber space for a single spin, 
The reason is that the perturbation does not couple the initial electron state to 
states of different spin. In cases with spin-orbit coupling such spin-flip 
scattering can be allowed, and is treated in parallel to the calculation here. 

The calculation is similar for an impurity in a three-dimensional crystal. 
For a tight-binding s-band the coupling between two states is Hk'k= 
8Ese i(k-k'). 'ilN if the impurity is placed at the site ri. The first form in Eq. 
(7.11) is essentially the same and, since the product of matrix elements is 
independent of the direction of k', the sum over k '  can be written as 
(W(2n>3)14nk'2dkr if we take the bands to be spherically symmetric as for 
free electrons. Here W(2n)3 is the density of states in wavenumber space if 
the volume of the system is Q and 4nkQdk' is the volume in wavenumber 
space of a shell of radius k' and thickness dk' . In the more usual case the 
matrix elements will also depend upon k' - k ,  and therefore on the angle 8 
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between k and k'. We would then perform the integral (Q;2/(2n)3)~2.nk%kf 
sine do. 

We may again convert the integral over k' to an integral over EP and use 
the delta function to obtain 

(7.13) 

In the last form we used the free-electron v = h k h .  Again the various 
factors are understandable and in this case the proportionality to v is as we 
might have guessed. In Problem 7.1 we redo this calculation for an impurity 
in a two-dimensional plane of atoms. 

We may return to the emission from a local state illustrated in Fig. 7.1 b. 
There will be tunneling matrix elements between the localized state lo> and 
states Ik> outside of the well, and ordinarily they will vary smoothly with k , 
rather than having magnitude independent of k as assumed for our scattering 
calculations above. Then we can again replace the sum over final states by 
an integral over k in order to obtain the rate of decay. Such a rate is 
calculated in Problem 7.2 for transitions from the lowest s-state in a 
spherical bowl. The matrix elements between an s-state and states of higher 
angular momentum vanish, so the sum is only over the s-states outside of the 
well. 
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Chapter 8. Tunneling 

8.1 Transmission in a 1-D Chain 

Perhaps the simplest problem involving quantum-mechanical tunneling 
is the one-dimensional chain which we treated in Section 7.3. If the shift in 
the impurity level tks takes that level above the energy of the electron state 
we consider, then the transmission of that electron through the impurity can 
be considered tunneling; the electron is transmitted though it has insufficient 
energy to be on the intervening atom. It is a good case to treat because it is 
so simple and because we can compare our result with that obtained with the 
Golden Rule. 

The Eq. (6.1) for obtaining the (variational) states in a one-dimensional 
chain, which we used in Section 7.3 to calculate scattering, can be 
generalized to 

for a case where couplings and state energies vary from site to site. We look 
for a state with an electron incident from the left, partially reflected back and 
partially transmitted. The most convenient way to construct a state from 
which we may obtain the transmission is to write Uj = Te ikdJ to the right of 
the impurity [T is a transmitted-wave amplitude] and use Eq. (8.1) to work 
back through the impurity. We then fit the results to a Ze ikdJ + Re -1kdJ. [I 
and R are also amplitudes.] This correctly applies the defining condition, 
that there is no incident electron wave from the right, and R*R/Z*Z is the 
reflectivity. In this problem we are not concerned with boundary conditions 
in the sense we were when we wanted to obtain quantized energy 
eigenstates. If we were, we would need to apply them at the outer 
boundaries. It would not be permitted for example to use periodic boundary 
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conditions to the right of the impurity and let the left region "take care of 
itself'. 

For this case we let again all couplings be the same, Hj,j+1= Hjj-1 = 
VSs0. We let all Ej be the same cs except at one site which we number a s j  = 
0. Then we see that Eq. (8.1) is satisfied (with E = E~ + 2Vssocoskd) by uj = 
TeikdJ f o r j  = 1,2,  ... if indeed uo = T. Similarly, Eq. (8.1) will be satisfied 
for j = -1, -2, ... by Ze ikd~ + Re -ikdj if uo = Z + R. Thus one condition for this 
simple case is 

The other condition is Eq. (8.1) f o r j  = 0, which is 

or 

(-2Tcoskd + Teikd + I&d + Reikd)VssO = -T& . (8.4) 

We may substitute R = T - Z from Eq. (8.2) into Eq. (8.4) and solve for T as 

T 2iVss0 sin kd 
I - 2iVsso sin kd + 8~~ ' 

- -  

For comparison with our result from the Golden Rule, we may substitute this 
into Eq. (8.2) and solve for WI to obtain a reflectivity 

6Es2 - R*R 
Reflectivity =m -4v  . ssO sin kd + 6 ~ ~ 2  ' 

proportional to 8 ~ ~ 2  at small 8~~ as for our Golden Rule calculation. In order 
to make a detailed comparison we may drop the small 6 ~ ~ 2  in the 
denominator and note that the velocity is v = (1h)dddk = -2d Vssosinkd/h so 
that the reflectivity can be written d2ikS2/( hv)2. When the perturbation is 
small most of the wave is transmitted so that the beam is equally distributed 
over the length Nd of the system and the probability of striking the impurity 
per unit time is v/Nd which is to be multiplied by the reflectivity to obtain 
the transition rate, 
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exactly as we obtained in Eq. (7.12). Eq. (8.6) is a more exact result, 
containing terms of all orders in 6 ~ ~ 2  . It is a nice confirmation of our 
derivation of the Golden Rule, Eq. (7.9), for the second-order term in the 
transition rate. 

The other limit, when 6 ~ ~ 2  is large, corresponds to electron tunneling. 
Then we evaluate one minus the reflectivity as the transmission, 

h2v 2 -- 4Vsso2sin2kd 
4Vsso2sin2kd + 8 ~ ~ 2  - 8 ~ ~ 2 d 2  ' Trans. = 

where in the last form we have dropped the first term in the denominator and 
substituted in the numerator in terms of the velocity. It is quite interesting 
that we can think of this limit as a transition rate of electrons from the left 
side of the barrier to the right. It is not easy to see how the matrix element 
for such a transition is to be evaluated, but we can see by writing both 
expressions for the rate. For transmission near zero the electron state is a 
standing wave on the left. If that length is written L1 the electron will strike 
the barrier at a rate vl(2L1) so that multiplying by the transmission gives the 
rate 

1 v  6% 3 
z - 2L1 2L18ES2d2 * 

' Trans. = 

We may calculate the rate directly from the Golden Rule using the unknown 
matrix element Ti2 and taking the length of the region on the right as L2 . It 
is 

(8.10) 

In the first step we noted that the change in wavenumber between successive 
states on the right for standing waves is nlL2, and in the final step we wrote 
dk2 = d ~ 2  /@v) and performed the integral over energy. Equating the rates 
obtained in these different ways we find that the tunneling matrix elements 
must be given by 

(8.11) 
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The proportionality of each matrix element to 4 1/N1N2 is as expected due 
to the normalization of the states coupled. Even in much more complicated 
situations, such as we shall discuss, it is possible to calculate a barrier 
transmission and see what tunneling matrix elements are needed to obtain 
the correct formula from the Golden Rule. In Section 9.1 we shall see a case 
where such tunneling matrix elements can be derived more directly in terms 
of perturbation theory. 

8.2 More General Barriers 

The first generalization from the one-dimensional chain is to a three- 
dimensional crystal in which there is a plane of defect atoms, or several 
planes, of different atoms. We can see that this only slightly changes the 
analysis which we made for the one-dimensional chain. The simplest case 
would be a simple-cubic crystal with the defect plane parallel to a cube face, 
say an xy-plane. We still retain the translational periodicity parallel to that 
plane so we can apply periodic boundary conditions (or we could put 
vanishing boundary conditions) on the lateral faces and construct tight- 
binding states with u' J J  . - - e ikt. 'i(i)uj for the coefficient on the i'th atom 
in the j'th plane. kt is the transverse wavenumber for the state with 
components k, and k,, but no z-component. For each such transverse 
wavenumber we have an energy for an isolated plane Ej(kt) = + 
2Vsso(coskxd + coskyd). For that transverse wavenumber Eq. (8.1) applies 
with Ej  replaced with Ej(kt). Thus at each transverse wavenumber the 
problem reduces exactly to a one-dimensional problem. There can be slight 
complications for more complicated structures, more orbitals per atom, or 
different orientation of planes, but the essential point remains: for planar 
defects in crystals, transverse wavenumbers kt can be constructed and the 
tunneling problem for each kt is essentially a one-dimensional problem such 
as described by Eq. (8.1). We avoid those complications here. We continue 
with the tight-binding formulation as we generalize the barriers, but then 
consider a formulation based upon free-electron, or effective-mass states. 

A second generalization is for multiple planes, or multiple defects in the 
one-dimensional part of the problem. One such system is illustrated in Fig. 
8.1, showing a double-humped barrier. We have chosen now to have the 
transmitted wave on the left and flowing to the left as uj = Te-ikdJ, rather than 
to the right as before. We may take T = 1 since in the end we evaluate 
T*T/I*I or R*WZ*I as in the preceding section. Then any constant factor in 
the transmitted wave cancels. Thus we may use Eq. (8.1) to obtain 
successive uj values in order of increasingj . We need to set a wavenumber 
for the transmitted beam, including any transverse wavenumber kt and 
longitudinal wavenumber kl corresponding to an energy E = Ej(kt) + 
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2Vssocoskld . Then successive U j  are obtain from Eq. (8.1) which can be 
solved for U j + l  as (writing Ej(kt)  as E j  for each kt) 

U j + l  = [Uj(E - Ej)  - Hj,j-lUj-l]/fZj,j+l . (8.12) 

In the simplest case all Hjj-1 are taken as Vsso and only the E j  vary from 
site to site. They will be real in any case. Only Uj and Uj-1  are needed to 
determine U j + l  so only two terms in the transmitted-beam region are needed. 
They will have real and imaginary parts, Uj  = Xj + iyj , SO both xj+l and yj+l 
need to be evaluated, both using Eq. (8.12). It is quite simple to write a 
computer program to work through the barrier in terms of a specified set of 
E j  to obtain two successive sets of coefficients in the incident region to the 
right, as in Problem 8.1. Then we must determine the longitudinal 
wavenumber k in the incident region from the starting energy. kt remains 
the same, but in the illustration Fig. 8.1 the k will be different from the 
starting kl. Only two successive sets, j and j + 1 are needed to determine the 
transmission. The derivation of the form proceeds as in Section 8.1. After 
some algebra it leads to a transmission T*T/Z*Z equal to 

Had we kept a transmitted amplitude T , the denominator would have been 
multiplied by T*T and a T*T would also have appeared in the numerator. 
The k l  entered in the starting U j  = e-ikidj, and therefore affected the xj and yj 
which enter Eq. (8.13), but it is only the k for the right which enters this 
equation explicitly. 

Problem 8.1 sets up a system for such a calculation, leading to a 
transmission as a function of energy for a double-humped barrier. I n 
general this is a very good way to gain an understanding of various tunneling 
situations. It is easy to do very complex systems, keeping only the features 
one wishes to explore, as in the illustration here where we kept all Vss0 the 
same, but it is simple to allow those to change if one wishes, or to model a 
set of energy bands of interest. It is not even difficult to include additional 
orbitals and couplings which allow accurate modeling of particular band 
structures. We do not carry through examples except for Problems 8.1 and 
8.2, but will note some results in connection with more general descriptions. 

It is ordinarily less convenient to proceed numerically with the full 
Schroedinger Equation when modeling a system, but there are some 
analytical results which are of interest and it may also be simpler to 
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Fig. 8.1. Successive energy levels ~j through a barrier. The coefficients uj 
are written Te - i k ~ d J  to the left, and each successive uj+! determined from 
Eq. (8.12). Beyond the barrier to the right the transmission is obtained 
from the calculated coefficients and k on the right, using Eq. (8.13). 

understand the procedure than for the tight-binding analysis we just gave. In 
doing this we are extending the analysis which we began in Section 2.2. 

We imagine a free-electron Schroedinger Equation with a square barrier 
lying in an xy-plane, as illustrated in Fig. 8.2. As for the tight-binding 
representation we may take periodic boundary conditions on the lateral 
boundaries (xz- and yz-planes) so that outside the barrier the electron states 
can be written e i ( k 3  + kxx + kyY). Here kx and k, are components of the 
transverse wavenumber and in the region where the potential is zero the 
energy is E = h2(kx2 + k y 2  + kz2)/2rn , as in Section 2.2. Taking the 
transmitted beam on the left side, as in Fig. (8.1), the transmitted beam is 
Te -%z, with kZ positive, and with a factor ei(kxx + k,Y) which will appear in 
all beams due to the matching, as for the tight-binding case, and we do not 
write it explicitly. On the right side the incident beam is Ze -%z and the 
reflected beam is Re i k3 .  We match wavefunctions, as in Fig. 8.3, through 
the boundaries since the wavefunction is single-valued (this conserved kx 
and k,), and match normal derivatives at each interface so the kinetic energy 
operator does not give an infinite value at that point. 

Fig. 8.2. A simple planar square tunneling barrier to free electrons. 
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Fig. 8.3. Matching the wavefunction through the barrier, starting with a 
transmitted wave on the left, matching it to exponentially decaying and 
growing states in the barrier, and finally to an incoming and reflected 
wave on the right. 

In the barrier region, if the height of the potential Vo exceeds the energy 
of the state E , the energy eigenvalue equation will give us an imaginary kz 
with magnitude K given by E =Vo+ @(kx2 + ky2)/2rn - fi2K2/2m (which 
follows directly from the eigenvalue equation, Eq. (2.2)) .  Thus the 
wavefunction within the barrier has the general form 

We specify the transverse wavenumber, (kx,ky), and the energy which 
specifies K as well as kZ for the incident, reflected, and transmitted waves. 
We match the value and slope to the incident wave at the left surface of the 
barrier by adjusting A and B. This allows determination of the wavefunction 
and slope at the right surface of the barrier, which in turn is matched to the 
incident and reflected wave by adjusting I and R. In the matching at the left 
surface we obtain one term which grows exponentially to the right and one 
which drops exponentially. Ordinarily we can neglect the one which drops. 
The resulting transmission, obtained after some algebra, is 

Trans. = ~ T*T - (4Kkz)2 e -2KW + O(e-4KW) 
Z*Z - (kz2 + K2)2 (8.15) 

The exponential factor comes from the wavefunction dropping exponentially 
from the incident to the transmitted side a distance w away. The factors in 
front come from the matching. It is in fact interesting to compare this form 
with the tight-binding form for tunneling through one atom, Eq. (8.8). The 
numerator in that equation contained a velocity squared, which corresponds 
to (hkJm)2 for free electrons and explains the kz2 factor in Eq. (8.15). The 
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denominator in Eq. (8.8) contained a factor 8 ~ ~ 2  , which corresponds to the 
barrier height squared, ( h2K2/2m)2 and explains the denominator (with the 
velocity term in kz2 dropped as in the final form of Eq. (8.8)). For one atom 
as in Eq. (8.8), there is no exponential term but otherwise the two forms are 
quite closely related, as we would expect. 

This same formula would apply if the free-electron had an effective mass 
m* as in semiconductors, discussed in Section 14.2, but there is a difficulty 
if the mass changes at an interface. We may see that if we then match w and 
ay/& at the boundary charge is not conserved; it disappears or appears at 
the interface. To see this we must derive the current operator, which we may 
do using the continuity equation, the requirement that charge not disappear 
locally. The probability density is w*w so its rate of change is obtained 
using the Schroedinger Equation (1.16). 

(8.16) 
ih ih 

2m 2m = -(y*V2w - @y*) = - V.(y*Vw - 

In the second step we noted that the term in the potential canceled and kept 
only the kinetic-energy term. The continuity equation can be written apldt 
= - V .  je with p the charge density and je  the electric-current density, the 
statement that the only way the local charge density can change is from net 
current flowing in or out. Canceling a factor of -e this becomes a relation 
between the time derivative of the probability density dy*y/dt and the 
divergence of the probability-current density. We may then identify the 
probability-current density j from Eq. (8.16) as 

J = -  (8.17) 

We may confirm that for a free electron with wavefunction (1dQ)e ik. r this 
is (hklm)y*y = vy*v as we would expect, but it is now much more general. 

We now see that if we match y and ay/& at an interface, but the mass 
which appears on the two sides (the effective mass) is different, the current 
flowing into the interface will differ from that flowing away from it, so the 
description is incorrect. We could use the requirement of current 
conservation, matching (y*/m*) dw/dz as one condition, but that leaves the 
other uncertain. A full solution of the eigenvalue equation, or Schroedinger 
Equation, in the solid, using the full potential in the solid will of course give 
the correct answer, and using that answer for an interface describable by 
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effective-mass bands would tell the condition for that particular case. A 
more general, but approximate, way is to perform a tight-binding calculation 
to determine the states near the bottom of a band and see what matching 
condition would give the correct result. This was done by Harrison and 
Kozlov (1992) for a simple band using Eq. (8.1) with Hjj.1 different on the 
two sides so the effective masses at the bottom of the bands (determined 
from a2Eklak2) were different. The result was more complicated than 
anticipated, giving matching conditions 

(8.18) 

with the plus and minus indicating the wavefunction to the right and to the 
left, and with the coefficients A B ,  C ,  and D depending upon what was 
chosen for the matrix element Hjj.1 coupling the states across the interface. 
The only way the result became simple, with B and C equal to zero, was if 
the matrix element Hjj.1 coupling the states across the interface was the 
geometric mean d(Hj,j+l+Hj,j+I-) of those to the left and to the right, a 
perfectly plausible choice. The matching conditions then became 

(8.19) 

This would appear to be the only simple choice which can be correct. 
However, for real simulations of semiconductors, where the question of 
effective masses arises, it would seem preferable to use Eq. (8.1) directly as 
we did above, with parameters chosen to fit the system in question. 

8.3 Tunneling Systems 

We note that once we have calculated a transmission, one way or 
another, the argument which led to Eq. (8.11) can be used to write the matrix 
elements which will give the correct transmission Trans. when used in the 
Golden Rule as 

(8.20) 
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with of course v1,2 the velocities on the two sides and L1,2 the length of the 
system on the two sides. This could for example be used with Eq. (8.15). 

The discussion of tunneling in terms of transition rates is often the most 
appropriate way to analyze tunneling systems of current interest. An 
important system is a metal such as aluminum, allowed to oxidize in air 
which frequently leaves an insulating oxide some 20 A thick, upon which a 
second metallic layer is deposited. Current between the two metals arises 
from tunneling through the oxide. With no voltage applied the states on both 
sides are filled to the same Fermi energy and no net current flows. An 
applied voltage (I raises the Fermi energy on one side by V = -e$ relative to 
the other, and tunneling in that energy range goes only one way. The net 
current may be calculated (assuming zero temperature) using the Golden 
Rule as in Eq. (8.10), usually assuming conservation of transverse 
wavenumber. Usually one will expect the matrix elements Ti2 to be 
insensitive to energy for applied voltages small compared to the Fermi 
energy. The number of coupled states occupied on one side and empty on 
the other will be approximately proportional to the applied voltage, so the 
current will be approximately proportional to applied voltage, as a simple 
and perhaps uninteresting resistor. However, in special cases, such as with a 
superconductor on one or both sides, there may be a proportionality to the 
density of excited states, with a gap at the Fermi energy, as observed by 
Giaever (1960), providing a powerful test of the theory of those excitations. 
The same system led to the discovery of superconducting tunneling when 
both metals were superconducting, the Josephson Effect (Josephson (1962)). 

The transition-rate approach can be particularly useful in treating the 
scanning tunneling microscope where a metallic tip is held over a crystal 
surface, as in Fig. 8.4, sufficiently close that electrons tunnel into, or out of, 
the substrate. As it scans across the surface the matrix element Ti2 between 

Fig. 8.4. In a Scanning Tunneling Microscope (STM) a metallic tip, 
shown above, is brought sufficiently close to a substrate, shown below, 
that electrons can tunnel between. By applying a voltage, and causing the 
separation z to vary such that the current is constant as the tip moves 
across the surface, one traces out the surface, like a phonograph needle on 
an atomic scale. 
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the tip and the substrate varies giving information about the geometry of the 
surface atoms. The tip can be modeled as a crystal corner, as described at 
the end of Section 6.1 with the matrix element between the tip wavefunction 
and a surface atom given by sink,d sink,d sink,d Vsso for a simple- 
cubic crystal corner and all s-states. One can build upon such a model to 
construct a more accurate representation of the tunneling spectroscopy for 
any system of interest. In a more complete analysis one may construct 
approximate eigenstate wavefunctions for the entire system and use the 
current operator of Eq. (8.17) to evaluate the current. 

8.4 Tunneling Resonance 

The system for which the transmission was calculated in Problem 8.1 is 
illustrated schematically in Fig. 8.5, a double-humped potential which is 
almost high enough to form a local, bound state - called a resonant state - 
within the barrier. For a finite barrier height the electron can tunnel out on 
either side as shown and as we have seen. It has finite kinetic energy, 
corresponding to approximately a half wavelength equal to the width of the 
well, also as shown. The very remarkable result in such a case, and found in 
the problem, is that the transmission rises to one at an energy equal to the 
resonant-state energy, and then drops at higher energies. This system 
illustrates a number of quantum effects which we shall explore. 

The first concerns transitions out of such a localized state. If this were a 
spherical shell, rather than a one-dimensional system, the state could be 
constructed just as we did in Section 2.4. There could be a resonant state of, 
for example, spherical symmetry. We can calculate the rate electrons would 
leave such a state just as we calculated the transition rate between two sides 
of a barrier in Eq. (8.9), and we shall carry out such a calculation in Section 
9.2. From that rate we can deduce the half-life of the state, the time in which 
it would have a 50% probability of having escaped. 

Such a theory describes for example the decay of a nucleus by the 

Fig. 8.5. A double barrier may very nearly form a state, called a resonant 
state, out of which, however, a particle can tunnel. 
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emission of an alpha particle, a-particle, which itself is a helium nucleus. 
We saw in Section 4.4 that the helium nucleus, with two protons and two 
neutrons, all in the lowest one-nucleon 1s-state, has particularly low energy 
and is therefore particularly stable. In the heavier nuclei the binding energy 
per nucleon is reduced by the Coulomb repulsion of the many protons 
confined to the nucleus, and at the same time the binding-energy per nucleon 
is rather insensitive to the exact number of nucleons just as the cohesive 
energy per atom of a metal becomes independent of the size of the metal for 
bulk crystals. Thus it becomes energetically favorable to remove one helium 
nucleus, an a-particle, from a heavy nucleus. There is however a barrier to 
this removal because as the alpha particle moves just outside of the nucleus 
which initially had Znuc protons, beyond the attractive square well which we 
described for the shell model in Section 4.4, it has a very large electrostatic 
potential 2(ZnUc-2)&r. Thus a plot of the energy of the a-particle as a 
function of radial distance, relative to its energy at infinite distance should 
appear as in Fig. 8.6. The transmission of the barrier can be calculated as we 
did in Section 8 . 2  (using the tight-binding description as an approximate 
calculation on a grid of the continuous radial wavefunction, or by the WKB 
method, which we have not described in this text), and the tunneling rate 
deduced. For any case ZnUc is known and one has a good idea of the nuclear 
radius, as indicated in Section 4.4, so one can reliably calculate the 
transition-rate out, as a function of the energy of the emergent a-particle, 
and the results are in good accord with experiment. 

A particle outside the barriers of a system such as this will have very 
strong scattering if its energy is near that of the resonant state. This is then 
called a scattering resonance and is analogous to strong scattering of sound 
by a resonant body when the sound wave has frequency near that of the 
resonator. In this case it would be scattering of a-particles by a nucleus. 

1'0 r 

Fig. 8.6. The potential energy of an a-particle as a function of distance r. 
from the center of the nucleus. ro is the radius of the nucleus, and E~ is 
thought of as the ground-state energy of the a-particle within the nucleus. 
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We return next to the one-dimensional case shown in Fig. 8.5 and ask 
how it can be that an incident electron could have transmission near unity as 
if it did not see the pair of barriers. The answer suggested by Fig. 8.5 is 
essentially correct. The probability density inside the barrier is very high for 
the resonant state and its tunneling out may not be symmetric so that it 
corresponds to a tiny transmitted beam on one side and a tiny incident and 
reflected wave on the other. The calculated transmission is high because in 
that circumstance the probability within the well is high and it feeds the 
transmitted wave. It is not that the incident electron does not see the barrier. 
If the individual barriers are thick and high, the resonance becomes 
extremely narrow in energy; the transmission is high only over a very 
narrow energy range. Thus if we constructed a wave packet for an electron 
approaching the double barrier, it would include states of low transmission 
and the packet would be largely reflected as we would expect physically. 

The small-amplitude packet which does tunnel through spends a time of 
the order of h divided by the resonance width before proceeding beyond. If 
there is more than one electron tunneling, the probability of both being in the 
barrier at the same time is greatly reduced by the Coulomb repulsion 
between them, an effect called the Coulomb blockade. 

We can construct states in this energy range in detail, and find that over 
the resonance width (the energy range with high transmission) the states are 
closely spaced, as without a well in the barrier, but that an extra state is 
crowded in within this energy range, as illustrated in Fig. 8.7. There is no 
single resonant state and each state has only a small probability of being 
within the well, a probability of order the reciprocal of the product of N , the 
density of states, and the resonance width. 

gives a resonance. 

Resonance Width. 
One extra level. 

Fig. 8.7. If a potential well is inserted within a barrier, a resonant state 
which arises will be an additional state crowded in among those already 
present. 
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Chapter 9. Transition Rates 

The case of tunneling resonances, with one state coupled to two different 
continua of states as in Fig. 8.5, is an interesting one to explore. We have 
seen the nature of the states which arise in an exact calculation and have 
seen the resonant transmission going to unity at the center of the resonance. 
It will also be useful to proceed in an approximate way to understand better 
the properties of such systems. 

9.1 Second-Order Coupling 

It is of interest to consider the effect of the resonance on tunneling for 
states well removed in energy from the resonance, as illustrated in Fig. 9.1 
We proceed in perturbation theory using the matrix elements given in Eq. 
(8.20). In zero-order, the resonant state of energy ~2 is an independent 
energy eigenstate, as is our starting state of energy ~1 outside the barrier. 
We may correct our starting state using the first-order perturbation theory of 
Eq. (5.26) to obtain 

(9.1) 

Even if there is no direct coupling between the state Il> on the left and a 
state 13> on the right, there will be a coupling of this first-order state to the 
state on the right through the coupling T32 between the resonant state 12> 
and the state to the right 13>. Thus there is a second-order coupling through 
the resonant state given by 
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Fig. 9.1. A resonant state is treated as a zero-order energy eigenstate 12>, 
coupled to a continuum of states Il> and to a second continuum of states 
13>. 

There is actually an additional term arising from the first-order 
correction to the state 13> and a cross term from the two first-order 
corrections. They turn out to be of the same magnitude when ~1 = ~3 and the 
cross term is of opposite sign so for the calculation of transition rates 
between [ I>  and (3> we need only the term given in Eq. (9.2). If there were 
more that one state in the well, the terms would add in the second-order 
matrix element and if the terms were opposite in sign they would cancel 
each other. We shall make use of this feature that there is interference 
between terms in Section 23.4. 

The matrix elements with the local state, T i 2  and T 2 3 ,  contain a single 
factor of lldL1 or l l d L 3  so that if we write the transmission combining Eqs. 
(8.20) and (9.2) as 

all of these length factors cancel, as they should. As the energy € 1  of the 
incident (and transmitted) electron approaches the energy ~2 of the resonant 
state, the transmission becomes large. In this form it would diverge but the 
perturbation theory is only valid when ~1 - ~2 is large. We proceed in the 
following section to describe tunneling in the other limit, that in which the 
incident energy is approximately equal to that of the resonant state. 

A case where such transmission through a resonant state is important is 
shown in Fig. 9.2 where electrons tunnel through an oxide between two 
metals. If there are impurity atoms in the oxide, they can dominate the 
tunneling. This can be seen experimentally if vibrations in impurity 
molecules are excited (as described in Section 23.2), so that the transmitted 
electron has reduced energy. 
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Fig. 9.2. A tunnel junction between two metals. Impurities, indicated by 
striped circles, can provide resonant states which contribute to, or even 
dominate, the tunnel current. 

9.2 Carrier Emission and Capture 

We must proceed differently in order to discuss tunneling when the 
incident electron has energy approximately equal to that in the resonant 
state. Then the possibility of transitions into and out of that state arises. In 
deriving Fermi's Golden Rule we emphasized the necessity of having a 
continuum of final states, which we do not have for capturing electrons, but 
we can use the Golden Rule to calculate emission. We could proceed as we 
just have to obtain matrix elements T23 between the local state of energy ~2 
and an external state of energy E 3  to the right. Then the emission rate is 
obtained as 

v3 is the speed in the final state. Again the size of the system to the right 
cancels out in L3T23T32. 

Although we cannot directly use the Golden Rule to obtain a capture 
rate, such capture into discrete states must occur since, for a system in 
equilibrium, electrons in an impurity state in the barrier will tunnel out with 
a rate given by Eq. (9.4) and there must be electrons tunneling in at the same 
rate to replace them. This is called detailed balance. In Chapter 10 we shall 
define probabilities of occupation of such an impurity state as f ( ~ 2 )  and 
probabilities of occupation of the states into which they tunnel asf(~3). For 
a transition to occur the internal state must be occupied and the outside state 
empty, so the transition rate out is given byf(r2)(1 -JT&3))/z. Similarly there 
must be a transition rate in equal tof(&3)(l -f(&2))/z' with a z' which we wish 
to know. However, &3 = &2 for the transition and in equilibrium we shall see 
in Chapter 10 thatf depends only upon energy. Thusf(~3) =f(&2) ,  so z' = z 
and we have the rate also for capture and can use the capture rate f ( q ) ( l  - 
f(&2))/z also when we do not have equilibrium distributions. 
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We return to the system shown in Fig. 9.1 in which tunneling occurs 
through a resonant state, but now when the incident electrons have energy ~1 
near ~2 . For the moment we let all such states / I >  be occupied, and none of 
the transmitted states 13> of equal energy be occupied. Then electrons will 
be captured into the resonant state 12> from Il> and the occupation will 
increase until the transition rate out to 13> equals the rate in, steady state. 
This will be with the probability of occupation of 12> equal to one half if the 
l/z is the same between 12> and 13> as it is between Il> and 12> and the 
tunneling rate through the resonant state would be half the rate given in Eq. 
(9.4). We look at more general steady-state cases in Section 11.1. 

This would be called sequential tunneling rather than the resonant 
tunneling treated in Section 9.1. The full transmission calculation in Chapter 
8, and Problem 8.1 in particular, gives transmission for all energies and 
includes both types without distinguishing. However, in a real system we 
may make the distinction and it can be very useful to consider both and to 
see which dominates. For example, in a semiconductor tunnel junction, with 
a resonant state at energy ~2 well above the conduction-band edge Ec, the 
contribution of sequential tunneling will be reduced relative to resonant 
tunneling by the much lower occupation of electrons at the required energy, 
by a factor e -(&2 - E&BT as we shall see in Chapter 10, than the occupation 
of levels near the conduction-band edge. However, we see from Eq. (9.4) 
that the rate for sequential tunneling has only two factors of Ti2 or T23 while 
the resonant tunneling rate is seen in Eq. (9.3) to have four such factors. 
Each of these factors is seen from Eqs. (8.15) and (8.20) to contain a factor 
of e - KW which may be extremely tiny. It is not clear from the outset which 
type of tunneling will dominate. It will differ for different systems and it 
can be extremely useful to learn for any one system which mechanism is 
dominant and therefore what its dependence upon parameters such as 
temperature will be. 

9.3 Time-Dependent Perturbations 

We have treated transitions arising from perturbations which do not 
depend upon time, such as the coupling between a resonant state and 
continuum states, and this led to the conservation of energy. If we now 
allow perturbations which vary with time we shall find that they can do work 
on the electron and shift its energy in the transition. The derivation of the 
corresponding rate follows closely the derivation of Fermi's Golden Rule in 
Section 7.2. 

We introduce a perturbation, which might be a potential V(r,t) or other 
small term added to the starting Hamiltonian which had eigenstates b>. Then 
the coupling between these states Hij will also depend upon time. It is 
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convenient to expand the time dependence of the perturbation in a Fourier 
series, V(r,t) = &V,(r)e -iot, so that 

and each term is a separate perturbation. This however leads to a persistent 
ambiguity since V(r,t) is certainly real so that V-,(r) must equal Vo(r)*. 
This restriction on the Fourier components is compensated for by the fact 
that V,(r) has independent real and imaginary parts. We shall deal with this 
systematically in Chapter 15 for lattice vibrations and in Chapter 17 for 
light, where we find that we may think of each component as an independent 
term, and it is best to do that here. The ambiguity will resolve itself for any 
real problem if we are careful that our expansion represents the potential in 
that system, and that we have correctly included all the terms in the 
perturbation theory. For the present we treat a single term Hjie -lot and add 
the other terms in Eq. (9.5) at the end. 

We again expand in the eigenstates b> of the starting Hamiltonian, Iy> 
= Cjuj(t)e -imjt[j>, as in Section 7.2 and let uo = 1 at t = 0. We may then 
proceed exactly as in Eqs. (7.6) through (7.8), but keeping the time 
dependence so 

The final term indicates the second-order terms which we neglect. We may 
integrate directly from t=O to get 

or 

The second factor on the right is an energy delta function exactly as shown 
in Fig. 7.2, but with an additional term in the argument. Thus we obtain 
exactly the result, Eq. (7.9), with the argument of the delta function replaced 
by EO - E j  + h a .  We may now add all of the other terms in Eq. (9.5) to 
obtain the time-dependent perturbation-theory result 
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(9.9) 

If there were only one term in the sum over o, with o = 0, the equation 
reduces to Eq. (7.9) as it should. For each term in the sum over o for which 
o is positive the final-state energy is higher than the initial-state energy by 
flo, as if a quantum of energy ho was absorbed. For the perturbation to be 
real, for each such term there must be another for which o is negative, and 
the final-state energy for that term is lower, as if a quantum of energy was 
given up by the electron. When we finally quantize the vibrational states or 
optical energy in Chapters 16 and 17 we shall see that this is exactly the 
case, but for the present we have introduced a classical perturbation 
depending upon time and the classical system can add or subtract energy 
from the electrons to which it is coupled. We continue this classical 
treatment of the electromagnetic field in the following section and see how it 
can ionize an atom by exciting an electron from a bound state to the 
continuum. 

9.4 Optical Transitions 

The first step in the calculation of transitions caused by an 
electromagnetic field, and the ionization of an atom in particular, is to obtain 
the perturbation. It would be possible, and simpler, to carry out a derivation 
in terms of a perturbation -(-e)E. r with E the time-varying electric field of 
the light at the atom. However, that formulation is not convenient for other 
problems and we proceed more generally to obtain results which we shall 
use later. As we indicated in Section 3.3, the electric field can be included 
by adding a vector potential A, in terms of which the electric field is given 
by E = -(l/c) aA/at. Then the interaction with the electron is obtained by 
adding -(-e)A/c to the momentum operator in the Schroedinger Equation. 
The p2/(2rn) is written out and the cross term eA.p/(mc) = -iheA.V/(mc) is 
the interaction, thought of qualitatively as the velocity times the field, 
divided by frequency since E is proportional to aAlat.  We can expand the 
vector potential as we shall do in Eq. (1 8.1) but making the time-dependence 
explicit in analogy with Eq. (9.5), keeping two terms which will lead to real 
fields 

This corresponds to a wave propagating in the direction of q and only the 
first term can raise the energy of the electron according to Eq. (9.9). We 
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shall find that the wavelengths of the light of interest are so long (thousands 
of Angstroms) compared to the size of an atom that we can neglect the 
variation of Eq. (9.10) over one atom. Then we may take our origin of 
coordinates at the atom, we take our z-axis along the light wavenumber q 
and the x-axis along the polarization direction, the direction of the electric 
field, uq. Then the perturbation representing the electron-light interaction 
becomes 

(9.11) 

which will become Eq. (18.10) when we quantize the light field. As we 
indicated, for the absorption of light we keep only the first term. 

We may use this form for coupling between atomic states to learn which 
states are coupled. We look first at the matrix element between an s-state 
lo> and some atomic state of angular-momentum quantum number I ,  the 
matrix element <llNe110>. All of the factors in Eq. (9.1 1) except &ax can be 
taken out of the integral in the matrix element, and for a spherically 
symmetric state lo>, a/axlO> = (x/r)a/arlO> is of p-symmetry. Thus an s- 
state is coupled by the electron-light interaction only to a p-state since all 
other states are orthogonal to (x/r)a/drlO>. This generalizes to the statement 
that if the initial state has angular-momentum quantum number I, there will 
only be nonzero matrix elements with states of quantum number 1 f l .  We 
shall make this important generalization in Section 16.3. Such rules are 
called Selection Rules. In a similar way matrix elements of x between 
harmonic-oscillator eigenstates &,(x) are only nonzero if the two states differ 
in n by f l .  

In the case of the electron-light interaction of Eq. (9.11) it has the 
important physical interpretation that a photon has a spin angular momentum 
of one unit, h, since the absorption or emission of a quantum of light energy 
always changes the angular momentum of the system it interacts with by one 
unit. Indeed this is more than an interpretation, it is a proof that photons 
have unit angular momentum. 

For excitation to the continuum, we seek matrix elements <lP,llk> 
between an atomic state <I I and a freely propagating state Ik> = 
(l/dQ)eik. r. It might seem preferable to represent the freely propagating 
state by a plane wave which has been made orthogonal to the atomic states, 
Ik>> = Ik> - Il'><llk> , called an orthogonalized plane wave, since the 
true propagating states are orthogonal to the atomic states. This would lead 
to cross terms for I '  = 1 k 1 ,  but such terms are usually small and we neglect 
them here. We have chosen the matrix element with the plane wave to the 
right so the derivative d / d x l b  = ik,lk>. The matrix element we seek is then 
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(9.12) 

The matrix element <klHellZ> is the complex conjugate of this, which can be 
shown by making a partial integration on the a/ax . 

The plane-wave states themselves can be expanded in spherical terms as 
(e. g., Schiff (1968), p. 119) 

with 6 the angle between k and r, where the Pi are Legendre polynomials 
Pi0 introduced in Eq. (2.27), and where the j l  are the spherical Bessel 
functions introduced in and after Eq. (2.34). For an atomic state of angular- 
momentum I there will be terms for I '  = I in <Ilk> or terms for I '  = I f l  in 
<Ild/dxlk>. 

We may complete the evaluation of the matrix element using the final 
form in Eq. (9.12), which we do for an atomic s-state, 

(9.14) 
471 sin kr  

= ~ jr2Ws(r) 7 dr  . .Isz 

This can be evaluated from tabulated wavefunction or for a simple hydrogen 
1s-state, or a state approximated by that form, y s ( r )  = d$&-Pr with 
energy E~ = -h2p2/(2m). For that case it becomes 

Then the time-dependent matrix element becomes 

(9.15) 

(9.16) 
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We may now evaluate the rate that such transitions to an ionized state 
are made using the time-dependent perturbation theory of Eq. (9.9). It is 

(9.17) 

and <klHe110> is the complex conjugate of <01Hellk>. We may see already 
from the kx factor in the matrix element of Eq. (9.16) that the probability of 
exciting the electron into a state of wavenumber k is proportional to cos28 , 
with 8 the angle which k makes with the direction of polarization of the light 
wave. This makes physical sense since that polarization direction is the 
direction of forces on the electron. Our neglect of the variation of the field 
over the atom has made the result completely independent of the direction of 
propagation of the light, the direction of q. 

As usual, we replace the sum over final states (of the same spin as the 
initial state since the He1 we use does not couple electron states of different 
spin) by an integral, in this case with angles measured from the direction of 
polarization, 

mQ 
(9.18) 

Q 
c k  = I 27cd8 sin0Idk k2 = (27~)2h2 d8 sin8jdek k . 

Integrating over angle and energy gives 

(9.19) 

The evaluation of the delta function relates the final-state energy to the 
photon energy as 

(9.20) 

with E~ = -h2p2/(2m) measured relative to an electron at rest far from the 
atom. 

It is difficult to interpret a result in terms of the amplitudes uq, but we 
can also write the light-energy flux in terms of the uq using Eq. (9.10). The 
ratio of the two is meaningful and the uq cancel out. We may return to Eq. 
(9.10) which gives the vector potential, and then the electric field. We can 
square it and divide by 87c to obtain the energy density, which averages over 
space or time to q2uqu.,lQ. There is an equal energy density from the 
magnetic field so we multiply by two, and by the speed of light to obtain the 
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energy flux. We may then divide by ha to obtain a photon flux of 
2q~~u-~/ (hSZ) .  Finally we set the rate of ionization from Eq. (9.19) equal to 
this photon flux times the cross-section for ionization ox and solve for ox as 

(9.21) 

The leading factor in the final form is a constant, equal to 0.55 A2 if E~ = 
-13.6 eV, and the second factor is dimensionless and can be written in terms 
of w = h o / l ~ ~ J  = (p2 + k2)/p2as (w - 1 ) W w 4 .  This is plotted Fig. 9.3, 
showing how the cross-section rises above the threshold ha = -cs. We note 
that the leading factor is similar in magnitude to the area, 0.91 A2, one 
would get from the Bohr radius (Up = 0.54 A) squared times n, and does 
vary with the depth of the s-state as appropriate to that. However, the final 
factor is quite small, as seen in Fig. 9.3, so the correspondence between the 
cross-section and the "area" of the atom is not close numerically. 

This evaluation of the flux in the analysis above is tricky because of 
factors of two and here we have been careful to use the same vector 
potential, Eq. (9. lo), for both the transition rate and the flux. In Chapter 17 
we proceed more generally and then the algebra should take care of the 
consistency there. It would be dangerous to use different approaches for two 
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Fig. 9.3. The final factor in Eq. (9.21) giving the cross-section for photo- 
ionization as a function of photon energy for a hydrogenic s-state. 
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parts of the same problem. 
In Problem 9.1 this calculation is redone for excitation of an electron out 

of a state in a semiconductor quantum well, localized in one dimension, but 
propagating in the other two. The procedure is very much the same, but with 
different geometry. This could be quite accurately done by constructing the 
excited states for the system as states were constructed in Section 8.2, but for 
the purposes of the problem simpler states were chosen analogous to those 
we have used in this section. It is interesting that for a single electron and 
light propagating parallel to the plane of the well, with polarization 
perpendicular to that plane, the ionization rate at a given electric-field 
strength does not depend upon the area of the well, only the thickness. Thus 
we can again define a cross-section for ionization OX, which in this case is 
considerably larger. When it is plotted it leads to a curve similar to that 
shown in Fig. 9.3. 

9.5 Beta-Ray Emission from Nuclei 

We turn now to a very different type of transition, but one which can be 
described using the Golden Rule. We indicated in Section 4.4 that a neutron 
could decay into a proton by emission of an electron. Such an event could 
only occur in conjunction with some other effect since the neutron has spin 
1/2, as do the proton and the emitted electron. With necessarily a half- 
integral spin change, and orbital angular momentum in integral units of h, 
angular momentum could not be conserved. The other effect is the emission 
of a neutrino, which has spin 1/2, so it could cancel the spin of the electron 
and leave the proton with the same spin state as the neutron. The neutrino 
clearly has no charge, and it has very tiny, if any, mass - we shall treat it as 
vanishing - so that we can almost think of it as pure spin without substance 
leaving the scene with the emission. However, it does have wavenumber q 
and thus inomentumhq, and if it has negligible mass, its energy from the 
relativistic formula given in Problem 1.1 will be hqc. 

The emission of the electron and neutrino can be considered a transition, 
calculated with the Golden Rule. It is an interesting problem to consider 
since we have no way of knowing what the matrix element is. In this case, 
and in most others, we can nevertheless proceed by making the simplest 
sensible guess for the matrix element, and learn the consequences. This is 
what Fermi (1934) did for beta-decay and it turned out to describe the 
process well. If it had not, the failure would have taught him how to correct 
the matrix element. The theory applies to the isolated neutron, or to a 
neutron contained in a nucleus. 
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Fermi chose the matrix element to be independent of the magnitude of 
the momentum of the electron, the neutrino, the neutron, or the proton. 
However, we recall that momentum conservation is always enforced by the 
matrix element, so that the matrix element must only be nonzero if the sum 
of the momenta, or wavenumbers, for the electron, the neutrino, and the 
proton equals that of the starting neutron. Restating this, we may take the 
starting wavenumber of the neutron (or nucleus) as zero, and then the sum of 
the electron wavenumber k and the neutrino wavenumber q must be the 
negative of the proton wavenumber K (or that of the nucleus after the 
decay). There would be a relativistic correction if the starting neutron or 
nucleus had velocities in the laboratory frame comparable to the speed of 
light. We do not consider that case, but write the matrix element 
<k,q,KIHIO> as independent of the magnitudes of k ,  q ,  and K,  and the 
condition K = - q - k remains true for a relativistic system. 

We also need to write the energy delta function. We use the relativistic 
formula (given in Problem 1.1) for the electron and neutrino energies, which 
we indicated was hqc for the neutrino, and we keep only the first two terms 
for the electron. Thus we require that the sum of the electron and neutrino 
energies rnc2 + h2k2/(2rn) + hqc plus the recoil kinetic energy of the nucleon 
or nucleus be the negative of the change in the internal energy A E  of the 
nucleus or nucleon. In fact the nucleon is so heavy in comparison to the 
electron and neutrino that this recoil energy h’K2/(2M,) is negligible. 
However, we must retain the K since it allows k + q to be nonzero. Thus 
we neglect the recoil energy in the energy delta function and the Golden 
Rule gives us a transition rate 

(9.22) 
1 2n 
; = c I<k,q,KIHIO>I2 8(mc2 + h2k2/(2rn) + hqc - A@, 

with the sum over all final states. 
The final states are now specified by two wavenumbers, k for the 

electron and q for the neutrino, since K = -k - q, so we will sum over both 
wavenumbers, writing each sum as Q/(2n)3 times a three-dimensional 
integral over wavenumber, with an additional factor of two for the two spin 
states of the electron (with the neutrino of opposite spin, though a more 
complete analysis of the interactions allows the electron and the neutrino to 
have parallel spin, and the spin of the nucleon is then flipped). The matrix 
element must contain a factor of the reciprocal volume of the system 1/Q, 
just as did the matrix element of the electron-electron interaction, so that the 
final rate does not depend upon the volume of the system. We think of this 
factor of l/Q as corning from the l/@normalization of the neutrino and 
electron wavefunctions and an integration over a local interaction with the 
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nucleon states. Thus we write <k,q,KIHIO> = M/Q, with M having units of 
volume times energy. We proceed by finding the rate into a particular 
electron wavenumber state k by summing over q and afterward convert to a 
distribution as a function of k. With this simple matrix element the rate is 
independent of the direction of k or q or the angle between them, so the 
probability of a final state with a particular k and spin is 

(9.23) M 2  h2k2 
7 C a i  c 2m = 7 I(hcq)2 d(hcq) &(me2 + - + hqc - AE) 

Then the probability per unit time of emission of an electron into one of 
the 2x4.nk2dk Q/(2n)3 times (m/h2k )(dsk/dk) states in the energy range dlk 
is 

mM2 
___ -\i2m &&E - me2 - &k)2 d€k, 
n3h7c3 P E ~  dck = (9.24) 

shown in Fig. 9.4. 

Fig. 9.4. Probability of emission of beta-rays (electrons) as a function of 
their energy. AE is the magnitude of the change in energy of the nucleus 
due to the transition. The rest of the energy is given to the neutrino. 
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The scale depends upon the matrix element M which must be obtained 
from experiment, such as the total half-life of the free neutron. This theory 
of P-decay is an impressive accomplishment of quantum theory. We do not 
know at the outset what nature has given us in the way of particles and 
interactions, but learn that a neutron has somewhat more mass-energy than a 
proton. Thus energy can be conserved if a neutron decays into a proton and 
an electron with the excess energy going to the electron. However, such a 
process cannot conserve angular momentum. When we learn that the 
process nevertheless occurs, we deduce that another particle - the neutrino - 
must be created (or perhaps could have been absorbed). 

We of course do not know the matrix element for the process but can 
make the simplest guess and see if it fits experiment. The same approach 
was taken for a wide range of particle decays, and collision processes. One 
assumes that all processes are possible but each with an unknown but 
nonzero matrix element. If a particular process does not occur, one 
concludes that it is ruled out by some other conservation law. This is the 
path which led to the Standard Model of particle physics, mentioned in 
Section 4.4. 

The matrix element for P-decay was found to be small, and called a weak 
interaction, small compared to the electromagnetic interaction and the strong 
interactions between nucleons arising from n-mesons as described in Section 
17.4. At the same time the weak interactions are strong compared to 
gravitational interactions. 

A principal goal of contemporary particle theory is to understand the 
ratio between these four interactions in terms of one theory. That has not 
been accomplished, and in any case for us it would only explain what nature 
has given us. It is still true that given what we have, quantum theory tells us 
how to understand its behavior. 
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IV. Statistical Physics 

To a large extent in our analysis we have been able to treat individual 
particles or waves, based upon a one-particle or one-electron approximation 
introduced already in Section 2.2. Occasionally we have introduced 
collections of particles, as for quantized conductance in Section 2.3. It is 
appropriate to take time to organize the subject a little more completely, 
discussing first statistical distributions in equilibrium, then transport theory 
when systems are out of equilibrium, and finally some aspects of the theory 
of noise. These are separate subjects from quantum mechanics, but are 
absolutely necessary if one is to make quantum-mechanical studies of 
systems involving many particles. They are not always incorporated in 
undergraduate programs, so it may be necessary to include them in a course 
on quantum theory. They also lead to quite different results in the context of 
quantum mechanics. We proceed as we have in other discussions by treating 
the simplest cases carefully, and seeing how they generalize to more intricate 
contexts. 
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Chapter 10. Statistical Mechanics 

Statistical mechanics is concerned with systems in thermal equilibrium, 
the state of any many-particle system if it is left by itself long enough. It 
does not depend on the mechanisms which bring the system to equilibrium. 
There may be a vast number of possible states of the entire system, and a 
major aspect of statistical physics is dealing with this complexity by 
formulating the right questions. We discuss this first in describing the 
distribution functions which are sought. The analysis is then based upon the 
statistical assumption that in thermal equilibrium the probability of any 
particular quantum state depends only upon the energy of that state. It will 
then follow from our first example that the dependence of that probability 
on its energy Ej is given by the Boltzmann factor, e-&jlkBT, in term of the 
temperature T. It may seem odd to use a detailed model to obtain this very 
general result, but the model is easy to understand and in terms of it the 
derivation of the general result becomes obvious. This first example is a 
very large number of identical, independent harmonic oscillators, such as we 
discussed in Section 2.5. For it we carry out the intricate calculation of the 
most likely distribution. The remainder of the analysis in the subsequent 
sections generalizes the solution to normal modes of vibration, light waves 
or photons, Bose-Einstein particles, and finally fermions, particles such as 
electrons which obey the Pauli Exclusion Principle. 

10.1 Distribution Functions 

The quantum-mechanical state of a set of NT harmonic oscillators, with 
displacement coordinates { uj } , is a many-particle wavefunction Y ({  uj} ,t). 
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[As in Chapter 3 we are using the brackets { } to designate a collection of 
values.] If the oscillators are independent, as we assume (H  = EjH(uj,pj)), 
we saw in Section 2.2 that the wavefunction could be factored as Y({ uj},t)= 
Hjv(uj,t) . We found further in Section 2.5 that each harmonic oscillator has 
eigenstates numbered by an integer nj with energy /h(nj + 1/2) . Thus 
energy eigenstates of a collection of NT oscillators can be specified by 
giving the nj of each one. If we measure the energy of this system, we shall 
find it to be in one of these eigenstates. 

We in fact may not care which ones of the harmonic oscillators are 
excited to which level and might ask only for the number of these oscillators 
N(n)  which are in the n'th level of excitation. This would be called a 
distribution function. It is a simplification of the description, obtained by 
asking only for the information which will prove useful. There are still a 
very large number of possible sets {N(n ) }  and what we might really prefer 
is an average over many observations, on the system in equilibrium, of each, 
<N(n)>, called an ensemble average. For a given total energy, the resulting 
<N(~)>/NT would be some well-defined set of numbers which we would 
call an equilibrium distribution function for the excitations of each 
oscillator. This distribution function is enough to answer the principal 
questions we want to ask, and it is what we seek from a statistical analysis. 

Our starting point is saying that the probability a system in equilibrium 
is in any particular quantum-mechanical state depends only upon the energy 
of that state, that all states of the same energy are equally likely. This is not 
an obvious statement. If for example we had NT = 2 oscillators, and a total 
excitation energy of &a, we might incorrectly apply first an excitation 
randomly to one of the two oscillators and then, apply the second randomly 
to one of the two. Fifty percent of the times we did this the second 
excitation would be on the other oscillator from the first, giving a fifty- 
percent probability of the state with one excitation on each oscillator. The 
other fifty-percent of the times they would be both on the same oscillator, 
25% for the state with oscillator-one doubly excited and oscillator-two in the 
ground state, and 25% for the reversed state. This would be inconsistent 
with our starting point of equal, 331/3%, probability for each of the three 
states and is not correct. The error arose because the probability of 
excitation of an oscillator does depend upon whether or not it is already 
excited. We should avoid saying that the assumed equal probability for each 
state is justified by there being no reason to favor one over another since we 
have just, incorrectly, found one. The assumption is much deeper, but we 
can be as confident of it as we can of thermodynamics since variations from 
that assumption lead to violations of the Second Law. 

Given that every quantum state of the same energy has equal probability 
we can calculate the probability of any particular distribution function 
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{ N(n)}  occurring by counting the number of quantum states to which such a 
set corresponds, and dividing by the total number of quantum states. Thus if 
we had three oscillators, and a total of three units of excitation, there are 
three quantum states, or arrangements of the excitation energy, with N(3) = 
1, N(2) = N(1) = 0, (again N(3)  is the number of oscillators triply excited) 
depending upon which is excited. There is only one arrangement with N( 1) 
= 3, and six arrangement with N(2) = N(1) = 1. These are all of the ten 
quantum states of the three oscillators of this energy. We would say that 
with three units of excitation the probability of finding the first arrangement 
is 3/10, the second arrangement is 1/10, and the third is 6/10. This is a 
detailed calculated distribution for this energy, based upon the statistical 
assumption that all states of the same energy are equally likely. 

We may do the same calculation for a large number NT of oscillators. 
For a particular set {N(n)},  we might first assign the N(1) in 
NT!I[(NT - N(l))!N(l)!] ways [that is, NT(NT-~) ... (N~-lV(l)+l)/N(l)! , 
where the numerator is the number of ways N( 1) objects can be placed in NT 
bins, and the denominator is the number of different ways those same N(1) 
objects can be arranged in the same N(1) bins]. Note that this is looking for 
distinct quantum states as we did above for the NT = 3 case, not applying 
excitations to the system as we incorrectly did for the NT = 2 case before. 
Similarly, for each such assignment of single excitations, there are(NT- 
N( ~))!/[(NT-N( l)-N(2))!N(2)!] ways of assigning the N(2) oscillators in the 
second state of excitation among the N T  - N(1) remaining oscillators. 
Continuing on for the entire series of n values, we obtain the total number of 
equally likely ways this set can be accomplished as 

We may confirm for the example given above with N T = ~  that we obtain the 
correct answer from this for the three cases, {N(O),N(1),N(2)Sy(3)}= 
{ 2,0,0,1} , { 0,3,0,0}, and { 0,1,1,0} , respectively, which we discussed above, 
noting of course that O! = l! = 1. Similarly for the case discussed above 
with NT = 2 we correctly obtain W = 1 for { 0, 2, 0) and W = 2 for { 0, 0, 1 }. 

These W-values would enable us to find the probability of any particular 
distribution function { N ( n ) }  as we did for the N T = ~  and N T = ~  cases, but it 
will be much more useful to find the most-likely distribution function. It 
turns out that when NT is very large, the vast majority of the huge number of 
possible distribution functions are very close to the most probable one. We 
may find the most-likely distribution by maximizing W subject to the two 
conditions, 
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(10.3) 

where Eexc, is the total excitation energy, over the zero-point energy of 
ll260 NT. 

There are two ways to greatly simplify the calculation. The first is to 
maximize not W but equivalently to maximize the logarithm of W , first 
since the logarithm of the product is a sum of logarithms of the factorials, 
and second since we then can use Stirling‘s formula for the logarithm of the 
factorial of large numbers, 

ln(N!) = N ln(N) -N + ..., (10.4) 

neglecting the remaining terms, which are much smaller when N is large. 
Then 

Second, we use the method of Lagrange multipliers which we derived 
in Section 5.2 to apply the constraints. We subtract from 1nW a Lagrange 
multiplier a times 2, N ( n )  - N T  (which is zero by Eq. (10.2)) and a 
corresponding term with Lagrange multiplier p for the second constraint, Eq. 
(10.3). Then we can obtain the maximum of 1nW subject to the two 
constraints by maximizing 1nW - a[Z, N(n) - NT] - P[ 60 En nN(n) - Eexc.1 
without any constraint and adjusting the a and p to fit the constraints. 
Setting the derivative of this expression (using the second form in Eq. 
(10.5)) with respect to N(n)  equal to zero gives immediately 

-lnN(n) - 1+1 - a - pn6 0 = 0. (10.6) 

We take the lnN(n) to the right, and exponentiate both sides noting that 
elm(,) =N(n), to obtain 

e-a and p are to be determined by fitting the conditions, Eqs. (10.2) and 
(10.3). 
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With increasing total energy, corresponding to higher temperature, p 
must decrease. In fact temperature is defined for any equilibrium system by 
T = 1 / ( p k ~ ) ,  with k~ called the Boltzmann constant, and p the Lagrange 
multiplier used to fix the total energy. Then T can be shown to have a11 the 
properties we associate with temperature. [For example, the pressure of a 
contained gas can be used as a thermometer, and an analysis similar to that 
here used to show that temperature is proportional to Up.] We use the 
definition in the reverse sense to write p in terms of temperature as 

(10.8) 
1 

B = F , .  

The derivation of Eqs. (10.7) and (10.8) can be generalized to the proof 
of the statement that the probability of any system in equilibrium being in 
any accessible quantum state of energy Ej is proportional to the Boltzmann 
factor, e-&jkBT, with the same proportionality constant for every state. We 
do this by duplicating exactly this system many times and letting all 
duplicates be in equilibrium with each other. This is called an ensemble. 
Then each duplicate does not need to have the same energy, but the average 
energy - or the temperature - must be the same for the ensemble. With 
respect to one system, all of the others have become a thermal reservoir. 
We can even include a variety of other systems within this thermal reservoir. 
Then all of the energies E j  = &nho of the duplicates replace the energies 
n h o  of the individual oscillators from our previous derivation, and the 
probability of any particular Ej is proportional to the number of duplicates 
having that energy, N(Ej), obtained from Eq. (10.7) by replacing nho by Ej to 
obtain e-&jIkBT, with the same proportionality constant e-a . This is used in 
Problem 10.1, noting that the same derivation applies to the excitation of 
electrons from a defect, to obtain the relative probability of different charge 
states. It is accomplished by evaluating e-a as we do here for the set of 
harmonic oscillators. 

The condition Eq. (10.2) states that 

En N(n) = e-a En e-Pdm = NT. (10.9) 

The sum is of the form 1 + x + x2 + x3 + ... = 1/(1 - x) so e-a = N T ( ~  - e-mm) 
and the probability of an excitation number n for any particular oscillator is 

(10.10) 
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Of more interest is the average excitation per mode, 

At the third equal sign we used a term-by-term derivative to write the sum, 
and at the fourth we performed the sum as for Eq. (10.9). The final form is 
the important result. 

We may evaluate this for high temperatures, where <n> is large and 
classical physics applies. Then the average excitation <n> =l/(ephW - 1) = 
1/(1 + phw + ... - 1) = k g T / @ h ) .  This gives the classical result for the 
average excitation energy of a harmonic oscillator E ~ ~ ~ .  = <nAh = k ~ 2 ’  (as 
the classical average energy of an ideal gas atom is 3 / 2 k ~ 3 T )  . We have 
derived it for the quantized oscillator, but these relations reassure us that we 
have made the proper definition of temperature with Eq. (10.8). 

10.2 Phonon and Photon Statistics 

Eq. (10.1 1) may be immediately applied to the energy in vibrations of a 
crystalline lattice, which we shall consider more completely in Part V, or to 
sound waves in a gas, which we introduced in Section 1.8. Normal modes in 
a pipe of length L with closed ends could be obtained from vanishing 
boundary conditions so that the wavenumber q satisfies qL = nn . The 
amplitude u(z)  for each of these normal modes satisfies a classical equation 
of motion which may be rewritten from Eq. (1.30) as 

( 1 0.1 2) 

at any position z , or in particular u(z)  with z at the antinode. This is exactly 
the harmonic oscillator equation (spring constant K = q 2 B  /p ) and our 
treatment in Section 10.1 applies directly. It may somehow be even more 
remarkable that wave-particle duality applies to the system made up of this 
disordered fluid than when it applied to the center of mass of the weight in 
the harmonic oscillator but the statement of wave-particle duality specified 
that it was true of everything. The average energy in a mode of frequency o 
is then obtained from Eq. (10.11). 
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This is an important quantum-mechanical result when applied to a solid. 
For N atoms bonded together in a solid there are 3N normal modes. 
Einstein (1907), (1911) imagined 3N modes of the same frequency WE, and 
therefore a thermal energy given by 

(10.13) 

At high temperature, where p is small, the exponential in the denominator 
can be expanded and the leading term in &hem. is 3 N b T ,  the classical 
result as discussed at the end of Section 10.1. This corresponds to a specific 
heat, Cv = dEtherm./dT = 3 N b .  However, at low temperatures p becomes 
large and the thermal energy, and the specific heat, go to zero, as they do 
experimentally. Prior to this treatment it was impossible to understand this 
experimental result. The observed specific heat does not drop off 
exponentially, as predicted by Eq. (10.13), because all of the frequencies are 
not the same. Debye (1912) redid the problem representing the normal 
modes as sound waves, with frequency equal to the wavenumber times the 
speed of sound v , restricting wavenumber to be less than a q D  which limits 
the number of each of the three (longitudinal and two transverse) modes to 
N. Then the thermal energy is obtained, by replacing the sum over modes by 
an integral as in Eq. (2.9), as 

(10.14) 

This again leads to the classical result at high temperatures, small p. At low 
temperatures we may change variables in the integral to x = wvq , bringing 
a factor of Up4 outside an integral over x . At low temperatures the integral 
can be extended to infinity, becoming a constant, so the thermal energy is 
proportional to T4 and the specific heat proportional to @, in good accord 
with experiment. This appears to be the first time quantum theory was 
applied to such a macroscopic system as a sound wave. In Problem 10.1 we 
use this same Debye Approximation to calculate the vibrational zero-point 
energy. 

Eq. (10.1 1) also leads immediately to the familiar Planck Distribution of 
the energy of light. We first note the equation of motion for the amplitude of 
light, Eq. (1.20) based upon the vector potential, is of the same form as the 
equation of motion for sound given in Eq. (1.30), so again each light mode 
in a cavity is an independent harmonic oscillator of frequency w = cq, now 
with c the speed of light. We will carry this analysis out in detail in Chapter 
18. The average energy in each mode, h ( < n  > + 1/2) is again obtained from 
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Eq. (10.11). We write the energy in a frequency range 60 = 6q/c , adding 
the two directions of polarization and dropping the zero-point energy, as 

(10.15) 

which is the Planck distribution of light in thermal equilibrium obtainable 
only with the use of quantum theory. It is shown in Fig. 10.1. 

w 

Fig. 10.1. The Planck distribution of the energy density of light in thermal 
equilibrium as a function of frequency, from Eq. (10.15). 

10.3 Bosons 

The photons which we treated in Section 10.2 are particles with energy 
6co and momentum 6q , and one unit of spin as we saw in Section 9.4 when 
we saw that they added or subtracted one unit of angular momentum to an 
atom when they were absorbed or emitted. Phonons, the quantized 
vibrational energies of the sound waves in the solid, are also particles. It 
would not mean anything to distinguish two photons since they simply 
represent the second state of excitation of the oscillator if they are the same 
mode, or excitations of two different oscillators if they are different modes. 
We would therefore say that "interchanging" two photons does not change 
the state of the system and we shall take this to mean that the wavefunction 
representing the state is the same. The field theory of other particles with 
integral spin similarly leads to particles for which the wavefunction of the 
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system "goes into itself' under interchange, and all are called bosons. Their 
statistics are called Bose-Einstein statistics. 

When bosons have mass, the statistical calculation is the same except 
that there is an additional constraint: the total number of bosons does not 
change when they collide. When we change the temperature of a photon 
gas, the number of photons, by Eq. (10.10) automatically changes, but 
energy is not available to create or destroy massive bosons when the 
temperature changes. Thus for bosons with mass, we cannot treat each q 
independently because the number conservation applies to the collection of 
states, and we must therefore redo the calculation. 

We do this by dividing the spectrum into groups of NT states allowed by 
the boundary conditions (rather than modes) in a range of energy 8~ near E 

(that E replaces h'o for modes of frequency 0). The number of ways a 
distribution of occupations IN&)} can be made is again given by Eq. 
(lO.l), with a different set of NE for each range. We should multiply these 
Ws together, which adds their logarithms as in Eq. (10.5). We add the same 
constraint for the number of states CnNE(n) = NT for each range with 
Lagrange multipliers a&, but now a global (summed over E as well as n)  
Xn,& N&(n)n& = Etot. with a Lagrange multiplier c3 and in addition a global 
Cn,& NE(n)n = Ntot. with a new Lagrange multiplier - pp. fixing the total 
number of particles. [The use of the product -Pp turns out convenient in the 
end.] Then setting the derivative with respect to NE(n) equal to zero gives 

-ln&(n) - a - @n + Bpn = 0. ( 1 0.1 6) 

in place of Eq. (10.6) and solving this gives 

~ ~ ( n )  = eaEe-B(&- C L ) ~  . (10.17) 

We can again fix aE so that C,N&(n>n = NT and again evaluate the average 
n for a single state, at each E , to obtain 

(10.18) 

in place of Eq. (10.11). At high energies, where < n ( ~ ) >  is small, this 
approaches the classical Boltzmann distribution proportional to e-p&. Again 

= l/kBT and p is called the chemical potential for these bosons. It is 
adjusted to obtain the correct number Ntot. = & N T ~ ( E ) >  of particles. 
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At high temperatures, p is large and negative. As the temperature drops, 
p increases to keep the number N of particles fixed. If we find p > 0 (the 
energy of the lowest states is zero), <n> in Eq. (10.18) becomes negative. 
This is not meaningful and in fact a phase transition must occur. To obtain 
the condition for this we evaluate the number of particles using Eq. (10.18) 
with p = 0 and an energy E =l?k2(2M). The condition for finding p > 0 
becomes, using a sum of Eq. (10.18) over states rather than ranges E, 

The integral can be evaluated numerically (Kittel and Kroemer (1980) p. 
204) giving 1.306~~112. Then we may solve for ~ B T  = l / p  to obtain the 
condition in Eq. (10.19) as b T  < (27@/M)(N/(2.61252))2/3 given by Kittel 
and Kroemer (1980), and called the Einstein Condensation Temperature. 
We may see that at this point <n> for the lowest state has increased to the 
point that a sizable fraction of the bosons are in the lowest-energy one- 
particle state, which is called Bose-Einstein condensation. Using the M and 
N/Q for liquid helium (4He), this gives 3°K for 4He, approximately equal to 
the temperature at which helium becomes superfluid. This is generally 
agreed to be the nature of superfluid helium, though treating the helium 
atoms as noninteracting is a very crude approximation. There are a number 
of peculiar properties of helium in this state, discussed by Kittel and 
Kroemer, op. cit., such as a vanishing viscosity. In recent years alkali-metal 
vapors were found to undergo Bose-Einstein condensation (Ensher, Jin, 
Matthews,Wieman, and Cornell (1996)). In these atoms the valence-electron 
spin combines with the nuclear spin to form an atom of vanishing or integral 
spin, which can then condense into the Bose-Einstein ground state. 

10.4 Symmetry Under Interchange 

We have seen that there is no meaning to interchanging two photons 
since they are simply degrees of excitation of an oscillator, and that this is 
also true of other bosons. Thus if we are to regard them as particles, and 
write a wavefunction for two photons (we use a capital Y for a state of more 
than one particle), Y(r1, r2), it must be same state as Y(r2, rl) .  This would 
seem to require that Y(r2, r l )  = Y(r1, r2) for all identical particles but 
when we discuss half-integral spins shortly we shall see that when the two 
particles have the same spin the wavefunctions with coordinates 
interchanged are of opposite sign. It is said of bosons, with Y(r2, r l )  = 
Y(r1, r2), that the wavefunction is symmetric under interchange of particles. 
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For noninteracting bosons, for which we saw in Section 2.2 that we can find 
product solutions, the products must take the form 

(10.20) 

One consequence of this symmetry of the wavefunction is the Bose-Einstein 
statistics which we have developed above, and the Bose-Einstein 
condensation which can occur at low temperatures. 

There is another quite remarkable consequence for the rotational states 
of molecules for which the nuclei are identical bosons. If we wished to 
discuss the rotational states of a molecule such as 0 2 ,  with nuclear positions 
r l  and 1-2, we would ordinarily change variables to a center-of-mass 
coordinate R , and a relative coordinate r = r 2  - r1,  and further write r in 
spherical coordinates { r ,  8, @}.  With no external torques, the eigenstates 
will be of the form tyc(R)Wr(r)Yp(8,@) as for other spherically symmetric 
systems as discussed in Section 2.4. In particular, there will be rotational 
states with energy proportional to the square, 1(1+ 1)@, of the total angular 
momentum. There is however a difficulty with this if both atoms in the 
molecule are oxygen-16. We saw in Section 4.4 that this nucleus with eight 
protons and eight neutrons completes a shell so, as for electrons in an inert 
gas, there is no net angular momentum and a total spin of zero. Thus these 
nuclei are bosons. With zero-spin they must be in the same spin state, and 
interchanging them does not change the state, so the wavefunction (the state 
of the system) must be the same. If we imagine the molecule in a rotational 
state of angular-momentum quantum number I , written Wc(R)Wz(r)Yp(8,@), 
for odd 1 the spherical harmonic changes sign when r is replaced by -r, 
violating the condition Y(r2,  r l )  = Y(r1,  r2). We conclude that only even 1 
are allowed states and that is found to be true in experimental infra-red 
spectra. No such odd-integer rotational states are observed for 0 1 6 0 1 6 ,  
though they are observed for 016017 since the extra neutron in 0 1 7  makes 
the nucleus distinguishable from the 0 1 6  (Hilborn and Yuca( 1996)). 

It seems truly remarkable that these two nuclei, which have negligible 
possibility of direct interaction with each other, can "know" the symmetry of 
the other nucleus. As with the Aharanov-Bohm Paradox of Section 1.4, this 
is not resolved by imagining some tiny interaction, but is to be recognized as 
a consequence of wave-particle duality, our starting assumption. 

We would seem to have shown that only integral values of angular 
momentum were allowed under any circumstances when we formulated the 
rotational states of an 0 1 6 0 1 6  or 0 1 6 0 1 7  molecule. We simply apply the 
same analysis to any other rotating object. This may be clearer if discussed 
relative to the angular-momentum axis where with circular symmetry the 
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wavefunction will have the form ei@. If we say that the object is in the 
same state if rotated 3600, we conclude that the wavefunction must be the 
same and rn must be an integer. 

Let us consider, however, an object such as the ball rolling without 
sliding which we treated in Problem 3.1. In particular, let it roll around the 
inside of a pipe of diameter 312 that of the ball, as illustrated in Fig. 10.2. 
We may see that when it completes one path around the pipe, the ball has 
only rotated 1800. Two circuits are required to return to the same state. We 
could write the total kinetic energy, including both the spin of the ball and 
the revolution of the center of gravity around the center of the pipe, in terms 
of 6 and define the canonical momentum conjugate to Q (defined in Section 
3.1) from the derivative with respect to 6.  Again the operator for that 
canonical momentum is (z/i)a/a@ but with a change in @ of 4n required 
return to the same state, the phase factor can be e@'2 and the canonical 
momentum is then h/2 . This same rolling ball can also have any other half- 
integral multiples (but not full-integral multiples) of fi as states of higher 
energy. The actual angular momentum of each state, the sum of the angular 
momentum of the spinning ball and of the center of gravity revolving around 
the center of the pipe (in the opposite direction), is equal to this half-integral 
canonical momentum conjugate to 0, just as it is integral multiples in simple 
rotating bodies independent of the moment of inertia of the body. We have 
found, contrary to our first guess, that a simple mechanical system can have 
half-integral angular momentum. 

We note further, that if the ratio of the two radii were an irrational 
number, there would have been no quantization of the angular momentum at 
all. The point is that the simple rule of angular momentum quantized in 
units of h need not apply in all systems, but we retain the concept that the 
wavefunction goes into itself when the system is rotated into the same 
physical state. 

We might never have thought of the possibility of half-integral angular 
momentum had it not arisen experimentally. However, we accept whatever 
particles nature provides, and it provides an electron with mass m , charge -e 
and angular momentum 6/2 , appropriately called spin since it is intrinsic to 
the particle. We accommodate to the spin as we did to E = p212m when we 

Fig. 102. A ball, witk"F" written onits side, roles without slipping inside 
a pipe of diameter 3/2 as large. It has only rotated 1800 by the time it has 
rolled completely around the inside of the pipe, and like a fermion must 
roll around twice to return to its initial state. Its canonical angular 
momentum can be half-integral multiples of h. 



152 Chapter 10. Statistical Mechanics 

invented the Schroedinger Equation in Section 1.2, even though we continue 
to think of the electron as a point particle. If nature gives us a particle of 
spin h/3 we will know how to proceed, and one could even be constructed 
using a scheme such as that in Fig. 10.2. 

We can make a general connection between spin of particles and the 
symmetry of their wavefunctions under interchange, just as we did for the 
0162 molecule above. We replace the oxygen molecule by a hydrogen 
molecule, for which the two nuclei are protons, particles of spin 1/2 just as 
electrons are. We again write an energy eigenstate Y ( r l , r 2 )  in terms of the 
coordinates rl and r 2  of the two proton nuclei. Now, however, the two 
protons have spin and the wavefunction contains another factor with the spin 
coordinate for the first proton wl(@l)  = e@i/2 if the first proton has its spin 
parallel to our z-axis. If the other proton has parallel spin (called 
orthohydrogen), the state contains also a factor for the second electron 
w2(@2) = ei@2/2. [We have neglected any interaction between the spin and 
the other coordinates for this discussion, allowing, as in Section 2.2, the 
wavefunction to be factored as Y ( r l , r 2 ) ~ 1 ( @ 1 ) ~ 2 ( @ 2 ) . ]  Now we imagine 
rotating this entire wavefunction around the z-axis such that the two protons 
interchange positions, replacing r by -r ,  or equivalently interchanging rl and 
1-2. In addition, the rotation changes w i ( @ l )  and w2(@2) each by a factor 
e-in/2 so that the rotated state becomes - Y ( r 2 , r l ) ~ 1 ( @ 1 ) ~ 2 ( @ 2 ) .  The two 
protons are identical so that, as for the oxygen, this is the same state as 
before rotation, Y ( r l , r 2 ) ~ 1 ( @ 1 ) ~ 2 ( @ 2 ) ,  and we conclude that Y ( r 2 , r l )  = 

This antisymmetry applies in general for half-integral-spin particles of 
parallel spin, including protons, neutrons, and electrons. They are 
antisymmetric with respect to interchange as illustrated in Fig. 10.3. If this 
is two electrons of parallel spin, and we neglect any interaction between 

- Y ( r l J 2 ) .  

Fig. 10.3. To the left is a schematic representation of a state of half 
integral spin, &@I2, which changes sign with a single full rotation and 
must be rotated twice to return to itself. The state of two such particles, 
e1@1/2e1@2/2, will change sign if the particles are interchanged through a 
rotation of n radians, as illustrated to the right. 
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them so that they can be written as a product wavefunction, that product can 
be written, in analogy with Eq. (10.20), as 

(10.21) 

For noninteracting electrons of antiparallel spin the wavefunction is 
again given by Eq. (10.20). We say that if the state is symmetric with 
respect to spins (parallel), the spatial wavefunction is antisymmetric, but if 
the state is antisymmetric with respect to spins (antiparallel), the spatial 
wavefunction is symmetric. 

If we again look for rotation states of the H2 molecule, by writing 
Y(ri7r2)= w c(R)yi(r)Yim(O,$), we see that rotational states for 
orthohydrogen (parallel nuclear spins) are allowed only for I an odd integer, 
since only then does the wavefunction change sign when r is replaced by -r. 
If we redo the analysis with the two proton nuclei of opposite spin 
(parahydrogen), and e-i@2/2, we find that Y(r2,rl) = Y(rl,r2), and 
rotational states are allowed only for even angular-momentum quantum 
number 1, as it was for 0 1 6 2 .  The allowed states for the tumbling of 
hydrogen molecules are just as remarkable as those for oxygen. In the case 
of hydrogen only even or odd values of rotational quantum numbers are 
allowed depending upon whether the spin of the two nuclei is antiparallel or 
parallel. Parahydrogen can have lower (zero) rotational kinetic energy than 
orthohydrogen, providing an effective interaction favoring antiparallel 
nuclear spins in the ground state. A recent publication, with references, by 
Bertino, et al., (1998) described additional effects on the bouncing of these 
molecules from crystal surfaces. 

10.5 Fennions 

Such particles of half-integral spin are calledfermions . The effect of the 
antisymmetry of states of the same spin is even more profound than the 
effect of symmetry on bosons. It tells us that two electrons of the same spin 
cannot occupy the same orbital, because if we take Wi(r) = ~ 2 ( r )  in Eq. 
(10.21), then Y(r1, r2) = 0 , meaning as always that there is no such state. 
This is the Pauli Principle, which we have used in all of our discussions of 
many electrons, but now the origin is clearer. It applies to any pair of 
identical particles of half-integral spin. It is again a direct consequence of 
the wave-particle duality we assumed at the outset. 

The separation out of the spin state, as parallel or antiparallel, is only 
possible if there is no term in the Hamiltonian coupling spin and orbital 
motion so that we can make the factorization. as in Section 2.2. There is 
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such a coupling, which we shall discuss in Section 22.5, and a proper 
treatment of the states requires the relativistic theory, Dirac (1926) theory, 
which is seldom used in molecular and solid-state problems. It is usually 
adequate to ignore spin-orbit coupling as we have done here and specify 
each electron state as spin-up or spin-down. The Pauli Principle allows one 
of each to occupy each orbital. For half-integral spins of s = 1/2, 312, 512, ..., 
the total spin angular momentum squared, as for integral spin, is L2 = s(s + 
1)@, and the z-component is s& with sz = s, s-1, s-2 ...- s. We will only be 
concerned here with spins of 1/2 and thus sz = f1/2. 

The generalization of the antisymmetric state of two electrons in Eq. 
(10.21) to many particles is called the Slater Determinant, and is written 

(10.22) 

Recall that determinants have the property that they change sign when two 
columns are interchanged, here corresponding to interchanging two 
electrons. Each vj(ri) is imagined to contain a spin-state factor, providing 
the overall antisymmetry. 

The antisymmetry of fermions profoundly affects the statistics, allowing 
only two electrons in each orbital state, and we must redo the analysis we 
did for bosons. We again divide the states into sets of NT states (counting 
different spins as different states) in a small range of energies & near E, and 
say NE of these are occupied. The number of ways to do this is 

NT! 
(NT - N&)!N&! ' W(E) = (10.23) 

We do same for every energy range, take the logarithm of the product of 

all W(E) ,  use Stirling's formula, to obtain &ln(NT!) -& (NT- NE)  ln(NT - N E )  
- NEln(NE) + (NT - N E )  +NE. The condition fixing the total energy is ZEN& = 
Etot., applied with a Lagrange multiplier (3 . The condition fixing the total 
number of particles is ZENE = Ntot., applied with a Lagrange multiplier, 
again -bp. Setting the derivative with respect to NE equal to zero yields 

ln(NT - NE) - In(&) + 1 - 1 - PE + PI = 0. (10.24) 

We take the logarithms to the right and exponentiate to obtain NE/(NT - NE)  
= e-P(& - P) and finally, the fraction of states occupied is 
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(10.25) 
NE 1 

f O ( E )  =- = 
NT eP(E - CL) + 1 ’ 

which is the Fermi (or Fermi-Dirac) distribution function with again p = 
UkgT and p the chemical potential, or Fermi energy. It is plotted in Fig. 
10.4. Well below the Fermi energy it goes to one; each state is occupied for 
both spins. It goes to zero well above the F e d  energy. For any system the 
Fermi energy is shifted to correspond to the correct number of electrons. 
When we treated free-electron metals in Section 2.2 we had one, or a few, 
free electrons per atom, which gave a Fermi energy p measured relative to 
the band minimum EO as EF = p - EO -- 5 eV >> kBT. The Fermi function 
could be taken as a sharp cut-off,fi = 1 for E< p, f o  = 0 for E > p. At finite 
temperature electrons are excited to energies of the order of kgT from this 
cut-off and the step is smoothed out as in Fig. 10.4. However, the total 
excitation energy for the electrons is clearly very much less than the classical 
3 / 2 h  T so the predicted electronic specific heat (derived in most solid-state 
texts) is greatly suppressed in comparison to classical theory, as is the 
experimental value, another of the early achievements of quantum theory. 

For semiconductors there is a gap E ,  in energy between the states 
occupied and the states empty in the ground state, as illustrated in Fig. 10.5, 
and as we shall discuss in more detail in Chapter 14. The Fermi energy 
ordinarily lies in that gap, allowing a small occupation of the upper band 
from the tail of the distribution to the right in Fig. 10.4, and a small number 
of empty states (holes) in the valence band below due to the deviation of the 
distribution from one to the left in Fig. 10.4. Again the F e d  energy adjusts 
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Fig. 10.4. The Fermi distribution function from Eq. (10.25), as a function 
of the energy measured from the Fermi energy, in units of ~ B T .  
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Fig. 10.5. Semiconductors have a density of states n(&) for the conduction 
band, shown as the heavy curve above, and a density of states for the 
valence band below it and separated by a gap in energy Eg.  The Fermi 
distribution is shown as the light line, with a Fermi energy in the gap. 

to correspond to the appropriate number of electrons present, equal numbers 
of electrons and holes for the undoped system. If extra electrons are added 
by doping (e. g., substituting a few phosphorous atoms, each with an extra 
electron, for silicon atoms in silicon) the Fermi energy moves to higher 
energy to account for those electrons. 

In most circumstances in semiconductors the Fermi energy lies in the 
energy gap, well removed from either band edge. Then P(E - p ) = 
(e - p ) / k T  is large for all E in the conduction band and the one in the 
denominator in Eq. (10.25) can be neglected. Then we may measure 
energies from the conduction-band minimum ec and Eq. (10.25) becomes 

The final factor is a simple classical Boltzmann distribution, and the leading 
factor is a constant which sets the number of electrons. fo is small because 
of this leading factor and so there is almost no effect from the Pauli Principle 
which required no more than single occupancy of a state. The electron gas is 
then considered to be classical. With very heavy doping, when fo becomes a 
sizable fraction, the electron gas is called degenerate and we need to return 
to Eq. (10.25) to describe its distribution. 

In a similar way P(& - p ) = (E - p ) / h T  becomes large and negative for 
all states in the valence band. We may expand the denominator taking 
e p(& - P) as small to obtainfo = 1 - e P(& - P) with E - p large compared to 
k B T  and negative. This may be stated as a very small concentration of 
missing electrons, or of holes, in the valence band, again with a classical 
distribution as a function of depth into the valence band. 
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In either case, the carriers lie very near the band edge, where the bands 
may be treated as carriers having an effective mass m*, as we shall see in 
Chapter 14. Thus the density of states for the conduction bands may be 
written in terms of the energy measured from E~ using Eq. (2.1 1) as 

(10.27) 

Then we can calculate the total number of electrons per unit volume in the 
conduction band as 

(10.28) 

where we have changed variables in the integration to x = d G  . The 
factor preceding the exponential in the last form can be thought of as an 
effective conduction-band density of states, which when multiplied by the 
Boltzmann factor for the band edge, gives the density of electrons. The 
corresponding expression for holes in the valence band contains the hole 
mass and the exponential e -(P - EV ) / ~ B T  in place of that in Eq. (10.28). We 
see in Problem 10.2 how this equation is used to determine the Fermi energy 
and carrier densities in GaAs, as well as the average kinetic energy of the 
carriers. 
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Chapter 1 1. Transport Theory 

Transport theory, like statistical mechanics, is not really a part of 
quantum mechanics - in fact, the Boltzmann Equation we shall derive in 
Section 11.2 will be seen to rest on a classical description. However, 
transport also is modified by quantum effects and transport equations are 
needed to make use of many of the quantum processes we have discussed. 
While statistical mechanics described systems in thermal equilibrium, 
transport theory specifically deals with systems out of equilibrium. We 
begin with the simplest generalization, obtaining an equation for the time- 
dependence of a distribution function. For that we use the sequential 
tunneling problem we discussed in Section 9.2. We then move on to full 
transport theory with distribution functions which depend upon momentum, 
position, and time. By far the most important transport properties concern 
electrons and we shall formulate each step in terms of electrons. 

1 1.1 Time-Dependent Distributions 

When we discussed sequential tunneling in Section 9.2 we found a rate 
l/z at which an electron occupying a resonant state 12> (local state in the 
absence of coupling with the continua) would make a transition to a 
continuum of states [ I > .  If the probability of that resonant state being 
occupied isf2(&2), and the probability of the states [ I >  being occupied is 
f i ( & l ) ,  then the rate electrons make transitions from 12> to [ I >  is 
f2(E2)(1 -fi(&l))/z for &I  = ~ 2 .  We then used detailed balance, the fact that in 
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equilibrium, where the distribution functions are a single function of energy 
fo(&), all processes go in both directions at the same rate. This allowed us to 
show that capture of carriers into state 12> from the continuum Il> is given 
byfi(&l)(l - f2(~2))/2 with again ~1 = ~ 2 ,  whether or not the system is in 
equilibrium. We then applied the corresponding relation for a second 
continuum 13> coupled to 12> and found that i f f i ( ~ 2 )  was held at one and 
f3(~2) was held at zero, f2(&2) would come to the steady-state value at which 
electrons were arriving and leaving at the same rate. We generalize this 
steady-state calculation to time-dependent situations. 

We are considering transitions which conserve energy so we can drop 
the ~2 for each of the three distributions. Then the net rate electrons are 
added to 12> from the continuum /1> is (fi( 1 - f2) - f2( 1 - fi ))/T = (fi - Ji)/z, 
with any effect of occupation of the final states canceling out, as we shall 
note also in the next section. We may allow the rate l / ~ '  to be different for 
transfer between the state 12> and the continuum 13> so the net transfer from 
13> to 12> is similarly (f3 -f2)/~' .  Thus the net rate the occupation of 12> is 
changing with time is 

(11.1) 

which is a simple equation for the time-dependence off2. This equation 
allows us to predict the change inf2 with time, in terms of the distributions 
fi, f2, a n d b  , just as the Schroedinger Equation allowed us to find how the 
wavefunction changed with time. 

The equilibrium statefi = f2 = f 3  = fo(~2)  is a trivial solution of Eq. 
(11.1). A more interesting case is the steady-state solution, which we 
discussed in Section 9.2. If we apply the condition that df2/dt = 0, we obtain 

V l  + 7f3  
f 2 =  2 + z '  . (11.2) 

In the simple case we assumed for sequential tunneling (fi = l,f3 = 0, z' = z) 
this gavef2 = 1/2 and a transfer rate of 1/(22). We move directly to the 
development of a time-dependence equation for an electron gas with anf  
which depends upon momentum, position and time. 

11.2 The Boltzmann Equation 

For electrons each state, including spin, is occupied by one electron, or 
no electrons and the distribution function we introduced is fo(&), the 
probability of occupation of a state of energy F in equilibrium. For a system 
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in equilibrium it does not depend upon where in the system we are or 
whether the electron is moving to the right or left. Often a system is near 
equilibrium, but the chemical potential (Fermi energy) or the temperature are 
different in different parts of the system. Then also there will be flow of 
carriers or energy from place to place and the distribution depends upon 
position and upon direction of motion and may depend upon time. In such a 
case we write a distribution function f(p,r,t) , depending upon both 
momentum and position. This becomes intrinsically classical because in a 
quantum system we cannot specify both momentum and position, though we 
did both approximately when we constructed wave packets in Section 1.2. It 
nevertheless retains some quantum features since we restrict f to be always 
between zero and one, according to the Pauli Principle. Such a discussion is 
sometimes called semiclassical. The physics of the analysis is quite clear, 
whatever we choose to call it. 

In order to proceed we need an equation from which we can determine 
the distribution function, the analog of the Schroedinger Equation for 
determining the wavefunction of a particle. We will then be able to predict 
observables, such as the current, from the distribution function as we 
calculated observables, such as the energy, from the wavefunction. The 
equation we use gives us the time dependence of the distribution function, 
just as the Schroedinger Equation, Eq. (1.16), gave us the time dependence 
of the wavefunction. 

We imagine electrons moving in the presence of various fields so that 
their classical trajectories p(t), r(t) can be plotted as illustrated in Fig. 11.1. 
Some of these trajectories could be occupied by electrons and others not. 

Fig. 1 1.1. A schematic representation of trajectories of electrons moving 
in the presence of fields. Different curves represent different starting 
points at the time t = 0, and t increases along the lines in the direction of 
the arrows. 
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However, in the absence of any scattering, if we follow a trajectory, that 
occupation f(p(t),r(t),t) will not change with time. Alternatively, we can say 
that the only change in the distribution function with time, as we follow 
along the trajectory, will be that due to scattering, af(p(t),r(t),t)latlsot.. 
Mathematically, we write this 

(11.3) 

(The different manner of writing the arguments off in different expressions 
is not significant.) The total derivative, dldt means the total derivative 
including dependences upon all three of the variables, p, r,  and t, and the 
partial derivative alat includes only the dependence upon the one variable t , 
not p nor r .  We may write out the three terms on the left explicitly, 

I af(p r t) dp  af(p r t) d r  af(p r t) af(p r t) - -+  ap dt + ar dt at  - at scat. 
(11.4) 

The derivative off with respect to p in the first term means that if we 
went to r at time t the derivative is the variation off with p at that moment 
at that position. The dpldt is the rate the momentum changes with time at 
that point, equal to the applied force. This is the Boltzmann Equation , and 
is exact in the semiclassical context wheref(p r t) is meaningful. However, 
of more use is an approximate form when the distribution is quite close to 
the equilibrium distributionfO(&). Then we write the distribution asf(p r t) = 
~ o ( E )  +f i (p  r t). [Sometimes a local equilibrium distribution is used, as 
when the temperature varies with position, but we use the simpler form 
here.] fi is of first-order in any applied fields which exert forces F(r, t) on 
the electrons, and cause them to be out of equilibrium. We substitute this 
form for f in Eq. (1 1.4) and will keep only such first-order terms. There are 
no zero-order terms as nothing changes with time without applied forces. 

The dpldt is equal to F(r, t) so we may take only the zero-order term in 
aflap in that term, which is (dfo(&)ld&).d&ldp = (dfo(&)/d&) v, using Eq. (1.7). 
In the second term, only f i  depends upon r and drldt is v . We also 
simplify the scattering term on the right. Certainly the rate electrons leave 
the trajectory is proportional to f(p r t), and we write a proportionality 
constant llz though the rate really will depend upon the particle velocity 
also, as we have seen in other parts of this text. This is called the relaxation- 
time approximation. We must also include the rate electrons are scattered 
onto the trajectory, but if we write the rate they are scattered off asflp r t)lz 
we note that in equilibrium, withflp r t) = f o ( & ) ,  the scattering rate onto the 
trajectory equals the rate they are scattered off. We take that same rate to 
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apply in this case so that the net rate of change of flp r t )  with time due to 
scattering becomes -j(p r t ) /z  + f o ( & ) / ~  = - f i (p  r t ) /z .  Making these 
approximations in Eq. (1  1.4) leads us to the linearized Boltzmann Equation 
in the relaxation-time approximation, 

(11.5) 

It is in this equation we use the scattering times from impurities and 
phonons which we have calculated in other parts of the text. We illustrate its 
application in detail only for the conductivity in the next section. 

11.3 Conductivity, etc. 

The simplest application of the Boltzmann Equation is to the dc- 
conductivity, and that will serve to illustrate the approach. For dc- 
conductivity the distribution function will not change with position, nor with 
time, so the second two terms on the left in Eq. (1 1.5) vanish. We have only 
the first term on the left, with F = -eE and we may solve for the first-order 
distribution, 

(11.6) 

We have solved for the distribution function and can evaluate the current 
density in terms of it. We do this by summing the current from each state 
-ev over the occupied states. The equilibrium distribution leads to no 
current, so onlyfi enters. We take a volume for the system and the 
current density is the j = C,fi(p) (-ev)/Q. We now return to a quantum 
description of the states with p =$k, and convert the sum over p to an 
integral over k using Eq. (2.9). We multiply by two for spin and have 

In the last step we recognized that the current was parallel to E, wrote the 
angle between E and k or v as 8 and took the angular average of the 
integrand, to obtain the factor 1/3. The evaluation is simplest for a metal, 
wherefo drops from one to zero just at the Fermi energy so -dfo(E)/d& is 
approximately a delta-function 6(& - E F )  . We take one factor of v = 
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(1lh')drldk to write vdk= (1/ h)d& and the integral becomes -47~&2v~/6 . 
Now VF = 6 b / m  and (2/(27~)3)47~&3/3) is equal to the electron density n, 
so we have j = oE with the conductivity given by 

ne2z 
m o=-. (11.8) 

Actually, one can also perform the integration by converting the final 
integral over k in Eq. (1 1.7) to an integral over energy, perform a partial 
integration on energy and obtain an integral which gives exactly the electron 
density whether or not -dfilde: is treated as a delta function, so the same 
result, Eq. (1  l.S), applies also for a Boltzmann distribution of electrons. 
One virtue of doing it as we did is in showing that though we sum over all 
wavenumbers in a metal, only the values at the F e d  surface enter. 

The treatment of other properties is quite straight-forward. (See, for 
example, Harrison (1970).) For the Hall effect, the magnetic force 
-(e/c)vxH is added. For thermal conductivityfo in the first term contains a 
temperature varying with position, and this yields also the other 
thermoelectric properties. One can also calculate the diffusion constant D, 
describing an electron flux j l ( -e )  = -DVn , with n again the electron density. 

There are also simpler, less accurate, approximations for treating the 
transport properties. One assumes an electron density, n(r,t), varying with 
position and time, and then approximates the flow locally as j(r,t) = oE(r,t) 
+ eDVn(r,t). Combining this with the continuity equation, -e an(r,t)ldt = 
V. j , and Poisson's Equation, one can frequently obtain an adequate 
description of transport properties. Such an approach misses nonlocal 
effects, such as the decrease in the current in the neighborhood of a surface. 
Such nonlocal effects can be calculated using the Boltzmann Equation. 
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Chapter 12. Noise 

A familiar case of "noise" is the static on a radio. Noise exists in 
classical systems, but can be strongly affected by quantum effects and it is 
appropriate to include some discussion here. There are a wide variety of 
origins of noise in general, as there are for static on a radio. We enumerate 
the principal ones. A recent reference on noise is Kogan (1996). 

12.1 Classical Noise 

Thermal noise, also called Johnson-Nyquist noise, is understandable in 
terms of the statistical mechanics which we discussed in Sections 10.1 and 
10.2. At any finite temperature the modes of light are excited in a Planck 
distribution, and the electromagnetic modes of any electrical circuit or 
transmission line are similarly excited. If there is a resistor in the circuit, it 
will absorb energy from these thermal fluctuations, and in equilibrium it will 
radiate at the same rate into the same modes. In order to understand the 
distribution of power radiated by a resistor, we construct electrical modes in 
a line, a wire with resistance R' , with both its ends connected to a resistor R. 
There can be current fluctuations of various wavelengths, and therefore 
various frequencies. For a length L we apply periodic boundary conditions 
so that modes will have wavenumbers k such that kL = 2nn and the 
frequency ci) = ck , with c the speed of light, which may depend upon the 
geometry of the line but is calculated by applying Maxwell's Equations to 
the line. The average energy in each mode is [l/(eho/k~T - 1) + 1/2]hci) as we 
saw in Section 10.3 and it strikes the end of the line at a rate c/L times that. 
If there is no reflection at the resistor it will absorb at that rate, and therefore 
emit at that rate. Thus in a frequency range Af = A d 2 n  = cAk/2n there will 
be power absorbed and emitted at each end of the resistor of 
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In the classical, or high-temperature, limit, A P  -+ kBT Af, and this is 
called thermal noise. It is white noise, meaning that the power emitted by 
the resistor in a frequency range Af is independent of the frequency f ,  which 
in the case of light defines white light. It is sometimes restated by relating 
the power emitted in a frequency range to the square of the voltage <V’b  
and the resistance R . The resulting relation between voltage fluctuations 
and resistance is called the Nyquist Theorem. Einstein had noted such a 
relation between the fluctuations of a dust particle, Braunian motion, in a gas 
and the viscosity of the gas, and there are similar rigorous relations between 
every other kind of fluctuation, and the corresponding dissipation of energy. 
In the quantum limit, or as the temperature goes to zero, the power in Eq. 
(12.1) approaches (hw/2)Af. This is then called quantum noise, or zero-point 
noise, rather than thermal noise. The Fluctuation-Dissipation Theorem is 
the quantum generalization of the Nyquist theorem. From Eq. (12.1) we see 
that thermal noise changes continuously to quantum noise as we lower the 
temperature. 

12.2 Quantum Noise and van-der-Wads Interaction 

One might ask if these zero-point fluctuations of a harmonic-oscillator 
dipole in the ground state really generate observable fields, and to make a 
meaningful check we need to imagine an experiment to detect them. One 
way of doing that would be to bring another harmonic-oscillator dipole near, 
as illustrated in Fig. 12.1. If the first is generating fluctuating electric fields, 
the second will be polarized by those fields and the interaction between the 
induced dipole and the dipole which caused it would produce an attraction 
between the two. Measuring that force would be detecting the fluctuating 
fields. This force is observable, and is called a van-der- Waals interaction, 

Source Detector 

Fig. 12.1. Two coupled dipole oscillators, in the ground state, have 
correlated zero-point fluctuations, giving a van-der-Waals attraction 
between them. 
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named after an attractive interaction added to ideal-gas theory by van der 
Waals many years ago. It is quite easy to derive the force by calculating the 
ground state of the two interacting dipole oscillators, as done earlier by 
Kittel (1976), p. 78. 

The calculation is simplest with two identical collinear oscillators as in 
Fig. 12.1, but the result is easily generalized. We let the oscillators (spring 
constant K, mass M )  have displacement coordinates xi and x2, and therefore 
dipoles pi = ex1 and p2 =ex2. The presence of a dipole p i  produces a field 
2pllr3 at the second, a distance r away, so that if the second has a dipole p2 
there is a lowering in energy of -2plp2/r3 = -2e2x1x2/r3= -K'XlX2 with K'  = 
2e2/r3. Thus the potential-energy term in the Hamiltonian is 1/2~x12 + 
1/2~x22 - K'xlx2. The kinetic-energy term is 1/2Mx'12 + 1/2Mx'22 . We may 
rewrite these terms in the energy in terms of normal coordinates u i  = (xi + 
x2)/42 and u2 = (xi - x2)/42 to obtain the energy 1/2Mu'12 + 1/2Mu'22 +1/2(~  
+ rc')ul2 + l/2(K - K ' ) u ~ ~  for the two coupled oscillators. This represents two 
oscillators with frequencies given by 0.112 = (K + K')/M and 022 = (K - K')/M. 
The quantum-mechanical ground state of the system will have each in the 
ground state with a total energ 1/2h(o1 + 02). With K' equal to zero the 
frequencies are the same o = + K/M and the energy is that for the uncoupled 
oscillators. If we expand in K' the two linear terms cancel out but in second 
order both energies are lowered by - (1 /16) (~ ' /~)2  ho. Thus, due to the 
interaction the energy is reduced by -( 1 / 8 ) ( ~ ' / ~ ) 2 h ~ .  

This result may be written in terms of the polarizability of the two 
oscillators, defined in terms of the equilibrium dipole due to an applied field 
E by p = a E  . It is easily obtained as a = e2/K by equating the spring force 
to the negative of the electric-field force. Substituting also for K' we have 
the interaction energy 

(12.2) 

It is quite remarkable that we can so simply calculate the effect of the 
correlated motion of two coupled quantum systems in this way. In Problem 
12.1 we generalize this to two three-dimensional dipole oscillators by adding 
the contribution of the other two vibrational directions to the interaction. 

In Problem 12.2 the van-der-Waals interaction is obtained for two 
polarizable atoms or molecules. For two identical atoms with only a single 
electronic state occupied on each atom the result could immediately be 
guessed from Eq. (12.2) by replacing ho, which is the energy of excitation to 
the nearest coupled harmonic oscillator state, by the energy of excitation to 
the first coupled atomic state. Often a harmonic oscillator provides a valid 
model for an atom or molecule, with ho taken equal to the electronic 
excitation energy, allowing estimates of properties in terms of clear simple 
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models. For this particular case, the analysis in Problem 12.2 is also made 
for two different atomic types and tells the form which Eq. (12.2) would take 
for two dipole oscillators with different parameters, 

(12.3) 

In either case, we have treated the ground state of a multibody 
interacting system. This is the simplest case of an extremely important set of 
problems, called many-body problems. Up to this point we have avoided 
such problems by introducing the one-electron approximation in Sections 2.2 
and 4.2. The electron-electron interaction -2e2qx2h-3 which we introduced 
here is not to be confused with the coupling between states of a single 
electron such as <Wi(ri)lH(ri)lWo(rl)>. We shall introduce the appropriate 
formulation for such electron-electron interactions in Section 16.1 and 
discuss a number of other many-body effects in Part VII. 

Aside from being a very important type of quantum effect which we 
have not discussed before, it is an important physical phenomenon. The 
van-der-Waals interaction is an interaction between objects which do not 
overlap each other at all, but interact with each other through 
electromagnetic radiation. It is the principal attractive interaction between 
inert-gas atoms, which cannot form covalent bonds, and between most 
molecules. The extension to nuclear physics describes the interaction 
between nucleons through the effects of meson fields, as we discuss in 
Section 17.4 

It is also central to the discussion of noise, which is the context in which 
we brought it up. The field which arises from the quantum fluctuations of 
the dipole, <E2> = 4e2a2>/&, is a noise field which we can think of as 
power flowing from the source and there must be an equal flow inward. 
Similarly an atom in the ground state is emitting and absorbing noise at the 
frequency of its excitations. In a metal, with a partly filled band, incident 
light can be absorbed by transferring an electron from an occupied to an 
empty state. At zero temperature the corresponding absorption of zero-point 
light fluctuations must be balanced by the emission of noise power from the 
band electrons in the ground state. Thus individual electrons in metals emit 
quantum noise even in the ground state and even without the Coulomb 
interaction between different band electrons. 

12.3 Shot Noise 

A classical (or a quantum) charged gas will show fluctuations in current 
across a plane due to the individual arrival times of the electrons, like rain- 



168 Chapter 12. Noise 

drops on a roof. This depends on the real discrete size of the charges, and 
would go to zero if the charges were subdivided into smaller and smaller 
particles of the same constant e/m,  which thermal noise, at k g T  per 
frequency interval, does not. This is a fundamentally different origin for 
additional noise. 

In a classical charged gas, such as a dilute electron gas in a 
semiconductor, we may ordinarily assume that the electrons are crossing a 
given plane at random times and calculate the current distribution illustrated 
in Fig. 12.2. If there are N carriers per unit volume in the system, at a root- 
mean-square velocity in the x-direction of vx  = d s  (as in Problem 
10.3, the average kinetic energy for one direction is <1/2mvx2> = 1/2k~3n. 
The half moving in the positive-x direction strike an area A of a yz-plane at 
an average rate approximately (since the average speed <vx> is a 
rather than the root-mean-square speed) AN<vx>/2= (AN/2) ypriate &T/m . The 
number crossing per unit area in the ne ative x-direction is equal to that in 
the positive x-direction at ( N / 2 )  e kgT/m as illustrated in Fig. 12.2. 

We may select a long time period to and Fourier transform the current 
with respect to time, using frequency components such that o = 27cn/to with 
n any integer. 

Then the Fourier components j ,  are obtained by multiplying by e - lo t  and 
integrating over time, j ,  = (l/to) Jo,to e -i,tj(t) dt = (-e/to) Cj kjje -'Wtj, with tj 
the arrival times and kj being plus for arrivals from the right and minus for 
arrivals from the left. The j ,  approach zero with random sign as the time 
period to is made long and are not so interesting, but j,*j, = (e/to)2 
C.; ' J  e -',(ti - tj) may be evaluated noting that for random arrival times only the 
terms i = j contribute and give (e/to)2NqlkBr/m to for the ( N  / 2 ) 4 W m  to 
hits from each direction, or 

(12.5) 

Fig. 12.2. Electrons in a classical gas cross a plane at random times giving 
a fluctuating currentj(t) as shown. 
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In the frequency range Af = Ao12.n there are 60 t 12.n values so that the 
sum of values in that range, E ~ w * ~ w  in Af is e2N d- kBT/m A f .  Note that to 
has canceled out. This noise depends upon the "graininess" of the system, 
and if we were to clump the particles together the noise would increase. 
Combining particles in groups of n would let e+ne , m+nrn, N+Nh , 
and would increase the noise by a factor&- It may be best to think of shot 
noise in terms of current rather than power. If we have a resistor we can 
write the power absorbed and emitted, but both are reduced by the 
reflectivity of the surface. We note that this shot noise goes to zero for a 
classical system as the temperature goes to zero and the particles move more 

In a quantum gas, such as electrons obeying the Pauli Principle, the 
situation is different. If we had a full band of electrons, all states occupied, 
we would have no currents and no noise from that band alone. We can 
understand what this means by returning to the polarizable molecules and 
their van-der-Waals interaction discussed just before Eq. (12.3). Imagine the 
lower, filled, level as a bond level and the excited, empty, level as an 
antibonding level. Had we filled both, the polarizability a would have 
been zero, and polarization in the bond state would have been canceled by 
that in the antibonding state. Correspondingly, in the context of this two- 
level system, there would be no van-der-Wads force, Eq. (12.2), the force 
we used to "detect" noise fields arising from one molecule. In that sense, a 
full band (with no coupling to empty bands) would have no current 
fluctuations. If we add coupling between the full-band states and those in an 
empty band, there will indeed be current fluctuations, which can be 
calculated exactly as in Problem 12.2. They will be much smaller than 
fluctuations in a partly-filled band, and we neglect them here. 

If we have a partly-filled band as in a metal, the states well below the 
Fermi energy which are entirely filled do not contribute to the shot noise, 
except from the coupling to empty states as discussed at the end of Section 
12.2 and in the preceding paragraph. At finite temperature only the electrons 
near the Fenni energy contribute to the shot noise, a fraction of the electrons 
of order ~ B T / E F .  Thus the shot noise is suppressed by such a factor by the 
Pauli Principle, just as is their contribution to the specific heat, as we 
indicated after Eq. (10.25). In this case the velocities which enter are for 
electrons at the Fenni energy rather than thermal ener ies so the square-root 
factor in Eq. (12.5) is enhanced by a factor .r"- E F I ~ B T  and the net 
suppression of the shot noise of Eq. (12.5) is only by a factor of 4 K .  
In Bose-Einstein systems, on the other hand, quantum noise can be enhanced 
by the statistics. The condensation of electrons into the lowest state is 
analogous to the clumping of particles in classical shot noise as we discussed 
in connection with the graininess of a system. 

slowly. 
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In a system in which tunneling is occurring, as described in Section 8.3, 
we ordinarily expect the tunneling events to occur at random times, as for 
the carriers in a classical gas, and to have the same shot noise. There are 
situations where that is not the case, as in the Coulomb blockade from a 
tunneling resonance discussed in Section 8.4. A similar effect occurs in 
small junctions, with very small electrical capacity C, where a tunneling 
transition shifts the voltage across the junction by -e/C. If this drop in 
voltage is comparable to the applied voltage, the tunneling probability drops 
considerably. As current continues to flow into the junction, the voltage 
across the junction builds up toward the applied voltage, as illustrated in Fig. 
12.3, increasing again the tunneling probability. Then the tunneling events 
become more evenly spaced in time. A Fourier transform such as we have 
constructed then concentrates the noise at frequencies near the tunneling 
frequency <j(t)>le , with <j(t)> the time-average current. For optical 
communication this can be an important effect, leaving most of the 
frequency domain quite free of the shot noise which might otherwise have 
seemed completely unavoidable. It also shows an important effect that 
though the tunneling events are describable as discrete events, the flow of 
charge into the capacitor can be regarded as continuous, as individual 
electrons move closer and into the capacitor. 

t 
Fig. 12.3. If the capacity C of a tunnel junction is small each tunneling 
event, shown by a spike below, drops the voltage across the capacitor 
sufficiently to inhibit tunneling until the voltage rebuilds, spacing the 
events more uniformly and concentrating the shot noise to a narrow 
frequency rage. 

12.4 Other Sources 

With current flowing in a quantum wire, as we described in Section 2.3, 
we might imagine the states flowing to the right filled to a Fermi energy 
higher than those to the left, but a sharp cut-off at the Fermi energy in both 
cases. Then shot noise is suppressed, as we discussed in the last section. If 



12.4 Other Sources 171 

then we add a scattering mechanism, represented by a transmission Trans., 
as described in Section 8.1, some electrons moving to the right can be 
reflected back, producing a shot noise exactly as for tunneling in the last 
section. This is called partition noise arising from the partitioning of part of 
the forward current into reflected current. A similar partition noise arises in 
a y-shaped channel where some of the electrons move to the right and some 
to the left. 

For the case of reflection by a defect it can be calculated just as we 
calculated shot noise in the preceding section. The classical shot noise was 
proportional to the density N of electrons involved and for small reflectivity 
1 - Trans., it is proportional to that reflectivity. On the other hand when the 
reflectivity approaches one, so that almost all reflected states are filled, the 
noise is again suppressed, being proportional to the transmission. Indeed 
over the entire range the noise is proportional to Trans.(l - Trans.). In a 
similar way the partition noise in a y-shaped channel is proportional to the 
fraction flowing to the right times the fraction flowing to the left. 

Each of these mechanisms can be regarded as shot noise, and calculated 
as we calculated shot noise in Eq. (12.5). If there is also inelastic scattering, 
so that the carriers also relax toward the low-temperature Fermi distribution, 
this will suppress this partition noise, just as lowering the temperature 
decreases the shot noise in a metal. 

There is another familiar type of noise, called llf noise, because the 
noise power varies approximately as the inverse of frequency which occurs 
in a wide variety of systems. In contrast to the types we have discussed it 
arises from a type of cooperative effect, such as illustrated in Fig. 12.4. We 
imagine current carried by carriers which hop from one site to the next, but 
can only hop if the neighboring site is empty. If we sit at one site, and note 
the times at which a carrier moves to the right, we obtain a current as a 
function of time as shown below in Fig. 12.3. If we then evaluatejo as in 
Eqs. (12.4) and (12.5) we find that noise power varies approximately as l/o. 
This is illustrated in Fig. 12.5 for which we have made such an evaluation 
for the model shown in Fig. 12.4, but for 100 sites, with periodic boundary 

Fig. 12.4. Carriers which hop from site to site on a grid, but can only hop 
if the neighboring site is empty, produce a current measured at any one 
site which shows noise power per frequency interval, inversely 
proportional to the frequency, ll’ noise. Displacements associated with a 
single time step are shown by arrows. 
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conditions, and with half the sites initially occupied at random. We did this 
with 800 time steps, took the Fourier transform, and averaged over eight 
neighboring frequencies. We repeated that calculation 100 times and 
averaged again to obtain the result shown in Fig. 12.5, which appears as a 
term proportional to 11’’ plus some constant contribution. The noise for this 
calculation begins to rise again at higher frequencies(smal1er 1/j), apparently 
because configurations with alternate occupied and empty states move along 
unchanged and contribute strongly near the corresponding frequency. If one 
were interpreting some statistical data, the constant term seen in Fig. 12.5 
might be interpreted as from some other mechanism, and the straight line in 
Fig. 12.5 would then represent the llfcontribution. The model we used may 
not be worth exploring that much further. 

llf noise is ubiquitous, arising from many different kinds of systems. 
For example, it apparently is observable in the traffic flow on busy freeways. 
It seems not so easy to derive the form, but it can be simulated as for Fig. 
12.5. 

Fig. 12.5. Noise power, per frequency interval, plotted against the 
reciprocal of the frequency of the noise, for a periodic system such as Fig. 
12.4 with half filling of 100 sites. It was calculated as indicated in the 
text. 
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V. Electrons and Phonons 

We have made applications of quantum mechanics to solids throughout 
the text, and seen energy bands in simple systems. Crystalline systems are 
so important, and their understanding so heavily based upon quantum 
mechanics, that we should present the organization of the subject which is 
generally used. For many purposes the tight-binding basis is most flexible 
and easiest to use, as for the tunneling calculation in Chapter 8. However, 
the nearly-free-electron limit is also useful and provides a good introduction 
to Brillouin Zones, as well as formulating diffraction of waves in general, 
and we use it here. Our study of lattice vibrations in Chapter 15 will be 
closer to an energy-band formulation using tight-binding theory, but the 
Brillouin Zones are the same. 
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Chapter 13. Energy Bands 

We begin by describing a procedure by which accurate energy bands 
could be obtained using the pseudopotential method. We do it for our 
approximate, empty-core form for the pseudopotential, but if we used 
instead one of the more rigorous forms (e. g., Harrison (1966)) the 
formulation would be the same and it could be a state-of-the-art band 
calculation. We then proceed to approximations based upon that 
formulation which will be more informative and allow discussion of a wider 
range of properties. 

13.1 The Empty-Core Pseudopotential 

Our beginning discussion of electron states was for free electrons, and 
we then saw that the effects of the potentials from the atoms constituting a 
crystal could be described in terms of a weak pseudopotential, which we 
took in the empty-core form, Eq. (4.18), 

0 for r < rc 

for r >  rc, 
w(r) = (13.1) 

with v(r) the free-atom potential, which we think of as -Ze2/r though 
ordinarily it included also terms in the potential arising from the valence 
electrons. Now in the solid we write the total pseudopotential as a 
superposition of such atomic pseudopotentials, 

(13.2) 
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with rj the positions of the atomic nuclei in the crystal. 

eigenvalue equation, Eq. (1.21), 
For a pseudopotential band calculation we would solve the energy 

(13.3) 

now called the pseudopotential equation, with $(r) the pseudowavefunction. 
It would be solved by expanding $(r) in plane waves, I@> = &'Uk'lk'>, and 

(13.4) 

with k' satisfying periodic boundary conditions. The expansion of I@> is 
substituted in Eq. (13.3), we multiply on the left by <kl and obtain 

(13.5) 

For the first term on the left and the only term on the right, only terms 
for k'  = k were nonzero. The first step is the evaluation of the matrix 
elements, which is quite simple using Eq. (13.1) and would also be quite 
straightforward for more rigorous pseudopotentials. The important 
simplification comes from the use of Eq. (13.2). 

1 

(13.6) 

In the first step we wrote out the two plane waves. In the second we 
interchanged the sum and integral, and multiplied under the sum by 
ei@-k').rje-i (k-k').rj = 1. In the third step we changed the variable of 
integration from r - rj to r and factored the volume into the number of 
atoms N and the atomic volume Qo. 

This third form is factored into two terms, a structure factor and a form 
factor, written as S(q) and wq in the final form, as is usual in diffraction 
theory. We write k' - k = q, and the structure factor is written 
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(13.7) 

It depends only upon the positions of the atoms, and is independent of the 
particular pseudopotential which has been used. The form factor is given by 

(13.8) 

For empty core pseudopotentials (with a convergence, or screening, factor 
e-Kr) the integral may be carried out to obtain 

(13.9) 

We would anticipate taking K = 0 in the convergence factor, but when we 
calculate in Section 20.2 the redistribution of the electron charge due to 
these pseudopotentials, self-consistently to first order in the resulting 
electrostatic potential, we will find that in the Fermi-Thomas approximation 
that the net effect is to introduce a ti2 exactly as in Eq. (13.9), with 

(1 3.10) 

We see incidentally from the first form in Eq. (13.9) that this "screening of 
the potential" has the effect of reducing the long-range Coulomb potential to 
-Zee-Krlr. 

The pseudopotential form factor is all we need to know about an element 
in order to perform a band calculation, or to calculate other properties using 
the structure factors for whatever arrangement of atoms we wish to consider. 
If we are satisfied with the approximate empty-core form, we need know 
only the empty-core radius and the valence Z. In Problem 4.3 we calculated 
the pseudopotential core radius for lithium and sodium from the atomic term 
values given in Table 4.1. In Fig. 13.1 we show the pseudopotential form 
factor obtained from Eq. 13.9 with that radius for sodium, along with an 
earlier full calculation. The largest difference is at q&= 0, where our value, 
- 2 / 3 E ~ ,  would now be considered correct. For some purposes one might try 
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Fig. 13.1. The pseudopotential form factor for sodium from Eiq. (13.9) 
using the empty-core radius from Problem 4.3 and k~ = 0.92 A-1. The 
points are the values calculated by Animalu and Heine (1965). 

to improve the predictions by adjusting rc to fit a prediction to some known 
property, and one can then use the same rc for related properties. 

The evaluation of structure factors may be illustrated for the one- 
dimensional case. For a regular chain of atoms, spaced by d as in Fig. 6.1, 
the atomic positions are Xj = j d  for j = 0, I ,  ... N-1. Then periodic boundary 
conditions require that k, k' and q all are of the form 2nnl(Nd), so 

1 I - a N  
N 1 - u  

-- - 

The numerator 1 - aN is always zero. We can only find nonzero S(q)  
when n/N is an integer so the denominator is zero. Then every term is one 
and S(q )  = 1. These wavenumbers, q = 2 d d  times an integer, are called 
lattice wavenumbers (or loosely called reciprocal lattice vectors, with or 
without the factor 27~). The same result applies for simple cubic crystals, 
with qx = 2nnx/d,  qy = 2nny/d, and qz = 2nnz/d . 

For this one-dimensional case in Section 6.1 we defined a Brillouin Zone 
as the range of wavenumbers which gave distinct states in tight-binding 
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theory, - d d  < k 2 d d .  That generalizes to three-dimensions as being the 
region of wavenumber space closer to q = 0 than to any other lattice 
wavenumber. We shall see the significance of the Brillouin Zone in the free- 
electron context. We shall also evaluate the structure factor for atomic 
arrangements other than the perfect crystal. 

13.2 A Band Calculation 

For a chain of equally-spaced atoms, with nonvanishing structure factors 
only at the lattice wavenumbers, a plane wave Ik> is coupled, according to 
Eq. (13.6), only to states Ikf2nn/d>, states which differ from k by a lattice 
wavenumber. The very large number of wavenumbers which are allowed by 
periodic boundary conditions in a large system, N times as many as there 
are lattice wavenumbers for a chain of N atoms, is irrelevant since only 
those differing by a lattice wavenumber are coupled. If we focus on the 
smallest k among a set of coupled plane waves, the eigenstate can be written 
as a linear combination of that plane wave and all plane waves coupled to it. 
In an approximate treatment, we include only a limited number of such 
coupled states and the pseudopotential makes it possible for that number to 
be quite small. We can understand this in terms of the pseudowavefunction 
for sodium metal which we plotted in Fig. 4.3, a sum of atomic 
pseudowavefunctions for the k = 0 state. The single plane wave for k = 0 
would be a constant. We may add to it the contributions of the two smallest 
lattice wavenumbers f q  = 2n/d, so the pseudowavefunction becomes $(r) = 
A0 + 2Alcosqd. . Fitting the maximum and minimum in the curve in Fig. 
4.3 gives A1/Ao only -0.15. These small corrections reproduce the 
pseudowavefunction quite well, with the remaining discrepancy is largely 
eliminated by even smaller contributions from the next set of q = 47dd. 

With only a small number of plane waves needed for the 
pseudowavefunction, the problem is the same as the calculation of molecular 
states in terms of a small number of atomic states as we discussed in Section 
5.1 and 5.2. We need to solve as many simultaneous linear equations as we 
have terms in the expansion, as in Eq. (5.13). The coefficients Hji which 
enter such equations form a matrix, called the Hamiltonian matrix, and the 
solution of the equations is called diagonalizing the matrix. In these terms 
the pseudopotential has reduced the problem to the diagonalization of a 
small Hamiltonian matrix, based only on plane waves which differ by the 
smallest lattice wavenumbers. 

This would not have been true had we sought an expansion of the full 
wavefunction, given approximately by a sum of the full atomic states, for 
sodium each with a large peak at the nuclear position and two nearby nodes 
on either side. An extraordinarily large set of plane waves would have been 
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Fig. 13.2. Wavenumber space, showing the lattice wavenumbers (square 
dots) and a wavenumber k in the Brillouin Zone (BZ) and all states (+) 
coupled to the state lk>. 

required, and the diagonalization of the corresponding huge matrix. The 
same reduction occurs in two and three dimensions. In fact, had we 
regarded Fig. 4.3 as the pseudowavefunction along a line in the three 
dimensional crystal, the corrections to the k = 0 plane wave would have been 
twelve plane waves with a coefficient A11Ao = -0.025. We discuss the 
calculation in detail first for the two-dimensional case. 

For a two-dimensional square lattice, with interatomic distances d ,  the 
lattice wavenumbers are all integral linear combinations of lattice wave- 
numbers of length 2nld in the x- and y-directions, as indicated in Fig. 13.2. 
The wavenumbers of the states to which a plane wave of wavenumber k in 
the Brillouin zone is coupled, shown by +Is, should be included in the 
calculation, but the ones differing by larger wavenumbers are only weakly 
coupled (the coupling drops as llq2 at large q, according to Eq. (13.9)) and 
they differ greatly in energy, also reducing their effect. The state which is 
calculated contains terms with all of these different wavenumbers, but we 
ordinarily specify it by giving the wavenumber with the smallest magnitude, 
the one which lies in the Brillouin Zone shown for the square lattice in Fig. 
13.2. This is the two-dimensional counterpart of the one-dimensional 
Brillouin Zone -nld 5 q < n/d discussed in Section 6.1. 

For a simple cubic lattice in three dimensions, the wavenumber lattice is 
simple cubic and the Brillouin Zone is a cube. Exactly the same situation 
obtains with respect to a band calculation, which can be performed with of 
the order of ten or twenty plane waves, by diagonalizing the corresponding 
ten-by-ten or twenty-by-twenty Hamiltonian matrix. Before discussing the 
results of such a straight-forward calculation, we see how this simple-cubic 
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lattice is generalized to a more important structure, the face-centered-cubic, 
orfcc, lattice. This lattice is not only the crystal structure of many metals, 
e. g., copper and aluminum, but also has the same translational symmetry as 
most semiconductors and also rock salt. 

The fcc lattice is illustrated in Fig. 13.3. It is based upon a simple-cubic 
lattice, but with an addition (identical) atom at the center of each of the six 
faces of every cube. The length of the cube edges is traditionally called a 
and is then related to the nearest-neighbor distance d by a = f i d .  
Traditional crystallographic notation takes a Cartesian coordinate system 
oriented along these cube edges, and specifies directions as [loo] along the 
x-axis, or more generally parallel to any cube edge, [110] parallel to any face 
diagonal, and [l 1 11 parallel to any cube diagonal. If this lattice is extended 
to many cubes we see that the face-center atoms have identical arrangements 
of neighbors to the those at the cube comers, and the cubes could as well 
have had a comer at any atom in the crystal. Thus the smallest translations 
Ti of the lattice which take every atom in the interior to the position 
previously occupied by another atom are of length d and are in [llO] 
directions. Three such translations are indicated in Fig. 13.3, and are called 
primitive lattice translations. The density of atoms corresponds to four 
atoms per cube, counted by noting that the eight comer atoms are shared by 
eight cubes and the six face atoms are each shared by two cubes. If the 
spheres representing each atom are expanded till they touch their nearest 
neighbors, each is seen to touch twelve nearest neighbors, a close-packed 
lattice with the densest possible packing of spheres in an extended system. 

The extension of the concept of the simple-cubic lattice wavenumbers of 
Fig. 13.2 to the fcc lattice is not so obvious since the primitive translations 
z1, 2 2 ,  and z3 are not perpendicular to each other. We may see that the 
essential feature is that the primitive lattice wavenumber ql be perpendicular 
to 22 and z3 and therefore proportional to 22 x23 . Then the primitive lattice 
wavenumbers become, 

Table 13.3. One cube of a face-centered-cubic lattice, showing the atoms 
centered at each face, and a set of primitive translations zi which take the 
lattice into itself. The cube edge a is also indicated. 
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(1 3.12) 

the other two obtained by rotating indices. For simple-cubic lattices these 
reduce to the primitive lattice wavenumbers we gave. In the fcc lattice these 
primitive lattice wavenumbers lie in [ 11 11 directions. The states coupled to 
any plane wave of wavenumber k in the Brillouin Zone have wavenumbers 
differing from k by an integral linear combination of these primitive lattice 
wavenumbers, the linear combinations again being called lattice 
wavenumbers. The wavenumber lattice made up of these lattice 
wavenumbers, based on primitive lattice wavenumbers in [ 11 11 directions, is 
called a body-centered cubic lattice. It is again based upon a simple-cubic 
lattice but has additional sites at the cube center rather than in the cube faces. 
It is also a common crystal lattice for elemental metals. 

The Brillouin Zone for the face-centered-cubic crystal lattice again is the 
surface containing all wavenumbers closer to q = 0 than to any other lattice 
wavenumber, and is shown in Fig. 13.4. The primitive lattice wavenumbers 
are shown as arrows, and the planes bisecting them, which would form a 
regular octagon if all eight such planes were included, form part of the 
Brillouin Zone. However, points inside that octahedron, but outside the cube 
drawn, are closer to a lattice wavenumber 4nla along the cube direction than 
to q = 0, so the cube faces truncate the points of the octahedron leading to 
the shape shown. It may also be regarded as the cube shown, with its eight 

Fig. 13.4. The Brillouin Zone for the face-centered cubic crystal lattice. 
Lattice wavenumbers are again shown as square dots, and three primitive 
lattice wavenumbers are shown as arrows, leading to the corners of a 
circumscribed cube. 
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comers truncated. The Zone has half the volume of that cube. This is also 
the Brillouin Zone for the tetrahedral semiconductors, Si, GaAs, etc., 
because they have the same translational symmetry. For example, the 
gallium atoms in GaAs have a face-centered-cubic arrangement, with 
another face-centered-cubic lattice of arsenic interspersed. 

For discussing free-electron bands and band calculations we return to the 
simple-cubic lattice. There are free-electron states at all wavenumbers, but 
we may represent all of them by the wavenumber in the Brillouin Zone for 
the plane wave to which they are coupled. In this way every wavenumber 
indicated by a "+" in Fig. 13.2 is replotted at the same point in the Brillouin 
Zone. This is also what we did in Section 6.2 for the simple-cubic lattice for 
matching with tight-binding sp-bands. Then for a wavenumber k in the 
Brillouin Zone, there is a state with energy hzk2/(2rn) but also one of energy 
h2(k + qj)2/(2m) for every lattice wavenumber (every integral combination 
of the primitive lattice wavenumbers such as the q1 in Eq. (13.12)). These 
are drawn (as in Fig. 6.6) in Fig.13.5. 

States of the same wavenumber in the Brillouin Zone are coupled to 
each other by matrix elements of the pseudopotential. For any state well- 
removed in energy from the others, the coupling can be treated in 
perturbation theory and the shifts are small. When two coupled states 

k d h  

Fig. 13.5. Free-electron bands redrawn in a cube direction in the Brillouin 
Zone for a simple cubic lattice with spacing d. The four degenerate bands 
are drawn separately. 
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become close in energy, as for the two lowest bands at the edge of the 
Brillouin Zone, the two coupled states must be treated exactly, solving the 
two-by-two Hamiltonian matrix to obtain, in the case of those two states 
near the Brillouin-Zone edge ( k  = q/2 with q = 2n/4 , 

We have written the matrix element coupling the two states <k+qlW Ik> = 
S(q)wq = wq. Such a solution, when two coupled states are very close in 
energy, is sometimes called degenerate perturbation theory. 

The resulting two bands are plotted in Fig. 13.6. A gap equal to 2wq has 
been opened up at the Brillouin-Zone edge, where the two free-electron 
states are degenerate. Away from this region the states are quite free- 
electron-like and any effect of the pseudopotential could be treated as a 
perturbation. At the left edge of the Brillouin Zone it would be appropriate 
to use the two states k and k + q , rather than k and k - q . Then a gap 
would appear there. The resulting bands within the Brillouin Zone represent 
the electronic structure of the solid. The bands shown outside the Brillouin 
Zone to the right are redundant replications of the bands within the zone, as 
were the tight-binding bands outside the Brillouin Zone in Fig. 6.2. 

6 

5 

4 

w 
3 

2 

1 

n 

. 
Brillouin Zone 

-1.5 -1 -0.5 0 0.5 1 1.5 

k d h  

Fig. 13.6. Bands from Eq. (13.13) giving the energy of two free-electron 
states coupled by a matrix element wq with q = 2 d d .  
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The energy bands given in Eq. (13.13) correspond to the results of a 
simple band calculation. In a full calculation one would include not only the 
three plane waves, k,  k - q, and k + q, which are needed to obtain the lower 
bands, but all of the plane waves which have an appreciable effect on the 
states. One could also use a more accurate method, in comparison to the 
empty-core pseudopotential, for obtaining the matrix elements <k + q(W( k> 
which couple the various plane waves. These are all, however, 
straightforward generalizations of the simple calculation we performed here. 
The most important approximation in any case is the one-electron 
approximation which we introduced in Sections 2.2 and 4.2. 

In a metal the coupling is very small compared to the Fermi energy 
which would lie just below the gap in Fig. 13.6 for a monovalent metal (e. 
g., sodium in a simple-cubic structure), and just above for a divalent metal. 
For such a divalent metal the shifts in the band also distort the Fermi surface, 
which would be spherical in the absence of a perturbing pseudopotential. 
Experimental studies of these Fermi surfaces were important in learning how 
to understand metals in terms of pseudopotentials (Harrison and Webb 
(1960)) but by now have become a rather specialized topic. We see in 
Problem 13.1 how diffraction changes the electron orbits in a magnetic field, 
which can be interpreted in terms of Fermi surfaces made up of rearranged 
segments of a Fenni sphere. 

13.3 Diffraction 

The opening of a band gap as in Fig. 13.6 sheds further light on the 
diffraction of electrons by a periodic lattice. We shall see in Chapter 14 that 
applied electric and magnetic fields cause electrons to move continuously 
along the energy bands, and this was illustrated in Problem 13.1. Thus when 
gaps are introduced at the left, as well as at the right, edges of the Brillouin 
Zone in Fig. 13.6, an electron moving up to the Zone face at the right must 
continue on to the right, or equivalently emerge from the left face of the 
Zone. The electron has changed the direction of its wavenumber and its 
velocity, which physically corresponds to a diffraction of the electron by the 
periodic pseudopotential of the lattice. Indeed the Bragg condition for 
diffraction is that two states of the same energy are coupled, exactly the 
condition which causes us to solve the two-by-two degenerate-perturbation- 
theory equation, Eq. (13.13). An approximate description of Fenni surfaces 
in polyvalent metals (in these metals the Fermi sphere always crosses 
diffraction planes) is possible simply by taking these diffractions into 
account, again illustrated in Problem 13.1. This corresponds to the real 
Fenni surfaces obtained from a band calculation, but in the limit as the 
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pseudopotential becomes small. We shall see how this affects the electron 
dynamics in the following chapter. 

13.4 Scattering by Impurities 

We discussed scattering of electrons by impurities in the context of tight- 
binding theory in Section 7.3. It is useful to understand it also in the context 
of weak pseudopotentials. 

We have seen that the matrix elements <k'IZjw(r - r j ) lb  are zero for a 
perfect crystal if the wavenumber k does not lie on a Bragg plane. Thus if 
we were to change one atomic pseudopotential at ri in the sum by 8w(r-ri) = 
w'(r-ri)-w(r-ri), for all of these states away from the Bragg planes the matrix 
element will be zero plus the matrix element of the change. Let us again 
write k'= k+q (as after Eq. (13.6)), and then 

<k+qlx;w(r - r ; ) J b  = < k+ql6w(r - ri)lk> 
(1 3.14) 

This is closely analogous to the matrix element 8Ese i(k-k')di/N obtained for 
tight-binding theory, in one dimension, following Eq. (7.10). As in that 
case we can proceed with the Golden Rule but now the matrix element 
depends upon the difference in wavenumber between the two coupled 
states. 

(13.15) 

For the evaluation we replace the sum over k' by an integration as we 
indicated at the end of Section 7.3, and take a coordinate system as shown in 
Fig. 13.7. For a given magnitude of q = k' - k,  the states in a circular ring of 
radius k'sine and small cross-section dk' by k'de have the same matrix 
element. The density of states in wavenumber space is S2/(2.n)3 with Q the 
volume of the system so 

(13.16) 
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We multiply by (d&kl/dk')/( I?k'/m) which is equal to one, and integrate 
over energy &ki to obtain 

(13.17) 

with C2o the volume per atom. In the final step we noted that for an isosceles 
triangle (k'  = k) we have q2 = 2k2(1-cose) so sinede=qdq/k2. This form is 
convenient to use with known form factors wq as in Fig. 13.1. 

We may compare this with the tight-binding result in Eq. (7.13), if we 
replace the velocity in that expression by v = hum, which leads to 

(13.18) 

We see that 6 ~ ~ 2  has been replaced by 1/40,2k d(q/k) (q/k)(w,' - wq)2. The 
integral could readily be performed using the empty-core form for the 
pseudopotential, Eq. (13.9). 

For calculating the conductivity as in Section 11.3 we should use the 
momentum relaxation time 'I: in which each scattering event is weighted by 
the fractional loss of initial momentum, 1 - cose = q2/(2k2). This factor can 
be directly inserted in the integrand in Eq. (13.17). 

k'sine 

k 

Fig. 13.7. The coordinate system for summing over states in cylindrically- 
symmetric systems. 

13.5 Semiconductor Bands 

Perhaps the most important energy bands are those for semiconductors, 
and we will be discussing specifically electron dynamics in those bands in 
the following chapter. We introduce them briefly here in the context of the 
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. .. .. . 

,i 

Fig. 13.8. The diamond structure is obtained from the face-centered-cubic 
structure (empty and lightly-shaded circles, as in Fig. 13.3) by adding a 
second atom, displaced by one quarter of a cube body diagonal from each 
of the original sites. 

free-electron bands. 
The semiconductors silicon and germanium are in the diamond structure, 

which is based upon the face-centered-cubic structure which we discussed in 
Section 13.2. One cube of that structure is redrawn in Fig. 13.8 and a second 
atom added for each original atom, as indicated. Note that each added atom 
is surrounded be a regular tetrahedron of the original atoms. Similarly, each 
original atom is surrounded by a regular tetrahedron of added atoms of 
inverted geometry (compared to the tetrahedra of original atoms). Most 
compound semiconductors, such as gallium arsenide, are in this structure 
with for example the original face-centered-cubic atoms gallium and the 
added atoms arsenic. In either case the translational symmetry is that of the 
face-centered-cubic structure, with two atoms in each primitive cell. 

The free-electron bands for this structure are shown to the left in Fig. 
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Fig. 13.9. The free-electron bands, on the left, for the face-centered-cubic 
(or Si or GaAs) structure for k along a cube-axis direction, analogous to 
the free-electron bands for the simple-cubic structure shown in Fig. 13.5. 
E is given in units of (h2/2rn)(2n/a)3. To the right are the corresponding 
bands for a semiconductor such as GaAs. 
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13.9, for wavenumbers along a [loo] direction in the Brillouin Zone of Fig. 
13.4. A total of eight free-electron bands meet at k = 0 with energy 
3(h2/2rn)(2n/a)3 (the bands shown double represent four bands each). As the 
pseudopotential is introduced, these split into two sets of three-fold- 
degenerate bands and two single bands. One of these three-fold sets is 
lowest and the three bands emerging from this point are the upper valence 
bands as shown to the right in Fig. 13.9 (here the double line represents two 
bands). With eight electrons per atom pair the lowest four bands are filled 
and are collectively called the valence bands. The lowest band above these 
is the empty conduction band and in most compound semiconductors has its 
minimum energy at k = 0. These are the bands for which we discussed the 
statistics of occupation in Section 10.5. We shall discuss the dynamics of 
electrons in such bands in the following chapter. 

These bands are also understandable in terms of tight-binding theory, as 
are the simple-cubic bands discussed earlier in this chapter. It was in fact 
the comparison of the free-electron and tight-binding simple-cubic bands in 
Section 6.2 which gave us our universal matrix elements. In the case of 
covalent semiconductors we proceed from the atomic states to form sp3- 
hybrids, as indicated in Section 6.3, and then form bonding and antibonding 
states, four each for each atom pair. The four valence bands shown to the 
right in Fig. 13.9 arise from coupling between neighboring bond states just 
as the coupling between atomic states broadens them into bands. Each of the 
states in the band is a linear combination of bond orbitals (and in a more 
accurate calculation some admixed antibonding orbitals). The lowest state at 
k = 0 turns out to be the sum of every bond orbital with an equal coefficient. 
Thus on each atom it contains all four sp3-hybrids with equal coefficients, 
the p-states all cancel out leaving a pure s-like state, as in the simple-cubic 
bands. Similarly, the three states at the top of the valence band consist 
entirely of p-states on the individual atoms. As wavenumber increases to the 
right in Fig. 13.9, the o-oriented (parallel to k) p-state combines with the s- 
states to form the three nondegenerate bands shown. The other two bands 
are degenerate n-bands. 

These tight-binding and free-electron bands can be used to derive 
universal coupling parameters, as for simple-cubic bands in Section 6.2, and 
the resulting parameters are more appropriate for the study of covalent 
solids. Interestingly enough the values are quite similar. It is found that 
Vsso = -9n2/64 h2/(rnd2), only slightly larger than the -n2/8 h2/(rnd2) which 
we obtained here. Extensive discussions of the electronic structure and 
properties of covalent solids based upon this tight-binding picture are given 
in Harrison (1999). 
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Chapter 14. Electron Dynamics 

It is clear that the electrons in the simple metals, with weak 
pseudopotentials, have the dynamics of free electrons, with the additional 
effect of diffraction by the pseudopotentials. They have velocity v = hk/m 
and acceleration given by any applied force divided by the mass m. With the 
more complicated energy bands, such as we discussed for semiconductors in 
the preceding section, the dynamics may be deduced by constructing packets 
much as we did in deriving the Schroedinger Equation in Section 1.2. 

14.1. Dynamics of Packets 

We found already in Eq. (1.6) that a packet moves with velocity v = 
dco/dk , which for particles became <lh)d&/ak . That same result applies to 
energy bands since we can make wave packets of band states just as we 
made them of plane waves and follow the same argument. Thus for a 
system with energy bands &k we have the velocity 

with of course Vk having an x-component of a&k/dk,, etc.. This is the usual 
form for free electrons, and for bands approximated by a parabola as &k = 
h2k2/(2rn*) it i shum* For cosine-like bands, as shown to the right in Fig. 
13.9, we note that the velocity is zero at k = 0, but also at the Brillouin-Zone 
edge, k = 2 d a  (or n/d in a linear chain with spacing d). 

We now imagine this packet moving in a slowly varying potential V(r) 
so that it will pick up potential energy at a rate v.VV(r). It must therefore 
give up kinetic energy, or band energy &k, at the same rate. This occurs by a 
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change in the central wavenumber k of the packet, corresponding to 
dkldt .Vk&k = -v.VV(r). But using Eq. (14.1) for Vk&k we see that at least 
for the components of force F = -VV(r) parallel to the direction of motion, 

dk 
dt h- = F = -VV(r) . (14.2) 

This is a very simple and plausible result, which turns out to be 
applicable for all components of the force. The principal limitation on the 
validity is that it can be used only where a description of the state in terms of 
packets makes sense. It would not be applicable to potentials arising from 
an impurity which varied rapidly over one atomic distance since making a 
packet small enough to define the position at such a distance requires the 
entire band, and an energy uncertainty corresponding to the band width. 

Eqs. (14.1) and (14.2), are exactly Hamilton's 
Equations, Eqs. (3.5) with hk playing the role of momentum and the 
Hamiltonian H(p, r) obtained from the energy bands &k plus a potential V(r). 
Thus they describe completely the dynamics of the wave packet just as 
Hamiltonian mechanics described the dynamics of classical particles. 

For free electrons, with momentum p= hk, this is the classical dpldt = F. 
For any band structure, it tells that the wavenumber changes according to the 
same formula. For a constant electric field the wavenumber moves through 
the Brillouin Zone at a constant velocity. In a complicated band structure 
the electron velocity itself, v = ( l h )  Vk Fk, may have a complicated 
variation, but the wavenumber behaves simply. For example, for a uniform 
electric field parallel to k in the lowest cosine-like bands to the right in Fig. 
13.9, the wavenumber moves to the right at a constant rate, and the electron 
increases its speed, reaches a maximum and then slows to a stop when the 
wavenumber reaches the Brillouin-Zone face. At this point we would 
represent the state by the equivalent wavenumber at the opposite Zone face 
(though we could continue on outside the Zone if we so chose) and the 
electron begins picking up speed in the opposite direction, reaches a 
maximum and comes again to rest at k = 0. Physically we could say that the 
electron accelerated but made a gradual diffraction, reversing its direction 
and moving against the field, which brings it back to rest. If the 
pseudopotential were weaker, the bands would be more like those to the left 
in Fig. 13.9, bending over in a much shorter wavenumber range as in Fig. 
13.6, and the diffraction would be much more abrupt, but still continuous. If 
the pseudopotential were sufficiently weak, compared to the applied forces, 
no diffraction would occur. In terms of bands such as those in Fig. 13.6 this 
would mean that the electron jumped to another band as the wavenumber 
crossed the Brillouin-Zone face. When this occurs as the wavenumber 

These two equations, 
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changes due to a magnetic field, the jump between bands is called magnetic 
breakdown of the band gap. In order to discuss that we must consider 
magnetic forces. 

As we indicated, Eq. (14.2) remains true for all forces, whether or not 
they are parallel to the direction of motion, so they apply to the forces due to 
a magnetic field F = (-e/c)rxH given in Eq. (3.13). Inserting this into Eq. 
(14.2) we have 

(14.3) 
e v k  Ek xH.  x H =  dk (-e)r h-= ~ 

dt c c h  

From the final form we see that the wavenumber changes are 
perpendicular to the gradient of the energy with respect to wavenumber, so 
the energy of an electron in a magnetic field does not change with time. The 
change in wavenumber is also seen to be perpendicular to the magnetic field 
so the trajectory of an electron in wavenumber space is the intersection of a 
constant energy surface in a band with a plane perpendicular to the magnetic 
field. This is consistent with the motion we expect for free electrons, but 
also when the Fenni surface in a metal has a complicated shape, electrons at 
the Fermi energy move along the intersection of that Fenni surface and such 
a plane perpendicular to the magnetic field. From the first form in Eq. (14.3) 
we see that r is proportional to k (with a constant ratio eUeH and a 900 
rotation) so that the shape of the electron orbit in real space (projected on a 
plane perpendicular to the magnetic field) is exactly the same as the shape in 
wavenumber space. Thus experimental studies of the electron orbits in real 
space reveal the exact shape of the Fenni su&ces in metals (e. g., Harrison 
and Webb (1960)). 

For simple metals, where the effects of the pseudopotential can be 
described as a simple diffraction, the electron orbits in a uniform magnetic 
field correspond to motion along circular paths between discontinuous 
changes in momentum at the diffraction, providing for example lens-shaped 
orbits when there are two diffractions, which correspond to cross-sections of 
the nearly-free-electron Fermi surface. 

When the fields are very large and the pseudopotentials very weak, the 
diffraction does not occur and we have magnetic breakdown. This is a 
special case of the general problem in which two states li> and b>, coupled 
by a matrix element Hi;, change their relative energies such that they cross 
(E; - Ei goes through zero and changes sign as a function of time). The 
probability that a particle in state li> makes a transition to the state b> during 
such a level crossing is given by 
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when that probability is small so that we may use perturbation theory. This 
may be derived from Eq. (7.9) by multiplying and dividing by the time- 
derivative of the energy difference and integrating over time. For magnetic 
breakdown in a simple metal, Hij would be the pseudopotential matrix 
element between two free-electron states and 1 - Pij would be the probability 
of breakdown occurring. 

14.2 Effective Masses and Donor States 

In semiconductors, we have seen that there may be small numbers of 
electrons, concentrated within an energy &T of the bottom of the 
conduction band. In this small energy range we may expand the energy as a 
function of the wavenumber measured from the conduction-band minimum 
at ko. The first derivative of &k is zero at the minimum and we obtain a 
quadratic form in the components of k - ko.  If the conduction-band 
minimum is at k = 0 as to the right in Fig. 13.9, in the tetrahedral structure 
(for which x-, y-, and z-axes are equivalent) the result to second-order in k is 

(14.5) 

This defines the effective mass m * ,  which is adjusted to fit the band 
curvature at the minimum. Clearly from the discussion in the preceding 
section we can see that electrons with energies near the minimum of this 
conduction band have the dynamics of a particle with mass m* , rather than 
the true electron mass. The velocity is given by v = (1h)aqJak = hk/m* 
and the change of its momentum p =hk  with time will equal any applied 
force, or m*dv/dt = F. Further, it will carry current as -ev and give rise to a 
potential in the semiconductor given by -e/r& , with E the relative dielectric 
constant for the semiconductor and r measured from the position of the 
carrier, or its packet. This allows us to carry over all of our intuition about 
free particles to electrons moving in such a band. 

If the conduction band minimum occurs at some ko away from the k = 0, 
as in silicon where it occurs some 6/7ths of the way to the Zone face in a 
[ 1001 direction, the variation a2&k/akx2 along that axis will be different from 
the variation a2&k/aky2 = a2&k/akz2 transverse to that axis. Then the 
corresponding mass tensor is not isotropic, but the dynamics are correctly 



14.2 Effective Masses and Donor States 193 

given in terms of the corresponding longitudinal and transverse effective 
masses. In silicon these are of the order of m, and 0.19m respectively. 

It is an important quantum-mechanical point that these electron packets 
which behave as a particle of mass m*, also behave as a wave, just as the 
center of gravity of any object behaves as a wave. We have found the 
corresponding Hamiltonian in the preceding section and for the simplest case 
of an isotropic mass, the corresponding Hamiltonian of p2/2m* + V(r) 
relative to the conduction-band minimum leads to the effective mass 
equation, 

(14.6) 

the Schroedinger Equation for the packet. It applies whenever the potentials 
vary slowly enough with position to be applicable to packets. It may seem 
strange to have worked through the Schroedinger Equation to obtain the 
behavior of electrons in an energy band as classical particles and then to 
reform Schroedinger's Equation for that particle. However, it may not be so 
different from solving the eigenvalue equation to obtain the electronic 
structure of the molecule and then applying quantum mechanics to the 
dynamics of the center of gravity of the resulting molecule. 

We may apply this equation to an electron moving in the presence of a 
charged impurity, such as a germanium atom substituted for a gallium atom 
in GaAs. The extra proton in the germanium nucleus, relative to that of 
gallium, produces a potential energy -e2/(r&) and its extra electron is placed 
in the conduction band since the valence band was full; the atom is thus 
called a donor. We predict that its ground state will be a hydrogenic 1s- 
state, 4W-P as in Eq. (4.3,  but with its "Bohr radius" 

(14.7) 

larger by a factor &m/m* than the 0.529 8, of hydrogen. In GaAs, with E = 
11 and m*/m = 0.07 this radius is over 80 A. This would seem large enough 
for the packet-like description and we expect the state to be approximately 
correct. Using the same parameters, the ground-state energy is e4m*/ 
(2~2h2) = 0.008 eV relative to the conduction-band minimum. The electrons 
are so weakly bound that at room temperature almost all donors will be 
ionized, with the conduction electrons free to conduct. 

If this were a donor in silicon, such as phosphorus, we would obtain a 
state which was spread out a similar distance in the two transverse 
directions, for which the effective mass is small, but the larger longitudinal 
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mass would contract it in that direction, giving a pancake-shaped orbital. 
(One might construct it with a variational form, analogous to our treatment 
of the hydrogen orbital in Problem 4.1.) We would obtain similar pancake- 
shaped states from the conduction-band valleys in the other five [loo] 
directions. There is coupling between the states from different valleys and 
the real ground state is a combination of orbitals from all valleys, with equal 
coefficients. 

14.3 The Dynamics of Holes 

It is well known that an electron in an empty state at the top of a valence 
band behaves dynamically as a positively charged particle. However, to 
demonstrate it we must associate a wavenumber k' with the particle which is 
the negative of the wavenumber of the hole, as indicated in Fig. 14.1. We 
consider the simplest case of a single isotropic band with maximum energy 
at k = 0 so that 

(14.8) 

with E~ the energy at the valence-band maximum, and m* a positive 
number. [The true bands at the valence-band maximum are more 
complicated because of the three-fold degeneracy seen to the right in Fig. 
13.9. Then one band drops rapidly with k in a [loo] direction (a Eight hole 
with small m*), while the other two are called heavy holes. The sharp 
curvature of the light-hole band comes principally from coupling Vspo with 
the conduction band and may produce a rather isotropic band as in Eq. 
(14.8), but there may be major anisotropies for the heavy holes, as discussed 
for example in Harrison (1999), Chapter 6.1 

The energy to create a hole, according to Eq. (14.8), increases with 
increasing wavenumber (as the energy of a bubble in water increases with 
depth) since carrying the corresponding electron to the conduction band, or 
elsewhere, takes more energy. Thus we may associate positive kinetic 
energy with the hole. It is a missing electron so the charge to be associated 
with it is positive. We may make a packet of valence-band states, as we 

k'd 
v +  

Fig. 14.1. An empty state at wavenumber k near the top of the valence 
band behaves as a positively charged particle of wavenumber k' = -k 



14.3 The Dynamics of Holes 195 

made packets of free-particle states in Section 1.2, and that localized hole 
will produce an electrostatic potential elr, with r measured from the packet 
location. 

The packet will have a velocity again given by 

(14.9) 

and the associated positive charge will move with that velocity. Here we 
have introduced the wavenumber k' in the direction in which the packet 
moves, the negative of the wavenumber of the valence-band packet we 
constructed. The hole then contributes to the current as a positive charge e 
moving with this velocity. If an electric field E is applied, we found that the 
wavenumber of the packet (made in this case of valence-band states) 
changes as h dWdt = -eE and this remains true. However, when we 
associate the wavenumber k' = -k with the hole that wavenumber changes 
as 

dk' 
dt h - +eE (14.10) 

and similarly we may see that in changing to k' the deflection in a magnetic 
field is given by 

dk' e 
dt h -= +; VXH (14.1 1) 

as for a positively charged particle. 

wavenumber k'. The electron which was removed from the valence band 
will be attracted to the hole left behind and can form a bound state just as the 
donated electron could be bound to the donor atom, but the two particles are 
now similar to the bound positron-electron pair. Such a bound electron and 
hole are called an exciton. When it moves through a crystal it carries no 
current, but it carries an energy comparable to the band gap. Like a 
positron-electron pair, the electron and hole can annihilate each other, in this 
case it is just an electron dropping into the hole state, perhaps emitting a 
photon. We indicated that the Dirac theory of the electron led also to 
positrons and the physical interpretation of that theory is very close to this 
semiconductor band picture. 

When a semiconductor is dilated (expanded), the valence-band 
maximum ordinarily will go up in energy since it corresponds to p-states in a 

In all regards the hole is behaving as a positively charged particle of 
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bonding relationship to their neighbors. (The antibonding state, among the 
conduction bands, will move down in energy.) One may follow the 
argument we made in deriving Eq. (14.2) to see that if the dilation varies 
with position hk' changes with time corresponding to accelerating the hole 
toward the dilated region, where the valence band is higher . For the same 
reason an electron tends also to be accelerated toward this dilated region and 
clearly an exciton will be attracted to that region, where the band gap is 
smaller and the exciton has lower energy. For the same reason an exciton 
will tend to expand the lattice in the region where it is, and this expansion 
can attract any other exciton which is present. Clearly an intricate theory of 
the dynamics of such a system can be constructed. 

Finally, we should note that the simple intuitive behavior of a hole as a 
positive particle, with positive inertial mass, only applies at the top of the 
valence band where the bands are curve downward. Empty states near the 
bottom of the valence bands, where the bands curve upward, do not behave 
in this intuitive manner. 
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Chapter 15. Lattice Vibrations 

We introduced sound waves in Section 1.8, and obtained their velocity in 
terms of the bulk modulus and density of the medium. We used the 
corresponding frequency, equal to the speed of sound times the 
wavenumber, to discuss the vibrational specific heat of a solid in Section 
10.2. We needed there to restrict the total number of modes to the number 
of degrees of freedom of the vibrating solid, limiting the range of 
wavenumbers just as the wavenumbers for electron states were limited to a 
Brillouin Zone in solids. A more complete calculation of the vibrations, 
analogous to the tight-binding theory of electron states, makes that more 
natural. We do that here by calculating the vibrations in a chain of atoms, 
analogous to the electron states in such a chain in Section 6.1. We then 
generalize the result to three dimensions and introduce the electron 
potentials which such vibrations give rise to, the electron-phonon 
interaction, in preparation for a quantum treatment of the vibrations in the 
following chapter, and of interacting electrons and photons in Chapter 17. 

15.1 The Spectrum 

We may imagine a chain of atoms as masses M ,  each coupled to its 
neighbors by springs, of spring constant K , as illustrated in Fig. 15.1, 
analogous to the chain of atoms considered in Section 6.1. We allow a 
displacement Xn for the n'th atom along the chain axis, and write force equals 

Fig. 15.1. A row of masses, representing atoms, connected by springs of 
spring constant K. Vibrations are represented by displacements x, of each 
atom, shown for the n'th atom. 
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mass times acceleration for each, obtaining the forces from the relative 
displacements of the neighboring atoms as F, = K(Xn+1 - Xn) or K(Xn-1 - Xn). 
The resulting equations are 

(15.1) 

We seek normal modes, vibrations where every atom moves in phase as 
coscot or sincot or even more conveniently as a complex form, e-imt . For 
each n the left side of Eq. (15.1) becomes -MU’xn. This is a set of 
equations closely analogous to Eq. (6-1) for electron states in a chain, and 
indeed we may again apply periodic boundary conditions on the chain, as if 
it were bent into a circle, and seek solutions of these equations of the form 
Xn = uqei¶dn/fi in analogy with the solutions of Eq. (6.1) , using notation 
which will be convenient as we proceed further. In particular, we use q for 
the wavenumber, rather than the k which we use for electron wavenumbers. 
We could take the real part of this expression to obtain real displacements, 
but here and in what follows it is convenient to use the complex expressions 
as is commonly done for alternating electric currents. With this form we 
have 

The factors uqei(¶dn - mt)/fi cancel so all N equations are identical and 
satisfied if 

K 4K . d 
02 = M  (2cosqd - 2) = ~ sm2$ . M (15.3) 

The frequency depends upon the wavenumber q we have chosen, and 
o(q) is called a dispersion curve and is illustrated in Fig. 15.2. With 
periodic boundary conditions q is limited such that qNd equals an integral 
multiple of 2n. The points shown are for N equal to twenty. Wavenumbers 
satisfying this condition, but lying outside the Brillouin Zone shown, 
produce identical displacements to those for some mode inside, so the 
points represent all of the twenty normal modes of the system. Each mode 
corresponds to an independent harmonic oscillator with displacement uq and 
frequency coq. The mode at q = n/d has alternate atoms displaced in opposite 
directions and is the highest-frequency mode. In the Debye approximation 
discussed in Section 10.2 this dispersion curve was approximated by straight 
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Fig. 15.2. The vibration spectrum for the one-dimensional chain of Fig. 
15.1. 0 0  i s  the peak frequency. The points represent allowed 
wavenumbers for a chain of 20 atoms. 

lines tangent to these curves at q = 0, but cut off at the same q = f n /d  . In 
both cases the thermal energy approaches k s T  per mode at high 
temperatures. 

The generalization of this calculation to three dimensions is very direct. 
For this problem the simple-cubic solid which we have used to illustrate 
solids is not the simplest case since with nearest-neighbor, central-force 
interactions, the structure is not stable against a shear of the lattice, so we 
consider the face-centered-cubic lattice (of copper and aluminum, for 
example) which we showed in Fig. 13.3, and redraw in Fig. 15.3. It contains 
a simple-cubic array of atoms, but in addition has one atom at the center of 
every face of every cube. We see that each atom has twelve nearest- 
neighbors at equal distance. The many triangles of three nearest neighbors 
stabilize the structure under any distortion. 

The displacement of an atom initially at position rj is written 6rj and the 
form of the displacements is written as 

(15.4) 

as in the one-dimensional case. We may carry out the calculation for a 
longitudinal mode with q along a cube edge, as shown in Fig. 15.3. We 
focus upon one neighbor to the upper right of the central atom, letting the 
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origin of our coordinates lie at the central atom. The relative displacement 
of the neighbor atom, 6 r j + l  - 6 r .  J - - u q (  eiqJ J + 1 - eiq.rj > / d ~  = 
uqeiq.rj - l)/dN. Only the component of that relative displacement 
along the internuclear axis stretches the spring, so we multiply by cose to 
obtain that component and multiply by the spring constant K to obtain the 
force along the spring axis. Only the component along the x-direction 
survives when we add forces from all neighbors, and the component of the 
force is obtained by multiplying again by cose. We add the force for each of 
the other three neighbors to the right, with each contribution the same, and 
the four to the left. (The four in the same plane of constant x have no 
relative motion and give no force.) The resulting force is SK cos2e uqeiq.rj 
(cos(qd2) - 1). We set this equal to the mass of the central atom times its 
acceleration, -MCOq2%eiq.rj . The uqeiq.rj cancels, so the result applies to 
every atom, and we obtain 

(15.5) 

A plot of this looks exactly like Fig. 15.2, but in this case the Brillouin Zone 
face comes at 2n/, . 

Fig. 15.3. The face-centered-cubic lattice is based upon a simple-cubic 
lattice with cubes of edge a , but with additional atoms at the center of 
each cube face. Shaded atoms lie +a/2 above or below the plane of the 
figure. Here a longitudinal vibrational mode has wavenumber q along the 
x-axis, parallel to a horizontal cube edge, so displacements are also along 
the x-direction. The force, along the x-direction, on the central atom is 
calculated in terms of radial springs coupling the central atom to its twelve 
nearest neighbors. 
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We redo this calculation in Problem 15.1 for a transverse mode, the 
same direction of q as in Fig. 15.3, but with the displacements in the y- 
direction. The calculation of the y-component of the force from the 
neighbor to the upper right is essentially the same, but now all four 
neighbors to the right do not contribute the same and different frequencies 
are obtained. Another transverse mode, with displacements in the z- 
direction, gives identical frequencies to the transverse mode with 
displacements in the y-direction. The calculation is formally the same for 
any wavenumber in the Brillouin Zone, but when q does not lie along such a 
symmetry direction, we do not know initially what the three directions of the 
three uq are; we must write forces in all three directions, solve three 
simultaneous equations, and obtain three modes which will turn out to have 
uq perpendicular to each other. One may be approximately longitudinal and 
two approximately transverse. Since there are N wavenumbers in the 
Brillouin Zone allowed by periodic boundary conditions, we obtain 3N 
frequencies as we expect. 

In Problem 15.2 we write an expression for the total vibrational energy 
for a face-centered cubic crystal in thermal equilibrium in terms of such 
frequencies and obtain the specific heat per atom at high temperatures. 

15.2 The Classical-Vibration Hamiltonian 

We wrote displacements in Eq. (15.4) for a single mode in terms of a 
complex amplitude, with the idea that we could take the real part to obtain 
real displacements. It will be useful to retain such complex amplitudes and 
simply change variables from the 3N displacement components of the N 
atoms to 3N complex amplitudes, called normal coordinates, 

(15.6) 

where now the index h has three values, representing the three modes at each 
wavenumber. This has introduced two independent parameters for each 
mode, the real and the imaginary part of uqh, but we now must require that 
u-qh = uqh* (the complex conjugate) in order that the displacements be real 
so that there are still only 3N independent parameters, the mathematics will 
take care of any difficulties, and we may think of uqh as the amplitude of the 
mode propagating in the direction of q. It will be a little simpler, and easier 
to follow, if we proceed with the one-dimensional chain of the preceding 
section, and then write the result for three dimensions. 

Then the displacement of thej'th atom along the line of the chain is 
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(15.7) 

The total kinetic energy T ,  with each atom having mass M, can then be 
written as 

(15.8) 

with the sums over q and q' running over the Brillouin Zone. However, the 
sum over j is performed first, and gives zero unless q' = -q , seen by 
proceeding exactly as for the sum in Eq. (13.1 l), in which case it gives N .  
Thus Eq. (15.8) becomes 

(15.9) 

This is the only term in the energy depending upon the us and therefore the 
only term contributing to the derivative of the Lagrangian in Eq. (3.3). Thus 
the momentum conjugate to the normal coordinate uq is 

= M u-4. (15.10) aT Pq =- au, 

Note that it is the u- i  which enters. A second contribution has come from 
the term in the sum for wavenumber equal to -9. 

The corresponding calculation of the potential energy gives a sum over 
1/2uqu-q times the effective spring constant for the mode, obtained as 
SKsinz(qd4) from Eq. (15.5), which can also be written Mwq2 . Thus 
rewriting the kinetic energy in terms of the canonical momentum and adding 
the potential energy we obtain a Hamiltonian for the vibrational modes of 

(15.11) 

This can be directly generalized to the three-dimensional case as we 
generalized the calculation of the spectrum. The result is exactly what we 
would anticipate, 



15.2 The Classical-Vibration Hamiltonian 203 

(1 5.12) 

with Pq = M The vector notation is schematic; if we have obtained the 
three vibrational modes at any wavenumber, we associate an amplitude uq 
with each, which is really a scalar quantity, and each has a conjugate 
momentum P, which is really a scalar quantity. However we shall need the 
direction of the displacements in constructing the electron-phonon 
interaction so we keep the bold-face notation for vectors. The sum over h is 
a reminder that all three of the modes at each wavenumber need be added. 
Using this with the classical Hamilton's Equations, Eq. (3.5), gives the 
dynamics of the vibrations. We could also replace Pq by (mi )&a% and 
construct a Schroedinger Equation, or an energy eigenvalue equation. We 
shall not do that, but in Chapter 16 shall use the properties of the momentum 
operator to obtain all the results we shall need. 

15.3 The Electron-Phonon Interaction 

There is one more classical derivation we need to perform before 
proceeding to the quantum-mechanical treatment of lattice vibrations (and 
electromagnetic waves). The presence of a lattice vibration (or a light wave) 
introduces changes in the Hamiltonian for electrons, and therefore coupling 
between electronic states. For vibrations in solids this coupling is called the 
electron-phonon interaction , though it is ultimately of classical origin. It is 
simplest to obtain it from pseudopotential theory, though one can also derive 
it for Here we use 
pseudopotentials. 

There are matrix elements of the pseudopotential between free-electron 
states only if 

tight-binding theory (e. g., Harrison (1999)). 

(15.13) 

differs from zero, which in the perfect lattice occurs only at lattice 
wavenumbers, 90,  as we saw in Section 13.1. Now we displace each atom 
from its position in the perfect lattice according to Eq. (15.6). We may add 
these 6rj to the rj of Eq. (15.13), which represent positions in the undistorted 
lattice, to find the new couplings which the 6rj introduce. For a vibrational 
mode with wavenumber which we write Q, in the Brillouin Zone, we obtain 
a term in 6rj given by 

6rj = UQ e iQ*rj /dN (1 5.14) 
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and of course the complex conjugate term, which we shall denote by c.c., 
must be present also. We have used a capital Q for the mode to avoid 
confusion with the q in Eq. (15.13). If we add this 6r; to the r; in Eq. 
(15.13), and expand the exponential for small UQ , we obtain 

The first term in the final form gives the result for the perfect lattice, 
nonzero only at lattice wavenumbers 90, the dots in Fig. 15.4. The second 
term contains a similar sum over positions in the perfect lattice, and is 
nonzero only if q - Q is such a lattice wavenumber. The complex conjugate 
term is similarly nonzero if q + Q is a lattice wavenumber. Thus these two 
terms give nonzero structure factor at "satellites" to the lattice wavenumbers, 
indicated by X'S in Fig. 15.4. This new structure factor at q = qo + Q is 
-iq . U Q / ~  N . It is multiplied by the pseudopotential form factor w4 for this 
system, 
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Fig. 15.4. The solid dots represent lattice wavenumbers qo for which the 
structure factors, and therefore matrix elements of the pseudopotential, are 
nonzero for the undistorted crystal. In the presence of a lattice vibration 
of wavenumber Q, there arise nonzero structure factors at satellite points, 
q = qo k Q,  to each lattice wavenumber (including qo = 0) indicated by 
XIS. The circle might represent the Fermi sphere in wavenumber space for 
a metal. Then scattering can occur between states on the sphere (if we 
neglect ho in comparison to the Fermi energy EF) which differ in 
wavenumber by any such q. 
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iq u 
<k+qlWk> = S(q)w4 = wq, (1 5.16) 

to obtain the matrix element between any state of wavenumber k and the 
state of wavenumber k + q. For q = qo - Q, the complex conjugate of this 
expression gives the corresponding matrix element. 

These matrix elements are exactly what is called the electron-phonon 
interaction. Regarding these lattice distortions as static (we go beyond this 
approximation in Chapter 16), the new structure factor can produce 
scattering between any two states on a surface of constant energy, such as 
the metal Fermi surface indicated in Fig. 15.4, which differ by the 
corresponding q. We may distinguish normal processes as those that arise 
from the satellites to qo = 0, for which q = +Q. Then the change in electron 
wavenumber is equal to the phonon wavenumber, corresponding to 
conservation of momentum with, as we shall see, the absorption or emission 
of one quantum of vibrational energy. We note from Eq. (15.16) that if the 
modes are purely longitudinal (UQ parallel to Q )  or transverse (UQ 

perpendicular to Q), only longitudinal modes have nonzero structure factors. 
This is the case we shall treat in our analysis. We see, however, there are 
also Umklupp processes from satellites to nonzero qo . Then the change in 
wavenumber of the electron differs from that of the phonon by a lattice 
wavenumber as if the electron diffracted from the perfect lattice at the same 
time that it emitted or absorbed a phonon. Both longitudinal and transverse 
modes give Umklapp processes. They are important in solids, but in Chapter 
16 we treat only the simpler case of normal processes. 

If we had kept terms of second order in UQ in Eq. (15.15), we would 
have found some terms at q = qo, which lead to second-order terms in 
S*(qo)S(qo). They reduce the strength of the diffraction at each lattice 
wavenumber by an amount corresponding to the diffraction added, 
CqS*(q)S(q), by the satellites. The reduction factor at each qo is called the 
Debye- Waller factor (discussed for example in Harrison (1970), p. 426). We 
will not need it here. The remarkable fact is that the thermal vibrations of 
the lattice do not blur the diffraction spot, only weaken it and add a cloud of 
satellite diffractions. 
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VI. Quantum Optics 

We discussed quantum transitions between electron states due to a 
classical light field in Section 9.4. Similarly we could calculate electron 
scattering by classical vibrations of a crystal lattice using the matrix 
elements in terms of the vibrational amplitudes which we derived in the 
preceding section. However, it is often important to treat both the electrons 
and the fields quantum-mechanically. When the fields, or vibration 
amplitudes, are very large the quantum effects are not so important but they 
become essential when the fields are small. The treatment of 
electromagnetic waves and vibrational modes quantum-mechanically is 
calledfield theory and we now need to introduce the operators of field 
theory, both for these waves and modes, and for electrons. This formulation 
is often called second quantization. Their application in quantum optics is 
perhaps the most important for us, and the focus for this section of the book. 
However, it will be best to introduce the operators for electrons first, and to 
make the first application to phonons, quantized lattice vibrations. 

In principle we already have the basic results we need. We have treated 
the harmonic oscillator quantum-mechanically, and have indicated that all of 
the findings apply to vibrational modes and to optical excitations. However, 
in field theory we use only a part of what we developed, the fact that the 
momentum operator (h/i)alax does not commute with the coordinate x 
(changing the order of the product of two "commuting operators" does not 
change the product). In this case, (h/i)alax (xy)= @i)y + x(h/i)&y/ax so 
interchanging (h/i)aldx and x leaves a remainder,~i . This turns out to be 
the feature essential to defining field-theoretical annihilation and creation 
operators for excitations and particles. This is closely related to the point 
we made in Section 1.1 that it is possible to develop quantum theory without 
the waves which we have used throughout. Since we can obtain all of the 
information about the eigenstates of a harmonic oscillator, and its coupling 
to external fields, from the corresponding commutation relation, we did not 
really need the waves. Heisenberg represented the observables by matrices, 
rather than operators on waves. They had the same commutation relations 
so they led to the same results. For most contemporary physicists and 
engineers, the procedure with waves is much more comfortable. 
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Chapter 16. Operators 

We begin by defining annihilation and creation operators for electrons, 
which is possible without introducing the field theoretical basis. This makes 
clear what our goals and approach should be for the harmonic oscillator, 
phonons, and photons. Further, we shall need both for our study of quantum 
optics. For electrons we simply give these as definitions for describing 
many-electron states, though they are derivable from a field theory in much 
the same way we shall derive them for oscillators. 

16.1 Annihilation and Creation Operators for Electrons 

We saw in Section 10.5 that when more than one electron is present, the 
electron state must be antisymmetric with respect to interchange of the 
electrons. This could be accomplished for noninteracting electrons by 
writing a Slater Determinant for the many electron state as we did in Eq. 
(10.22), 

(16.1) 

The index i specifies the spin as well as the orbital for each electron and we 
use the capital Y for the many-electron state. This provides a solution of the 
many-electron Schroedinger Equation if the electron-electron interactions, 
e2/lri - rjl, are neglected. This is a very cumbersome form, and really to 
specify the state we only need to designate which states ~ 1 ,  ~ 2 ,  ...wN are 
occupied, and the order in which we have placed them. We may introduce 
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creation operators as an intuitive shortcut for specifying the many-electron 
state. We define the vacuum state lo> and the creation operator C j t  which 
places an electron in the j'th state. (The "t" represents a complex conjugate, 
and the operator is often called " c-j-dagger".) Then the state in Eq. (16.1) is 
written 

We imagine successively creating electrons in the states ~ 1 ,  ~ 2 ,  etc. If we 
interchange two states, corresponding to interchanging ri and rj in Eq. 
(16. l), this interchanges two columns in the determinant and changes the 
sign of the state. This is written in terms of creation operators as the 
commutation relation, 

Eq. (16.3) applies to the interchange of any pair, holding the others fixed, 
but we shall make only nearest-neighbor interchanges. 

The Pauli exclusion principle follows immediately from this 
commutation relation, since if any indexj  appears twice in the state Eq. 
(16.2), we could commute neighboring operators until the two were 
neighbors and from Eq. (16.3) cjtcjt = 0. AS throughout our study, a state 
equal to zero is no state. 

We may similarly define the complex conjugate of the many-electron 
state, 

The complex conjugate operators Cj  clearly have the same commutation 
relations, cicj + cjci = 0, as the creation operators. 

We wish to have normalized states, so <010> = 1 and <Olcjcjt10> = 1 and 
we wish to have orthogonality of different states, e. g., <Olcj10> = 0. This 
requires commutation relations between the two kinds of operators and the 
choice which accomplishes the orthonormality of the many-electron states is 

if we also take CjlO> = 0 , and <Olcjt = 0. 
This completes the definition of the operators and shows that we may 

think of the cj as the annihilation operator for the state vj . For example cj 
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operating on a state c j t c i t ) O >  containing electrons in states i and j gives, 
after using Eq. (16.5), (1 - c.tcj)citlO>. We again use Eq. (16.5) for the 

condition. The first term is just the initial state with the electron in the j'th 
state annihilated. In these terms we would say that CjlO> equals zero because 
no state can be obtained by annihilating an electron from the vacuum. 

We may confirm that each many-electron state is normalized by using 
Eq. (16.5) on the central pair of operators, 

second term to obtain c j t c i  I CjlO> which is zero because of the cjlO> = 0 

Then the second term is shown to be zero by commuting the CN to the right 
till we obtain CNIO> = 0. The first term equals the <'PI'€'> for the state with 
the last electron removed. We may successively eliminate each electron the 
same way until we obtain <010> which is one, proving the normalization. In 
Problem 16.1 we see that the same analysis shows that any two many-body 
states with different one-electron states occupied are orthogonal to each 
other. 

This notation with annihilation and creation operators can also be used to 
express the operators for any observables for the system. We note first that 
the number operator is 

We show this by operating with it on a state such as Eq. (16.2). For each 
term in the sum overj  we commute the c; and then the C j t  successively past 
each ckt in the state. If we never come to a state with k = j  , we come finally 
to cjtcj)O> = 0 and no contribution to n\Y>. If we do come to a state k = j  , 
we obtain an extra term in commuting the c;, which gives cjt(1 - cj tc j ) .  This 
extra term with the 1 is just the starting state (Y>, while the second vanishes 
as before. Thus for every state included in the list 1, 2, 3, ... N for the state 
lY> we obtain a term. The N terms give us nIY> = N/Y> , which defines n 
as the number operator. 

In the same way, if the states Wj are one-electron eigenstates of the 
Hamiltonian with energy Ej , the operator 

H = C j  &j c j t c j  (16.8) 
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operating on the state lY> gives a sum of Ej over the occupied states and can 
be considered the one-electron Hamiltonian. For free-electron states Eq. 
(16.8), with & k  =I?k2/(2rn), is the kinetic-energy operator. If we add a 
potential V(r) seen by all of the electrons, it is represented by an operator 

which couples each one-electron state Ik> to other plane-wave states (k+q> 
(as in Eq. (13.5)). Of course <k+qlV(r)Jk> = (l/sZ$e-iq- rV(r) d3r . The 
sum in Eq. (16.9) will include a sum over spin, but the matrix element 
<k+qlV(r)lk> is nonzero only if both states have the same spin. 

Finally, the electron-electron interaction can be written 

(1 6.10) 

Again, Ik> and Ik+q> must correspond to the same spin and Ik'> and Ik'-q> 
must correspond to the same spin. The matrix element 4ne2/((42+~2)sZ) was 
evaluated as in Eq. (13.9). We have included a convergence factor, e-Kb-r'I, 
as we did in Eq. (13.9). As we noted then, we could take K = 0 at the end but 
we shall see in Section 20.2 that such a factor is a suitable approximation to 
the effect of the screening of the interaction between any particular electron 
pair through the motion of the other electrons present. This last operator, 
with or without the K, is central to the study of the effects of electron- 
electron interaction on the properties of solids. Field theory provides 
systematic ways to approximate the effects of this term which contains four 
operators, though that is not our goal here 

We may illustrate the subject by evaluating the energy for a pair of free 
electrons, with opposite spin, in the k = 0 state, to second order in the 
electron-electron interaction. We write our starting, zero-order, state \Yo> 
= cOJ,tcO?t10> and the perturbation as Hi given in Eq. (16.10). We proceed 
using the perturbation theory of Section 5.4 to obtain the first- and second- 
order shifts in the energy, 

(16.11) 

where /Yo> is the two-electron ground state with energy Eo = 0 without the 
electron-electron interaction Hi. The IY n> are excited two-electron states 
which "can be reached" by that interaction. We see what this means by 
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operating upon /Yo> with the H i  given in Eq. (16.10). The final ck 
operating on coJ,tcOTt)O> will give zero unless k is one of the k= 0 states, 
say spin up, and then the state Ik+q> will have wavenumber q and the same 
spin up. Then ck' will give zero except for k' = 0 corresponding to spin 
down. In this case, with k as spin up, ck+qtcki-qtckick operating on 
cOJ,tcO?t/O> gives -cqTtc-qJ,tIO> with the matrix element 4ne2/((q2+~2)Q), 
where we have kept track of the sign changes in the successive use of the 
commutation relation, Eq. (16.5). The other term, with k as spin down, 
leads to cqJ,tcqTt)0> with the same matrix element, but this is the same 
state but with the wavenumber q reversed. Thus we may combine them in 
the sum, as cqJ,tcqTtl0> canceling the factor of 1/2 in front, so that 

(16.12) 

The states appearing in the final sum are those which can be reached by the 
electron-electron interaction. 

This is a very important conceptual point, and one which we shall use 
frequently. The interaction term in the Hamiltonian annihilates electrons in 
some states and creates them in others to produce intermediate states in the 
perturbation theory. The various combinations of interactions which enter in 
higher-order perturbation theory are represented by Feynman diagrams 
which give a visual representation of the terms which are being included, 
and keep track of the matrix elements which are to be used. We will not 
need them here. For the first-order term, the term <YoIH1JYO> in Eq. 
(16.11), we note all of the terms in Hl(Yo> are orthogonal to /Yo> , and thus 
give zero, except the term q = 0. Thus, only that term contributes and gives 
<YolH1IYo> = 4ne2/(Q~2). (It was good that we kept the K.) 

For the second-order term in Eq. (16.11) we see that each term in 
HllYo> produces a different intermediate state c-qJ,tcqTflO>, one with the 
spin-up electron excited into the state with wavenumber q and the spin- 
down electron excited into the state with wavenumber -q, conserving 
momentum. The energy of this intermediate state is En = 2h2q2/(2m). In 
completing the evaluation we do not even need to include the IYn><YnI 
which appears in the expression except to note in passing that the energy 
denominator is -2f$q2/(2m). The Cq provides the sum over intermediate 
states and we simply operate again with W 1  . In this case, the only 
contributing terms in the new sum over q' will be those which "return" the 
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system to the ground state /Yo>, the term with q' = - q, and they contribute 
another factor of 4&/((q2+~2)Q).  We may complete the calculation of the 
energy shift by evaluating the sum as we have done before, 

2m 

(16.13) 

The first term represents the interaction between these two electrons, 
each spread out over the volume $2. The second represents a reduction in 
that energy as the electrons modify their states to avoid each other. This is 
exactly what is called correlation energy for electron gases, the shift in 
energy due to the correlated motion of the electrons. In the chemical 
literature, when it is calculated for atoms or molecules, it is called 
configuration interaction. Eq. (16.13) would give a good value for the shift 
for the electron pair if K were large enough that the second term was small 
compared to the first, and then presumably the terms of higher order were 
still smaller. 

This same formulation could have been used to calculate the van-der- 
Waals interaction which we calculated for two coupled oscillators in Section 
12.2 and for coupled atoms in Problem 12.2. The coupling e2/lr - r'l couples 
electrons on different atoms, taking them from the ground state to a state 
with one electron on each atom in an excited state, as seen in Problem 12.2. 
The resulting shift in energy is proportional to e4 from the squared matrix 
element and to the reciprocal of the excitation energy as we found there. 

The same formulation can be used directly with Fenni's Golden Rule to 
calculate scattering of electrons by each other. The treatment of matrix 
elements as in Eq. (16.12) is exactly the same, but instead of the energy 
differences appearing in the denominator they appear in a delta function for 
the total energy before and after. The calculations are straightforward, and 
just as simple as those which led to Eq. (16.13) 

16.2 Stepping Operators 

We return to the simple harmonic oscillator, which we treated in Section 
2.5, but now seek to understand it in a form analogous to what we have just 
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used for many-electron systems. In Section 2.5 we wrote the energy of a 
Harmonic oscillator with displacement coordinate x as 1/2M X 2 + 1 / 2 ~ x 2 .  
Using the procedure for obtaining a Hamiltonian we find a momentum 
operator, conjugate to x , of 

in terms of which the Hamiltonian is 

P2 Kx2 
H=-+-. 2M 2 (16.15) 

We found the energy eigenvalues of E . ~  = hoo(n + 1/2) in terms of the 
classical vibrational frequency 00 = d a ,  and found also the eigenstates 

We wish here to define a stepping operator, which when operating on 
the n'th eigenstate gives the n+lst eigenstate, just as the creation operator for 
electrons added an electron to some state. The essential feature there was 
the commutation relation, Eq. (16.5), and by deriving analogous 
commutation relations here we shall find the corresponding stepping 
operators. When we generalize this to lattice vibrations we shall see that 
these stepping operators are the annihilation and creation operators for 
phonons, and when we generalize it to light modes we shall see that the 
stepping operators become annihilation and creation operators for photons. 

The fact that the ground-state wavefunction, which we wrote in Eq. 
(2.40), is of the form ~ ( x )  = A exp(-x2/(2L2)), and the first excited state is 
of the same form with an additional factor of x, would suggest that either the 
factor x or the momentum operator, @/i)d/ax, might serve as a stepping 
operator. In fact these two operators do not commute, since 

@n(x>. 

t;a t; 
lax P x =  7 x = r + x P  (16.16) 

This would suggest that we define some combination of the x and P to 
obtain operators with commutation relations such as Eq. (16.5), which do not 
have the imaginary result of Eq. (16.16). Trying ot = ogx - iP/M and o = 
ogx + iP/M so that both terms have the same units gives, using Eq. (16.16), 
oto - oot = - 2 h o d M .  Finally then we try the definitions 
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(16.17) 

Again using Eq. (16.16) we obtain the commutation relations for the 
operators we have defined, 

aat - ata  = 1. ( 16.1 8) 

In Problem 16.2 we evaluate ata  from Eq. (16.17), using Eq. (16.16) to 
obtain canceling terms, to find that the Hamiltonian 

P2 Kx2 
2M 2 H = ---+-=hoo(ata+1/2).  (1 6.19) 

For an eigenstate of the Hamiltonian for which the energy is hoo(n + 1/2), 
we have thus shown that a ta  is the number operator fo r  excitations of the 
oscillator. 

We can now easily show that a t  increases the excitation energy one step: 
We imagine the system in the n'th eigenstate, ataln> = nln>. We then 
operate on the state In> with at  and again apply the number operator, 

ata aqn> = aq1 + &)In> = (n+l)atln>, (16.20) 

so that indeed atln> is in the n+lst state of excitation. We similarly find 
that ata aln> = (n-l)aln> so a lowers the excitation by one unit. It follows 
also that <Olata10> = 0, so there is no state a10>. Because of these 
properties, a t  and a are also called "raising" and "lowering" operators and 
their counterparts will become the creation and annihilation operators for 
phonons and photons. 

There is an odd feature of these operators which did not arise for 
electrons. If the state In> is normalized, the state atln> is not. We see this 
by evaluating the normalization integral , using the commutation relation, 

<nla a t l o  = <nl(l+ata)ln> = (I+n)<nln>. (16.21) 

We can however write a normalized state as 
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and it will always be appropriate to use normalized eigenstates. The more 
useful expressions will be 

in terms of the normalized eigenstates, In>. 
It may be helpful to make one application which illustrates the use of 

this formalism, and then to see how stepping operators are used for angular- 
momentum eigenstates, before moving to phonon operators. We imagine a 
harmonic oscillator to which we apply a classical oscillating force, H i  = 
-Fx eiwt + c.c.. We may directly apply the time-dependent perturbation 
theory of Eq. (9.9) which becomes 

Proceeding as in Chapter 9, we would calculate the matrix elements from 
harmonic oscillator wavefunctions as -F JdXvm(x)xv,(x). We now have an 
alternative way using the definitions of a tand a in Eqs. (16.17). We may 
add the two equations and divide both sides by 4- to obtain 

(16.25) 

Then we obtain 

(16.26) 
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and zero otherwise. Thus the product of matrix elements in Eq. (16.24) is 
<nl-Fx(m><rnl-Fxln> = [hF2/(2Moo)](n+l) if the final state is m = n +1 and 
[hF2/(2Moo)]n if the final state is m = n - 1. It is interesting that these matrix 
elements were obtained using only the commutation relations, without the 
wavefunctions we would have used earlier. To complete the evaluation we 
would need a distribution of forces, F2(o)  do as a function of o , and we 
shall make such evaluations later. It leads to a rate l/.r = [7cF2(o)/(n/nio0)] 
( n + l )  for raising the energy of the oscillator and a rate 1 / ~  = 
[ n @ ( ~ ~ ) / ( M h o ) ] n  for lowering the energy. If we considered the case of 
large forces, corresponding to F 2 ( o )  very large, this would approach the 
classical limit with a raising rate greater than the lowering rate and a 
continual heating up of the oscillator. 

16.3 Angular Momentum 

Finally, we shall indicate briefly how stepping operators are used with 
angular-momentum eigenstates, though we shall have little occasion to use 
them except for the treatment of spin-orbit coupling in Section 22.5. We 
described angular-momentum eigenstates in terms of the spherical 
harmonics Yl m(0,Q) in Section 2.4. 1 was the total-angular-momentum 
quantum number and m the quantum number for the component along the z- 
axis, -1 5 m <I. As in the two-dimensional angular-momentum operator of 
Eq. (2.24) we may write the three-dimensional operator, 

(16.27) 

where the f, 9 ,  and 2 are unit vectors in the three cube directions. Then the 
Ylm(0,Q), in terms of the coordinate system given in Fig. 2.7 shown again in 
Fig. 16.1, are eigenstates of the two operators, 

h .  a 
rsin0 ' Lz = x- y - ~ rsin0 7 :y- i 

with eigenvalue hm, and 

(16.28) 

L2 = Lx2 + Ly2 + Lz2 (16.29) 
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Fig. 16.1. Polar and rectangular coordinate systems. 

with eigenvalue @Z(l+l). 

commutator is 
We consider how these operators commute. We can see that the 

[ ~ 2 ,  L] = L ~ L ,  - L,L~ = 0. (16.30) 

They commute, since we could expand any function of angle in spherical 
harmonics and operating successively with the two operators simply gives 
the product of the two eigenvalues for that term and the commutator cancels 
term by term. When two operators commute, it can be seen that states can 
be chosen to be eigenfunctions of both. Similarly [L2, L,] = [L2, Ly] = 0 
since we could pick polar axes along either of these axes and make the same 
argument. However, by writing out the terms we may see that the different 
components do not commute, but give 

LxLy - LyLx = if&, (16.31) 

and the corresponding expressions with indices rotated ( e. g., x+y, y+z, 
ZJX ). These are a little like stepping operators and in fact we can construct 
operators which have the stepping property as 

L+ = Lx + iL,, 

L- = Lx - iLy . 
(16.32) 

We may check using Eq. (16.31), and the rotated expressions, that the 
commutation relations for Lz and L.1. are 

LzL& - LlLz  = k hL* . (16.33) 

With a little more operator algebra we see that 
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L+L- = (Lx + iLy)(Lx - iL,) 
(16.34) 

= ~ , 2  -i(LxLy - L,L,) + ~~2 = ~ ~ 2  + tZZ + ~~2 = ~2 - L ~ ( L ~  - h) 

and similarly that L-L+ = L2 - Lz(Lz + 6) so that the principal commutation 
relation becomes 

I L+L_ - LL+ = 2hLz, (16.35) I 
From Eq. (16.33) we can see that L- lowers the component of angular 
momentum along the z-axis by one unit, 

Similarly, L+ raises the component by one unit. As with harmonic-oscillator 
raising and lowering operators, Lk on a normalized state does not 
necessarily lead to a normalized state. We may evaluate the normalization 
integral for the state L-lZ,m> using Eq. (16.34), 

<l,mlL+L-ll,m> = <Z,mlL2 - Lz(Lz- h)lZ,m> = [Z(Z+l) -m(m -l)]h2. (16.37) 

From this, and the counterpart for L+ll,m>, in terms of normalized states 
Il,m> we have 

There are many relations which can be derived, relations between states 
with different axes, and formulae for addition of different contributions to 
the total angular momentum in complex systems. These can be found in 
almost any standard text when they are needed. We shall introduce the only 
one we need, that involving the addition of orbital and spin angular 
momentum, in Section 22.5 when we discuss spin-orbit coupling. However, 
here we should note the selection rules which these operators lead to, which 
we made use of following Eq. (9.13). 
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We return to the angular coordinate system of Fig. 16.1 and write states 
as spherical harmonics, Yp(€l,+) = Plm(cos0)eimO, so that <I’,m’leiOlI,m> = 
<I’,m’I(x+iy)/rlI,m> = 1 if 1‘ = I, m‘ = m + l ,  and zero otherwise due to the 
orthogonality of the states. Similarly x - iy only has nonzero matrix 
elements for m’ = m - 1. It follows that perturbations proportional to x or to 
y , such as electric fields in the xy-plane, only couple states which differ in 
z-component of angular momentum by one unit, as we indicated in Section 
9.4. 
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Chapter 17. Phonons 

The generalization of these stepping operators to lattice vibrations and to 
light modes is quite direct. We carry it out first for lattice vibrations which 
may be easier to visualize. We make applications to the emission and 
absorption of phonons by electrons in semiconductors and then to the 
formation of polarons in semiconductors. 

17.1 Annihilation and Creation Operators for Phonons 

We begin with the Hamiltonian for the vibrational modes in Eq. (15.12) 
as 

(17.1) 

It can be confirmed that if we define annihilation and creation operators as in 
Eq. (16.17) by 

(17.2) 

and evaluate 
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(17.3) 

we obtain Eq. (17.1). We obtain an additional term in doing this but it sums 
to zero in the sum over all wavenumbers (e. g., Harrison (1970) p. 408). 
Finally, we may replace q by -q in the first of Eq. (17.2), add it to the second 
and solve for uq to obtain the counterpart of Eq. (16.25) as 

Uq =d=(a-'11 h + a q  1 .  

The commutation relations for the operators, 

(17.4) 

aqaqt - aqtaq = 1 (17.5) 

carry over from Eq. (16.18) as well as the operator properties, 

aq+> = d T l n s  +I>, 

aqln> = + q n q  - 1> , 
(17.6) 

from Eq. (16.23). 
We saw in Eq. (16.9) that potentials V(r) seen by the electrons are 

incorporated in the Hamiltonian as Ck,q <k+ql V(r)lkXk+qtck. W e 
obtained the corresponding matrix elements between electronic states which 
arise from classical lattice vibrations in Eq. (15.16) and here we consider 
only normal process, those for which the change in electron wavenumber is 
equal to the vibrational wavenumber, so that these matrix elements become 

(17.7) 

!2 1 

We used plane waves and pseudopotentials which are appropriate for metals, 
but in a semiconductor the w q  in Eq. (17.7) can be replaced by a 
deformation-potentid constant D (e. g., Harrison (1999)). If a dilatation of 
the lattice 6Q/Q shifts a band minimum by -D6Q/Q, one assumes that the 
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displacements for a phonon 6r = uqeiq r ldN, giving a local dilatation V&, 
will produce a potential V(r) = -DV&-. This leads to exactly Eq. (17.7) with 
wq replaced by D. In either case, only longitudinal modes enter and uq can 
be taken parallel to q so the vector notation and the sum over h become 
irrelevant, q . uq = quq. We write the term in the Hamiltonian for the 
interaction between electrons and classical lattice vibrations as 

(17.8) 

We incorporate the quantum description of the lattice vibrations by 
substituting from Eq. (17.4) for uq. This gives the electron-phonon 
interaction, 

For convenience in using the electron-phonon interaction we may collect the 
factors in front as 

(17.10) 

(or with w q  replaced by a deformation-potential constant D for 
semiconductors) so that the electron-phonon interaction becomes simply 

(17.11) 

Once we have obtained the form it is seen to make perfect physical 
sense. Electrons can be taken from a state of wavenumber k to one of 
wavenumber k + q either by the absorption of a phonon of wavenumber q or 
by the emission of a phonon of wavenumber -q. As always, momentum 
conservation is enforced by the matrix element and any energy conservation 
will come from the energy delta function in the Golden Rule. The form of 
the interaction constant, Eq. (17.10), is not so obvious except that it is 
proportional to the pseudopotential. In metals q will be of the order of the 
Fermi wavenumber so that the interaction constant Vq is of order 
w q d q  We think of the form factor as being typically a tenth of 
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the F e d  energy andhoq being of order . \lrn/ME~ so that V, = -i d a w ,  
is small at some 1% of EF,  perhaps a few tenths of an electron volt. Similar 
values are appropriate for semiconductors. It is much better form to keep the 
dependence upon N explicit as in Eq. (17.11) rather than absorb it in the 
interaction constant of (17. lo), which now does not depend upon the size of 
the system. 

17.2 Phonon Emission and Absorption 

Our first application is the emission and absorption of phonons by 
electrons. We begin by reducing the operators and obtain a form for the rate 
in terms of the occupation of electron states and phonon numbers. There is 
no explicit time dependence in the electron-phonon interaction so we can use 
the Golden Rule of Eq. (7.9) directly. 

(17.12) 

with (i> the initial state and If> the final state. We first operate on the initial 
state with the electron-phonon interaction, 

(17.13) 

which gives two terms for each q, one with one less phonon than the initial 
state and one with one more phonon. Also, one electron has been transferred 
from a state k to a state k + q (of the same spin). Exactly as we noted for 
Eq. (16.12) the operation produces a final state, with some factors such as 
the Vq. Each such term is a final state, so we do not need to multiply by <fl, 
which would just give the constant, and then insert If> again. The lf><fJ in 
Eq. (17.12) is simply a reminder to notice what to insert for Ef in the delta 
function. We already have included a sum over the final states in the sum 
given in Eq. (17.13). We simply operate again by the He@ for the first matrix 
element. This will give us many more states, but out of those we select only 
the one corresponding to the initial state. That is, we select only the term in 
He+He$Ii> which restores the initial phonon numbers and returns the electron 
to its initial state li> which matches the <il in Eq. (17.12). [What we have 
done is to ignore a Zf (f><f( which, mathematically, is the identity operator. 
Operating on any function with <fl gives the expansion coefficient for that 
function, for an expansion in the complete set of states If>. Multiplying that 
coefficient by If> and summing over f reexpands the function, giving the 
initial function.] The result is 
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Now, as always with calculations based upon annihilation and creation 
operators, we evaluate all expressions containing these operators. We may 
commute c k t  two steps to the right to obtain cktck, which is the number 
operator for the state, and we may write the result of operation on the initial 
state as giving a factor of f(k), a distribution such as we introduced in 
Chapter 10. Using the commutation relation, Eq. (16.5), the combination 
ck+qck+qt becomes (1-J(k+q)). The operator pair aqtaq is the number 
operator for phonons in the mode of wavenumber q,  which we replace by 
that number, nq, and aqaq? becomes n-q + 1, using the commutation 
relation, Eq. (17.5). 

The term with the aqaqt  represents a final state with an additional 
phonon, and with the electron transferred from state k to state k+q, so that 
Ef - Ei =hog + Ek+q - Ek. For the term with aqtaq the final state has one 
less phonon and Ef - Ei = - haq + &k+q - Ek. Thus our expression for the 
transition rate has become 

27t 1 
h N  + - - c ,k v-qvq ( l-f(k+q)xk)nq 6(- h a q  + Ek+q - Fk). 

The physics of both contributions is quite clear. The first line represents 
electron transitions in which a phonon of wavenumber -q is emitted, so to 
conserve momentum the electron must gain momentum hq, and must lose 
energy (according to the delta function) to make up for the phonon energy. 
The rate is of course proportional to the probability f(k) that the initial state 
was occupied, and to the probability, 1 - f@+q), that the final state was 
previously empty since the Pauli Principle does not allow double occupation 
of the state. The second of the two terms in the first line, the 1 in n..q + 1 ,  is 
called spontaneous emission, which can occur even if no phonons were 
initially present, if there were electrons with enough energy to create that 
phonon. The first term, n-q in n-q + 1 ,  is the additional stimulated emission, 
which can be caused by phonons already present. The second line is 
similarly interpreted as representing electron transitions for which a phonon 
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is absorbed and the electron energy increases. They cannot occur without 
phonons present, and the rate is proportional to nq. It is impressive that 
these three distinct physical processes are all incorporated in the same 
analysis and described by the same parameters. 

We did not yet need to specify whether we were discussing metals or 
semiconductors; the difference enters through the distribution functions in 
Eq. (17.15), the form of Vq which is used, and whether the mass is replaced 
by an effective mass. It may be helpful for understanding this important 
process to redo the analysis for a specific case, as in Problem 17.1. That 
problem parallels the analysis we now give of the shift in the energy of an 
isolated electron in a semiconductor due to the electron-phonon interaction. 
We shall outline the calculation for Problem 17.1 as we proceed, and plot the 
resulting l/z at the end. 

17.3 Polaron Self-Energy 

We again use perturbation theory, but now for the shift in energy due to 
He$, which couples an ordinary electronic band state, with no phonons 
present, to higher-energy electronic states with also an emitted phonon. The 
coupling to higher-energy states always lowers the energy and the resulting 
combination of electron and lattice distortion, when it occurs in a polar 
crystal such as gallium arsenide, is called a polaron. The effect is physically 
analogous to the lowering in energy of a heavy ball rolling on a mattress. 

We begin with a well-defined initial state, with a single electron in the 
state k = 0, and no phonons present. [In Problem 17.1 k is not zero, but 
there are no phonons.] We are seeking a shift in the energy, 

(17.16) 

rather than the Golden Rule formula, Eq. (17.12) which we used before and 
which is used in Problem 17.1. 

Only one term in the sum over k in the electron-phonon interaction of 
Eq. (17.13) contributes when we evaluate He$li>, the ck for the single 
occupied state k = 0, and only the term enters if there are no phonons in 
the initial state. Thus we have only a sum over q. We again need not write 
Cflf><fl, but note the energy change in going from the initial to the final 
state, in our case h2q2/2m* + lhq if the electron energies are written in terms 
of an effective mass as &k =@k*/2m*. In Problem 17.1 there is a difference 
in two kinetic energies, &k and &k+q. Then with the second application of 
He$ we keep only the term which returns us to the initial state. Then Eq. 
(17.16) becomes 
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(17.17) 

and using the commutation relation, Eq. (17.5), we have <ila-qa-qtli> = 1. 
We have then eliminated all of the operators, as we must, and can complete 
the evaluation. 

The remainder of the calculation depends upon the system we wish to 
treat and the approximations we wish to make. In polar crystals the 
strongest interaction is with a high-frequency set of modes called "optical 
modes", for which Eq. (17.7) is replaced by (Harrison (1999), p. 280) 

(1 7.1 8) 

with eT* an effective charge and E the dielectric constant. The interesting 
point is that the corresponding V, is proportional to l /q , and the 
corresponding mq is essentially independent of q ,  which makes the 
evaluation of Eq. (17.17) quite simple. We write V, = Voqo/q and oq = 00 
and note that the terms in Eq. (17.17) are independent of the direction of q 
so we can replace the Cq by (Q/(2n)3)14q2dq (as in Eq. (2.9)) to obtain 

(17.19) 

Because of the form of the polar interaction in Eq. (17.18) this integral 
converges if we extend the integration to infinity. In such cases, in which 
the integral converges, it is ordinarily a good approximation to extend it to 
infinity. [Otherwise we might introduce a cut-off q D  which conserves the 
appropriate number of modes as in Eq. (10.14).] The result is 

(17.20) 

with the final integral equal to d 2 .  
This lowering of the energy of the electron due to the deformation of the 

lattice around it turns out to be numerically rather small. Of more interest is 
the change in this energy with the wavenumber k of the electron, which 
could be calculated in the same way. Epol increases in magnitude with the 
energy of the electron, giving an increase in the effective mass of the 
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k 

Fig. 17.1 The coordinate system for calculating phonon emission and 
absorption of optical phonons 

resulting "polaron". It can be useful to have a means of estimating such 
effects. 

The same approximation for the interaction Vq = Vo& and oq = 00 
also makes the evaluation of the integrals for scattering analytically doable 
in Problem 17.1. For that problem it is convenient to sum over final-state 
wavenumbers k' rather than q, an exactly equivalent sum. Then the sum is 
converted to an integral as C, + Ck' = (SW(2~~)~)127tk2dk' [sine de as in Fig. 
17.1. Using the cosine rule we can write q2 = k2 + k 2  - 2kk' cose. 

It is usually best to utilize the delta function, 6(l?k22/(2rn*) + hoo - 
h2k2/(2rn*)), first in cases such as Problem 17.1. This is accomplished by 
carrying out the integration over k' , which fixes k'  in terms of k, both of 

Fig. 17.2. The rate of spontaneous optical phonon (frequency 0 0 )  
emission in a polar semiconductor as a function of electron energy Ek, 
from Problem 17.1. 
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which still appear in the equation. The remaining integral over angle can be 
performed analytically. The result is plotted in Fig. 17.2. 

We may note from the diagram of Fig. 17.1 that there can be no 
emission unless the initial energy is high enough to allow for the creation of 
a phonon, and that is reflected in Fig. 17.2 

17.4 Electron-Electron and Nucleon-Nucleon Interactions 

The electron-phonon coupling also leads to an electron-electron 
interaction responsible for ordinary superconductivity. Only electrons with 
energies very near the Fermi energy in the metal are important and their 
interaction is treated as a second-order coupling as in Section 9.1. The 
electron-phonon interaction couples the ground state of the metal to a 
(higher-energy) state with one electron wavenumber deflected by q and a 
phonon of wavenumber -q created. This state is in turn coupled to a state in 
which the phonon is absorbed and a second electron's wavenumber is 
deflected by -q. This has the effect of a "collision" between the two 
electrons arising from the exchange of a virtual phonon, called virtual since 
energy is not conserved in this intermediate state. The second-order matrix 
element contains a Vq* Vq and a negative energy denominator, so it acts as an 
attractive interaction, which is responsible for the pairing of electrons in 
superconductivity. 

The physical origin of this attraction can be understood in the same way 
we understood the polaron energy at the beginning of the preceding section. 
A ball rolling on a mattress has its energy lowered by deforming the mattress 
to lower its energy in the gravitational field. A second ball rolling on the 
mattress will be attracted to the depression from the first ball and they will 
tend to cluster, as illustrated in Fig. 17.3. We shall use that concept when 
we discuss the nature of the superconducting state in Section 21.4 though 
with these high-energy electrons and the slow-moving atoms this low- 
frequency concept is not as appropriate as the description given in the last 
paragraph. The low-frequency view can be appropriate in semiconductors 
and we carry it further here, first for a single electron and then for two. It 

Fig. 17.3. Two polarons, arising from the electron-phonon coupling, 
attract each other. Similarly two balls rolling on a mattress lower their 
energy by deforming the mattress, and are attracted by the depression 
made by the other. As a consequence they tend to move closer together . 
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will also enable us to understand the origin of the nucleon-nucleon 
interaction which we introduced in Section 4.4. 

We noted following Eq. (17.7) that atom displacements 6r = 
u q e i V / \ / N ,  give a local dilatation V 6 r  and in a semiconductor may produce 
a deformation potential V(r) = -DV& = -iq.u@elWdN with q.uq= quq 
for a longitudinal mode (and zero for a transverse mode). If we think of an 
electron at a position r this gives us a perturbation to the phonon 
Hamiltonian and we may calculate a shift in the energy as we did for an 
electron in a plane-wave state in the preceding section. We are treating the 
electron classically at this stage of the analysis by leaving the electron 
position r in the equations. We again use Eq. (17.4) to write uq  in terms of 
annihilation and creation operators and if the zero-order state contains no 
phonons we obtain contributions only from aqaqt = 1. With an energy 
denominator of hoq  we sum over q to write 

(17.21) 

the counterpart of Eq. (17.17) without the shift in electron energy in the 
denominator. We also kept the two phase factors which of course cancel in 
this case. This would be a suitable approximation if the phonon frequencies 
were high enough that the change in electron energy h2q2/(2m*) were 
negligible. This high-frequency approximation corresponds to the physical 
assumption that the lattice response is effectively instantaneous. 

If we do make this assumption, we may generalize Eq. (17.21) to an 
electron at rl and a second at 1-2 so that e i V  is replaced by e i V i  + eiq.rz and 
the numerator in the final factor becomes 2 + e- idr i - r2)  + eiq.(ri-r2). The 
first term gives twice Eq. (17.21), the polaron shift for the two electrons. 
However, the other terms give the interaction between the two polarons. 
The two terms add to give the interaction in terms of the distance between 
the two electrons r = r 2  - rl as 

(17.22) 

The same result could have been obtained with a classical calculation based 
upon the same electron-vibration interaction; note that no h appears in the 
answer. 

It would be easy to make a bad approximation at this point. We might 
make the Debye approximation which we used for the specific heat in 
Section 10.23 to write oq = vsq and integrate to the Debye wavenumber q~ 
with (47cq~3/3)(Qn/(2~~)3)=N. The sum multiplied by 1/N would then 
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become (3/~,2)(s inqgr/(q~r)~ -cosqDr /(qDr)2). This might be meaningful 
as r goes to 0, but the oscillations as a function of Y come from the artificial 
cut-off at qD. We may note a particular case for which this r-dependent 
result is quite wrong, the case with q2/oq2 = l/vs2. Then that factor may be 
taken out of the sum, and the sum over the exact Brillouin Zone is zero 
unless r = 0. The result we obtain with the Debye integral is completely 
wrong for this case, and for other forms of oq as well. 

There are different ways to proceed, including a numerical sum over the 
Brillouin Zone, though then one should reconsider the small-q form which 
we used for the coupling, - D V &  . One approximate way is to replace the 
summand by (l/vs2)e-9aeiq. r and integrate over all q , with a chosen such 
that the sum is N/vs2 with r = 0 . This yields 

0 2  1 
Vpol(r) = - - M (1 -I- (2/3)2'3(9DY)2)2 . (17.23) 

This is an attractive interaction which drops off in a few interatomic 
distances, each of order l / q ~ .  Though it is classical, we may think of the 
interaction as arising from the exchange of phonons between the two 
electrons just as we can think of the e2/r Coulomb interaction as arising 
from the exchange of photons. In fact every interaction between particles is 
thought of as arising from the exchange of some kmd of particle. 

When the exchanged particles are massless, the interaction has an 
algebraic dependence upon separation, as in Eq. (17.23). The short-range 
interaction between nucleons, suggested by the liquid-drop model (Section 
4.4), indicated to Yukawa (1935) that the particles exchanged must have 
mass. We may see why by going back to the form we obtained from 
exchange of phonons, Eq. (17.22). We had taken the energy denominator 
hoqas  the energy to create a phonon. With the phonon replaced by a 
particle with nonzero mass we may use the relativistic form for the energy 
from Problem 1.1 (including the mc2 to create the particle). It is simplest to 
use it for both factors ofhoq, which is assuming the same form for the 
coupling as the electron-phonon coupling, and we have 

(17.24) 

with m and q being the mass and wavenumber of the particle exchanged. 
We may again replace the sum by an integral, (Q/(27~)3)~27@dq sine do, 
perform the angular integral, and obtain 
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(17.25) 

This integral is easily done by contour integration (or from tables), 
closing the contour in the upper complex plane, where eiqr makes the 
integral around the large semicircle zero. The integral along the axis is then 
equal to the residue of the pole at q = im c/h, with magnitude of q equal to 
2n divided by the Compton wavelength hc = 2nfdmc of a particle with mass 
m. (see Problem 1.1). The result is 

(17.26) 

with a = mc/h and Vo = 2n2D252o/(Mc2~3) for the same coupling we used 
for phonons. This was the form, Eq. (17.26), obtained by Yukawa for the 
nucleon-nucleon interaction. Knowing that the interaction had a range of the 
order of the nuclear size, 10-13 cm, which he equated to hcl(2n) =fdmc , he 
predicted that the meson exchanged had a mass about a fifth of the proton 
mass. This was confirmed by the observation of n-mesons, pions, with an 
energy of a sixth or seventh the proton mass. Yukawa (1935) could also 
estimate Vo from the known binding of the proton and neutron in the 
deuteron. It turned out that there were positive, negative, and neutral pions 
so the interaction is considerably more complicated, but there is no question 
that the strong interaction between nucleons arises from such mesons as 
proposed by Yukawa. 
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Chapter 18. Photons 

We have completed an analysis of the quantization of lattice vibrations 
in solids, which came as a very natural application of our theory of harmonic 
oscillators to the normal modes of a solid. With our starting postulate that 
everything is both a particle and a wave, and all theory deriving from that 
one assertion, it comes as no surprise that we can directly generalize our 
analysis from sound waves to light waves. We shall be able to define the 
creation and annihilation operators exactly in parallel to those for phonons, 
and to write the electron-photon interaction in terms of those operators just 
as we did for phonons. Indeed the concept of the photon as a light-particle is 
more familiar than the concept of a phonon. 

18.1 Photons and the Electron-Photon Interaction 

Vibrations in solids were described in terms of the displacements Grj(t) 
of each atom at a starting position rj. We saw in Section 1.3 that 
electromagnetic waves can be described in terms of a vector potential A(r,t) 
at the position r,  the position being a continuum as in the continuum 
treatment of sound waves in Section 1.8. This generalization is nothing new 
for us, corresponding for lattice vibrations to a small-q limit where co is 
proportional to q, but for light it extends to arbitrarily large q. We follow 
our analysis of lattice vibrations, first constructing a Hamiltonian for the 
light. 

We begin with a transformation to "normal coordinates", as in Eq. 
(15.61, 

(18.1) 
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The factor in front of the sum, l i k e m  , is inversely proportional to the 
volume of the system, and the was included to simplify the forms which 
arise later. The electric field from this potential is obtained from Eq. (1.17) 
as 

(18.2) 

Then we may obtain the total 
integrated over the volume 52. 

T = 2 ~ 2  Cq,h bqh b-qh I 

electric-field energy as T = (1/8n)Jd3r E2(r), 
The result, in analogy with Eq. (15.9), is 

(18.3) 

with the integral over all other products of bq(t)heiq.r integrating to zero if 
periodic boundary conditions are satisfied on the surface of the volume 52. 
Similarly, the magnetic-field energy (1/8n)Sd3 Y @(r) based upon the 
magnetic field from Eq. (1.17), H = VxA,  is 1/2q2C., ,~~qhu-~h.  Only the 
electric-field energy depends upon bqh, so we may define a momentum 
conjugate to uq as 

(18.4) 

as in Eq. (15.10) and the total energy written in terms of the coordinates uqh 
and momenta Pqh is the Hamiltonian for the light, 

(18.5) 

This is a sum over wavenumbers of the light and the two directions h of 
polarization of the light. With no charge distributions present there is no 
longitudinal component. Hamilton's Equations applied to this Hamiltonian 
give Maxwell's Equations, or Eq. (1.20), in the absence of charges and 
currents. Our starting assumption of wave-particle duality (as generalized in 
Chapter 3) states that any system described by a Hamiltonian can be 
described as a particle or a wave. We could construct a Schroedinger 
Equation for this Hamiltonian, with a product of wavefunctions IIg,h w(%h) 
However, as for the quantum treatment of lattice vibrations in Chapter 16, 
we shall instead only to use the properties deriving from the commutation 
relations Pqhuqh - uqhPqh = h/i . 
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We may seek raising and lowering operators as we did for the harmonic 
oscillator and for lattice vibrations. The two terms must have the same units, 
so we may add quqh and ic P-qh , which by Eq. (18.5) are seen to have the 
same units, and scale them so that the commutator is 

(1 8.6) 

as for phonons. A definition of the annihilation operator and creation 
operator which achieves this is 

(18.7) 

q and oq are magnitudes. We had a choice for the phase of the definitions, 
and we have made the conventional choice, the same as that for the case of 
phonons. 

With these definitions (and any choice of phase) it can be confirmed that 
as for phonons the total field energy from Eq. (1 8.5) is 

H = Cq,h hoq(aqhtaqh + 1/21 (18.8) 

and using Eqs. (1 8.1) for the vector potential, and solving Eqs. (18.7) for 
uqh, we obtain 

(1 8.9) 

with a unit vector in the direction of the vector potential (and electric- 
field polarization) for the mode { q,h}. Each of these steps can be readily 
confirmed, as can a requirement that k q h  = iiqh so that the coefficients of 
e-iq. r can be the complex conjugate of that of eiq- r. In Problem 18.1 we 
obtain the electric field as -( l/c)aA/dt =(ioq/c)A=iqA, square the magnitude, 
multiply by 1/8n, and integrate over all volume, to obtain an expression for 
the energy quadratic in the annihilation and creation operators. Taking the 
expectation value for a state with nqh photons in a single mode yields half 
the expectation value which would be obtained for the Hamiltonian H in Eq. 
(18.8), the other half coming from the magnetic-field energy. 
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In Chapter 9 we discussed the interaction between electric fields and 
electrons, based upon the replacement of the momentum p in the classical 
Hamiltonian by p - (-e)A/c , which gives a term in the Hamiltonian of 
ep.A/mc. This term involving both the vector potential A representing the 
field and the electron momentum p =h V /i is the interaction between light 
and the electon. For a quantum description of the light we substitute for A 
from Eq. (18.9), and note that cq = oq, to obtain the electron-photon 
coupling in the form, 

with the gradient operating on the electronic wavefunction; since the unit 
vector 

If we look for the effect of the resulting coupling between free electron, 
as we did for the electron-phonon interaction, e h r  becomes &ck+qtck, and 
the V becomes i k , but there is no coupling between states of the same 
energy, as we saw in Problem 1.1. There are only higher-order processes in 
which a photon is absorbed and another emitted, with the electron changing 
its wavenumber by a vector equal to the difference in the two photon 
wavenumbers. This was because we could not simultaneously conserve 
momentum and energy with an electron which moves at less than the speed 
of light, while both could be conserved for phonons if the electron moved 
faster than the speed of sound. However, when the electron interacts with 
some other system which can take up the needed momentum difference, 
processes involving the emission or absorption of photons become possible. 
Using the form, Eq. (lS.lO), with the gradient and e1q.r allows us to treat 
such processes. 

is perpendicular to q the gradient operating on e1q.r gives zero. 

18.2 Excitation of Atoms 

One of the most important applications of the electron-photon interaction 
is the transition between electronic states caused by light. In Chapter 9 we 
treated the ionization of atoms by light, treating the light classically as an 
applied alternating electric field. For transitions between atomic states 
within an atom, it is more appropriate to use the electron-photon interaction 
of Eq. (1 8.10) and the resulting quantum transitions. We shall treat photon 
absorption and emission at the same time, and this will lead us naturally into 
the description of lasers. 

The first step will be to obtain the magnitude of the matrix element, the 
coefficient which accompanies the annihilation and creation operators of Eq. 
(18.10). To be specific, we consider an atom of beryllium, which has a 
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ground-state configuration of 1 ~ 2 2 ~ 2 ,  the 1 s-states being the core states. We 
consider transitions between this ground-state configuration and an excited 
configuration ls22s2p which arise from the coupling from Eq. (18.10) 
between the atomic 2s and 2p-states of the same spin. (States of different 
spin are orthogonal and since the perturbation contains no spin-dependence, 
the matrix element contains a factor from the spin states of <+I-> = 0.) The 
wavelength of the light with photon energies equal to &zp - ~2~ is thousands 
of Angstroms, so in the matrix element between two atomic states which are 
only appreciable over the spread of a few Angstroms we may set e19' r equal 
to the value for r at the nucleus. 

If we choose p-states with zero angular momentum along the three 
Cartesian axes, x ,  y ,  and z (Eq. (2.29)), the only coupling between an s-state 
and a p-state from the z-component of the gradient is with the p,-state, etc. 
Correspondingly the matrix element of Gqh.V between such a p-state and 
the s-state is <2pzld/dz12s> times the cosine of the angle between ilqh and 
the axis of the p-state, which we write as cos€lqh. Then for each spin the 
coupling between the s-state and a p-state with a particular axis is written 

with 

(18.1 1) 

( 1 8.12) 

for a nucleus at r. There is similarly a matrix element of the same form as 
Eq. (18.11) but with 2s and 2p, interchanged. We note that <2sld/dz12pz> = 
-<2pzld/dz12s>. It is best for this second term to change to a sum over -q so 
that the final operators are replaced by c2stc2p(aqht + a&) and H& is 
replaced by H-qh = Hqh*. Combining the two, we write the electron- 
photon, or electron-light, interaction coupling these two states as 

The final factor in Eq. (18.12), with units of one over length, can be 
evaluated using atomic wavefunctions. We shall not do that, but we carry 
the analysis of Eq. (1 8.12) a little further. Measuring angles from the z-axis 
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as usual, and using the description of states of spherical systems from 
Section 2.4, <2pZld/&12s> becomes 

( 1 8.14) 

In the first form we took the constant factors from the spherical harmonics 
Y p  out in front. In obtaining the second form we wrote M z  = a/& ar/& = 
a/ar cose and integrated over angle. The integral in the final form could be 
obtained numerically from tabulated wavefunctions, or from approximate 
hydrogen-like forms for the wavefunctions e -W and re -F'r fit to the atomic 
energies (as carried out in Problem 18.2), and will inevitably be of the order 
of the reciprocal of the size of the atom Ilr, , comparabIe to interatomic 
spacings, and we proceed here by defining ra  to be the reciprocal of the 
matrix element as written in Eq. (18.14). For our initial study it will be 
sufficient to use the general form with Hqh as in Eq. (18.13). 

We now have the parameters needed to evaluate transition rates between 
atomic states arising from the electron-photon interaction using the Golden 
Rule, 

(1 8.15) 

The initial state li> could be the ground state (or it could be an excited state 
with an electron in a 2p-state but we proceed first with the electronic ground 
state). As for phonon absorption and emission, the various terms in the 
operation of He1 on the initial states produce various final states - times 
constants - from which we identify the energy change appearing in the delta 
function. We then select the terms from the operation of Hel on this final 
state which take it back to the initial state. Thus the a& term in Eq. (18.13), 
operating on the electronic ground state, reduces the number of photons in 
the corresponding mode, while taking the electron from the 2s-state to the 
2p-state, so that for that term Ef - Ei = ~2~ - hcoq - ~ 2 ~ .  The term with a q h t  
operating on the electronic ground state adds a photon, while taking the 
electron to the 2p-state. Both steps require energy, so the delta function will 
never be satisfied and that term does not contribute. 

Similarly, the term with a&t operating on the excited electronic state 
adds a photon while dropping the electron from the 2p- to the 2s-state for an 
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Ef - Ei = ~2~ +hOq - E2p , and the term with the a_qh never satisfies the 
energy delta function. Only two terms from Hel operating on the initial state 
survive, and when we operate again, only one of the terms in each case will 
take the state back to li>. 

For the first of these transitions, in which a photon is absorbed, the 
operators which appear are c2stc2paqhtc2ptc2saqh . We can commute the 
aqht  to the right where it becomes part of the number operator, which we 
write as the number nqh of phonons in the mode. We may also commute the 
c2st to the right to obtain the number operator for the 2s-state, which we 
write as the probability of its occupation, f&, and the remaining pair of 
operators becomes, using the commutation relation, 1 -f2p. For this class of 
processes involving photon absorption we obtain 

We make the corresponding evaluation for the second transition, in which a 
photon is emitted, to obtain 

As for phonons, the term in Eq. (1 8.17) with nqh is stimulated emission and 
the term with 1 is spontaneous emission. For each of these evaluations, the 
sum over wavenumbers is to be replaced by an integral as in our other 
transition-rate calculations, Eq 4 (Q2/(2n)3)!d3q and the energy delta- 
function fixes the wavenumber for each mode. Such an evaluation is carried 
out in Problem 18.3. 

We may confirm that if the system is in equilibrium, so there is one 
temperature T and one Fermi energy p, the absorption and emission rates 
are the same. We do this by writing the statistical factors, with each of the 
two energy levels written relative to the Fermi energy, 

(1 8.1 8) 
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The delta functions in Eqs. (1 8 .16)  and ( 1  8.17) are only satisfied if ~2~ = ~2~ 
+ ho , in which case the numerators in the two Eqs. (8.18) are the same, as 
are the products in the denominators. It is interesting that the f l  terms 
which arose from the different statistics for Fermions and photons match 
with the different commutation relations in the evaluation of Eq. (18.15) 
making this true. It had to come out that way, as guaranteed by the detailed- 
balance which we discussed in Section 1 1 . 1 ,  which always applies to 
equilibrium systems. In Problem 18.3 we obtain the relative occupations of 
the two electronic states which arise as a function of light intensity for a 
system in a steady-state condition, but not equilibrium. 

If light coupling two levels is very intense, corresponding to very large 
n& in Eqs. (18.16) and (18.17), the additional 1 in the second of these, 
giving spontaneous emission, is negligible. Since in steady state the 
absorption rate is equal to the emission rate, the factors f2s(l - f2p) and 
f2p( 1 - f&J must also be equal, corresponding to f2s = f2p . This is called 
saturating the transition. It is a feature of optical transitions which becomes 
important in lasers. 

18.3 The Three-Level Laser 

We may see how laser action arises by considering the energy levels of 
helium, a slightly simpler system than the beryllium discussed above. In the 
ground state the atomic configuration is 1 s2  and there are excited 2s- and 2p- 
states. These may be obtained from Moore's ( 1 9 4 9 ,  1952) tables as 
described in Chapter 4 ,  in connection with Table 4.1. This gives an energy 
-24.6 eV for the ls-state, -4.0 eV for the 2s-state, and -3.6 eV for the 2p- 

Fig. 18.1. A schematic energy-level diagram for a helium laser. In the 
ground state both electrons occupy the ls-state. Light at 60 = &zp - &is 
pumps the electrons to the 2p state, approaching half occupation of the 
corresponding p-state for strong pumping. The opulation is then higher 
than that of the 2s-state, so light is emitted at I!o = ~2~ - I+ at first by 
spontaneous emission, but as the intensity of the light at this frequency 
grows, stimulated emission is dominant. The electrons must return to the 
Is-state by some other process, such as by atomic collisions. 
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state. These last two would both have equaled the -e%~d 8h2 = -3.4 eV of the 
hydrogen 2s- and 2p-states, except for the effect of the second proton in the 
nucleus and the second electron in a ls-state which lowers the energy of the 
2s-state more than the 2p-state. These numbers may not be the most 
convenient for practical lasers, but illustrate the mechanism of the laser. 
They are shown schematically in Fig. 18.1. 

In equilibrium the occupation f 0 ( & 2 ~ )  << f0(E2~) << f ( & l s )  and, as we 
have seen, there are transitions up and down (as in Eq. (1 8.18)). If we now 
impose strong light at a pump frequency w P  such that h o p  = ~2~ - &ls, 
electrons will be pumped to the higher level, approaching equal 
concentration for the p-state which is coupled by light of this polarization 
and for the ground state. At the same time, the occupation of the 2s-level 
remains low and we have an inverted population of the 2p-state relative to 
the 2s-state. With the excess number of electrons in the 2p-state, there will 
be spontaneous emission into modes with frequency 01 withhol = ~2~ - ~ 2 ~ .  
Then if there are parallel mirrors which capture some of that light as a 
standing wave, the intensity in one mode will build up; with more electrons 
in the 2p-state than in the 2s-state, the stimulated emission will also be 
greater than the absorption, and the energy in that mode will grow to a very 
high level. This is the laser action, and with one mirror with less than 100% 
reflectivity intense light will emerge from exactly this mode. There must be 
a way for the electrons which are thus transferred to the 2s-state to return to 
the ls-state if the process is to continue. There is no direct optical transition 
between such s-states, but the transfer can occur by collisions between 
helium atoms or with the wall. In other systems a fourth level between the 
two lower levels can provide a path of allowed transitions (i. e., if it was a p- 
state). There may be more than one mode in the mirror system (more than 
one wavelength of light) which could support lasing action, but ordinarily 
one will dominate. Helium, as described here, would be a gas laser. Similar 
systems can be constructed in solids using impurity states in an insulator to 
provide the counterpart of the levels of Fig. 18.1. More importantly, lasers 
can be made using the band states. In order to discuss them we must first 
consider interband transitions. 

Fig. 18.2. A chain of atoms, as in Section 6.1, but with a p-state as well 
as an s-state on each atom. Light of wavenumber q and polarization p 
couples the states on each atom. 
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18.4. Interband Transitions 

We treat only the simplest meaningful case, again electrons moving in a 
chain of atoms, and generalize the result to three-dimensional systems. We 
shall need two bands, so a second state for each atom is introduced as 
indicated in Fig. 18.2.  We form s-bands 

which we think of as empty conduction bands in Fig. 18.3,  and p-bands, 

EkV = Ep + 2 V p p o c 0 ~ k d .  ( 1 8.20) 

at a lower energy, which we think of as filled valence bands. We do not 
include for the present any effects of the coupling Vspo. 

We consider the coupling between a valence-band state Jk'J> = 
(l/.\IN)Cilpi>e'kd' and a conduction band state Ik'+ = ( l /dN)C;ls jxk 'dJ  due 
to the electron-light coupling from Eq. (1 8.13), which is 

If we include only the coupling between orbitals on the same atom, 
discussed in Section 18.2,  then only terms with i = j  will enter, each with the 
phase of the light on that atom, e- iqdJ  from Hqh, with 911 the component of 
q along the chain. Then the sum over j will give zero unless k' = k + 411, in 
which case it will give N .  We designate those terms in the sum by 
411 = k' - k . Only the mode polarized in the plane of the figure contributes so 
we drop the sum over h and eqh becomes the 0 in Fig. 18.2 . This gives then 

Fig. 18.3. Bands for the one-dimensional chain of Fig. 18.2. The upper 
band is s-like, the lower, p-like. The photon wavenumber q is ordinarily 
very small so a transition, indicated by the upward arrow, is almost 
vertical. 
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with 

(1 8.22) 

(18.23) 

from Eq. (18.12) and (18.14), analogous to the Hqh of Eq. (18.12), but 
without the factor el9.r. There are of course also complex conjugate matrix 
elements <kvlH,llk'c>. In semiconductors the interatomic matrix elements, 
i f j ,  actually dominate, which follows already from the fact that the 
dielectric susceptibilities of semiconductors are much higher than would be 
obtained as a sum of atomic polarizabilities. The needed matrix elements of 
the gradient in Eq. (18.10) can be obtained approximately from the 
corresponding tight-binding matrix elements (Harrison (1999), p. 219) as 

(18.24) 

with the Vll'm the same coefficients as given in Eq. (6.6). However, it will be 
simpler to proceed here with the intraatomic form. 

We may generalize to matrix elements between band states in three- 
dimensional crystals. We must then retain the sum over polarization h , the 
cose again is coseqA, and k' is k + q. In semiconductor systems one is often 
interested in transitions between states in quantum slabs, discussed in 
Section 2.3. Then the formulation has similarity both to the one-dimensional 
and three-dimensional cases discussed here. It will be adequate for the 
limited discussion we make to leave the matrix element as Hq ,which we 
obtained with intra-atomic coupling for the chain in Eq. (1 8.23). 

We consider first a bulk crystal, or a region in a crystal which can be 
regarded as bulk. Of most interest will be the transitions near the threshold 
energy, equal to the band gap, as illustrated in Fig. 18.3. The photon 
wavenumber can be obtained from q = o / c  to find that it is very small, or 
we can note that the photon energy required to cross the gap is in the optical 
range, with thousands of Angstroms wavelength, so q will be of the order of 
one thousandth of the Zone dimensions 2nld. The transitions are almost 
exactly vertical on a diagram such as Fig. 18.3. In fact, q is smaller by a 
factor of one hundred than shown there. 

If we now imagine a semiconductor as shown in Fig. 18.3 in thermal 
equilibrium, there will be a low density of electrons in the conduction band 
and (if there is no doping) an equal concentration of holes in the valence 
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band as we saw in Section 10.5, and Problem 10.3 in particular. 
Occasionally an electron can drop into an empty state of very nearly the 
same wavenumber in the valence band, emitting a photon. Exactly as often 
the reverse transition is made in which the same hole is remade and initial 
conduction band state occupied through the absorption of a photon of the 
same wavenumber. This is guaranteed for equilibrium systems by detailed 
balance (Section 11.1) and shown in detail for two discrete levels in Eq. 
(1 8.18). Such a detailed treatment would be more intricate for this case, but 
the result is guaranteed. 

If we now increase the electron and hole density, without increasing the 
number of photons - this is taking the system out of equilibrium - photons 
will be created at a greater rate than they are absorbed. (This is the reverse 
of what was done in Problem 18.3, where the light intensity was increased 
over equilibrium values, leading to steady-state absorption.) This increased 
emission will be in proportion to both increases in carrier density. Exactly 
this effect is accomplished in a light-emitting diode as illustrated in Fig. 
18.4. A confinement region, with reduced gap to hold the carriers, is 
surrounded by an n-type region (with excess electrons due to doping) on one 
side and a p-type region (with excess holes due to doping) on the other side. 
In equilibrium, carriers will redistribute and bands shift relative to an overall 
Fermi energy for the system such that again detailed balance will prevail. 
However, if a voltage is applied raising the potential of the electrons on the 
left relative to the right, the flow shown will enhance the electron density in 
the center. The same potential will drive holes from the right, enhancing the 
hole density in the central region and producing excess light at a frequency 
corresponding to ho slightly greater than the gap. The greater the applied 
voltage, the greater the intensity of the light produced. 

twwww p-type 
n-type 

0 0 0 0 0 0  

0 0  0 00 0 0  0 0  0 00 0 0  
0 0 0 0  0 0 

0 0  0 00 < 
Fig. 18.4. A light emitting diode. Applying a voltage which drives the 
carriers in the direction given by the arrows will increase the concentration 
of both types of carriers in the confinement region (the region with a 
narrower gap) above thermal equilibrium and produce excess light at the 
energy of the gap, as indicated. 
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It is often true that the distribution of the electrons in the confinement 
region remains a Fermi distribution at some temperature, such as the 
temperature of the thermal phonon distribution (Section 10.2), but with a 
Fermi energy pc (called a quasi-Fermi level since there is no overall 
equilibrium) which is high, in accord with the high carrier concentration. 
Similarly the Fermi energy pv associated with the holes is low in accord 
with their high concentration. A convenient way to calculate the output of a 
light-emitting diode is to evaluate each contributing rate, or the factors 
corresponding to Eq. (1 8.18) which determine that rate, for equilibrium, but 
use the relevant Fermi energy which can be shifted out of equilibrium in the 
end. 

For any pair of coupled levels, the absorption is proportional to the 
probability fv = 1 that the valence-band state is occupied, times the 
probability 1 -fc = 1 that the conduction-band state is empty times the <nq> 
for the photon. For the light-emitting diode we imagine an equilibrium 
distribution of photons, so the absorption is proportional to the number of 
thermal photons in the modes involved, <nq> = l/(ePhoq - 1) = e-Eg/kBT 
according to Eq. (10.10), with Eg the gap. We write the total absorption rate 
per unit volume of material as 

where RT could be estimated as in Problem 18.3. 
Calculation of the corresponding emission rate is simplest if the carrier 

densities are low enough that we can approximate the Fermi distribution by a 
Boltzmann distribution. Then, the emission is proportional to the probability 
fv = ~ - ( E c  -P&BT that the conduction-band state is occupied, times the 
probability 1 - fc = e-@v - Ev) that the valence-band state is empty times <nq> 
+1 for the photon. However again <nq> = e-E@BT <<1 so spontaneous 
emission, the second term in nq + 1, dominates and the rate is proportional to 
e-(% -k) /kBTe-(k  - E v ) ~ B ~ =  e - E g b T  e ( k  -I*v)~BT. In thermal equilibrium pc 
= pv and this rate must equal the absorption rate so the proportionality 
constant must be the same as in Eq. (18.25). Thus the emission rate per unit 
volume, whether or not pc = pv, is given by 

By introducing a current as in Fig. 18.4 we increase pc relative to pv and 
increase the rate exponentially above the thermal rate, RT e-Eg/bT. We 
might mention that there are "Sommerfeld corrections" to the emission (and 
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absorption) from Coulomb attraction between electrons and holes. They are 
apparently large, but not often included. 

In the light-emitting diode we envisage excess carriers in comparison to 
thermal equilibrium. If we can actually achieve an inverted population, 
higher electron occupation probability fc for states at the conduction-band 
edge than the corresponding fv at the valence-band edge as illustrated in Fig. 
18.5a, we may have lasing action just as in the three-level laser of Section 
18.3. This would be a solid-state laser. It is accomplished by adding mirrors 
(often Bragg mirrors consisting of alternate layers of different refractive 

indices which can reflect light of a particular wavelength). Then a particular 
light mode can grow in intensity until stimulated emission is dominant, just 
as described for the three-level laser. 

Accomplishing this is made difficult by the decreasing joint density of 
states for AE(k)  near the band gap, as indicated in Fig. 18.5b. Various 
techniques may be used to alleviate this difficulty. One is to insert quantum 
wells as illustrated in Fig. 18.6a, so that subbands are formed in the quantum 
wells, with a density of states which is constant, as was seen for electrons 
moving in two dimensions in Problem 2.2. Multiple wells can be 
introduced. Such wells considerably enhance the behavior as seen in Fig. 
18.6. An additional difficulty arises in real systems such as gallium 
arsenide, which has bands analogous to those shown to the right in Fig. 13.9. 
The conduction band mass is small, as shown, so that the electrons are 
concentrated near k = 0 and so also is the light-hole mass small. However, 
most holes will be in the heavy-hole band, with heavier mass and therefore 
higher density of states. These range to larger k and thus to wavenumbers 
which do not contribute to the lasing. One of these heavy-hole bands is 

a. 
k 

b. 

Fig. 18.5. In Part a, at small k, the occupation of conduction-band states 
is higher than that of valence-band states, positivef,(k) -fv(k) as shown in 
Part b, and lasing can occur between such states. However, the joint 
density of states n ( A ( k ) )  = nc(&(k))nv(&(k)) is small in that region. Mirrors 
are chosen to select a AE(k)  = h o q  which will optimize the emission. 
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E 

I I 

a. b. 

Fig. 18.6. Quantum wells are introduced in the system of Fig. 18.4 for a 
solid-state laser. Then the density of states for the resulting subbands rises 
abruptly at the minimum energy, as shown in Part b. It also concentrates 
the carriers where the electric fields for the lasing mode, shown as the 
curve above in Part a, are largest. 

pushed deeper in energy by spin-orbit coupling as we shall see in Section 
22.5, and the other can be shifted with a "strain-layer superlattice" system in 
which the layers serving as quantum wells are compressed, or made thinner 
(and expanded parallel to the planes) so that the p-states which are oriented 
perpendicular to the layers are shifted down in energy as illustrated in Fig. 
18.7. (It was seen in Section 13.5 that the top of each valence band 
corresponds to one p-state.) These are the p-states which form the heavy- 
hole subbands for motion in the plane of the figure so only the light-hole 
subband is present at the top of the valence band, an important 
improvement. 

't 
Fig. 18.7 A strain-layer superlattice can shift the heavy-hole band 
downward so that almost all electrons and holes are concentrated near k = 
0 and contribute to laser action. 
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Chapter 19. Coherent States 

We saw after Eq. (2.46) that a harmonic oscillator wave packet oscillated 
back and forth like a classical oscillator. Such a packet state of the 
oscillator is called a coherent state. The light which emerges from a laser is 
also such a coherent state and the concept is very important in quantum 
theory, though it is essentially a classical effect. It is interesting to consider 
it further now that we have quantized the phonon and photon fields. We 
begin with the quantum description of the simple harmonic oscillator, but 
return to a classical description of the driven oscillator before continuing the 
quantum description. We finally relate the results to coherent light. 

19.1 Coherence in a Harmonic Oscillator 

Any wavefunction @(x) for a harmonic oscillator can be expanded in 
eigenstates CnAn@n(x) and we may use the time-dependence of each 
eigenstate, with En =hoo(n + 1/2) in terms of the classical frequency 00, to 
obtain the time-dependence of 4 as 

We noted in Section 2.5 that it is a consequence of this equal spacing of 
levels that any @(x) must return to the same function every period, 27cloo. It 
also follows that half-way between these returns the wavefunction will be 
@(-x), the classical behavior of an oscillator. In order to have this classical 
behavior, we must have a linear combination of different states of 
excitation; a single eigenstate has a probability distribution symmetric in x 
at all times. If it is a combination of many states of excitation, we must also 
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have coherent phases for the coefficients of the states of adjacent quantum 
numbers. We may see this be evaluating the expectation value of x using 
Eqs. (16.23) and (16.25) 

(19.2) 

If the A n  , and in particular the phase, varies randomly from An to An+l  
the various terms will average to a small value. If they are coherent, varying 
for example from one n to another as d u n ,  then the terms will have the same 
phase and lead to a large value. Coherence refers to such relations between 
the A, which can make the expectation value for the coordinate large. If 
only one A, were nonzero ($(x) would be an energy eigenstate) <@IxI$> 
would be zero as we noted before. If two adjacent A n  were nonzero at 1/42, 
the sum of An+lAn would be 1/2. If the magnitude of A n  is peaked at no but 
varies slowly with n (and varies in phase as eian) ,  we may replace the sum 
by an integral CnAn+l*A n= Idn An*An eia = eia , the maximum magnitude. 
Then Eq. (19.2) becomes 

(19.3) 

This is exactly the classical limit for a harmonic oscillator with amplitude xg 
such that the energy is 1/2M002x02 = nohoo, with a the phase at time t = 0. 
We see that the coherent state is the classical state. A classical oscillator has 
a value of x and of P at time t = 0, and its future position and momentum 
are determined for all times in terms of these values. Thus a classical 
oscillator cannot be incoherent. Incoherence is a quantum effect, in this case 
arising because an oscillator may be in a single eigenstate, with completely 
uncertain phase, or may be in a combination of many eigenstates, again with 
uncertain phase unless the relative phases of each of the combinations are 
specially related. 

This is a subtle point, and physicists often think of coherence - as 
opposed to incoherence - as a quantum effect. That is not correct from our 
point of view. We will attempt to keep this clear when we discuss coherence 
in terms of light modes in Section 19.4, but it may be desirable to treat the 
coherent state of the classical harmonic oscillator slightly further. 
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19.2 A Driven Classical Oscillator 

We study the behavior of a classical oscillator in order to understand the 
quantum system more clearly. We will in fact be able to identify the classical 
response with that we have calculated quantum-mechanically using time- 
dependent perturbation theory, and to identify the energy loss with the 
transitions which we have calculated quantum-mechanically using the 
Golden Rule. 

Let x be the classical coordinate of a mass M which feels a spring force 
F = - K X ,  corresponding to spring constant K ,  and has a normal-mode 
frequency 00 = .iK/M. It will be convenient to write the driving force as 
-eE e-iwt (as for a negative charge -e ) ,  or the real part of that. In fact the 
equations of motion are linear so that we may proceed with a complex force 
and complex displacement and take real parts at the end if we wish. If -eE 
is complex, the phase may be different from zero at t = 0. The classical 
equation of motion is 

.. 
M x  = - K X  -p -eEc-iwt, (19.4) 

where we have included also a small viscous term -p which would damp 
out any initial vibrations, leaving only the driven motion proportional to 
,-lot. Substituting that form, the time derivatives become factors of -io and 
we may solve for x as 

(19.5) 

The real part of l/[M (002 - 02 - iop/M)] gives displacements exactly 
in phase with the applied force, -eEcosot if -eE is real. However, there is 
also an imaginary part of 1/[M ( 0 0 2  - 0 2  - i0p/hf)] which gives 
displacements out of phase with the force, proportional to -eEsinot if -eE is 
real. This is also just like a complex impedance in an ac electrical circuit in 
which there are in-phase and out-of-phase components of the current 
response to an applied ac voltage. 

Thus we may define a complex frequency-dependent polarizability a(o) 
for this system by associating a dipole p = -ex with the oscillator, and 

p = a(o)E e-iwt. (19.6) 

Then if we write the small viscous term op/M as 6 this polarizability is 
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(19.7) 

The real and imaginary parts are plotted in Fig. 19.1. 
The real part, which is all that is left if 6 is very small, is in tune with 

our physical experience. If we drive a classical oscillator at low frequency, 
it moves in phase with our push. If we drive it well above its natural 
frequency it is furthest from us, and accelerating toward us, as we pull 
hardest, a reverse in the displacement relative to the force. And, if we drive 
it near the resonant frequency the response becomes very large. The 
imaginary part only becomes large near the resonant frequency. It 
corresponds to a velocity in phase with the force rather than displacement in 
phase with the force, and work is done by this force in phase with the 
velocity. The energy is dissipated by the viscous term. Such a classical 
solution is very complete, and can therefore be preferable to a quantum 
solution when a classical approximation is appropriate. 

-1 

-2 

-3 I I I I I I I 
0 0.5 1 1.5 2 2.5 3 

010 
0 

Fig. 19.1. A plot of the real part (heavy line) and the imaginary part (light 
line) of the polarizability based upon a harmonic dipole oscillator, from 
Eq. (19.7) with 6 taken as 0.200~. 
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19.3 A Driven Quantum Oscillator 

It is of interest to compare this classical result with the two limiting 
cases which we have treated quantum-mechanically. We calculated a 
polarizability for a static applied field using perturbation theory already in 
Problems 5.2 and 5.3. We can redo this for a time-dependent field by 
generalizing Eq. (5.28) to time-dependent fields. Using this first-order 
theory for the state will retain equations of first order in the field, as in the 
preceding section. We carry it out first generally, and then apply it to the 
harmonic oscillator. We again expand the state of the system in eigenstates 
b> of the unperturbed Hamiltonian, as in Eq. (5 .8) ,  but now we let the 
coefficients depend upon time and include a specific time-dependent factor 
for the zero-order energy, 

We then seek corrections to a state b> due to a time-dependent perturbation 
which has matrix elements <ilHlb>e-iWt, with <ilHl[j> independent of time. 
Thus we substitute Eq. (19.8) in the Schroedinger Equation, Eq. (1.16), and 
multiply on the left by <iJ to obtain 

The second terms on both sides cancel. To first order in the perturbation, uj 
= 1 for the unperturbed starting state b> and the others can be neglected in 
the sum on the right which already has a first-order matrix element. We see 
that L l i  varies as e i(Ei - &j -hm)t/h so we can differentiate and solve for Ui as 

This is the time-dependent counterpart of Eq. (5.28) which we shall use 
again in Section 19.5. If we add a perturbing term proportional to e i m t  it 
gives the corresponding expression with o replaced by -0. Combined with 
Eq. (19.8) this gives a dressed state b> containing corrections to the 
unperturbed state. 

We now apply this result to a driven harmonic oscillator. The force 
-eEe-iWt which we have introduced corresponds to a term in the Hamiltonian 
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of H 1  = eExe-i*t and we can write x in terms of raising and lowering 
operators for the harmonic-oscillator states as in Eq. (16.25). Using these 
we obtain 

(19.11) 

Thus there are two corrections to a zero-order state In> , the first is higher in 
energy by Ei - E j  =h00 and the second lower by the same amount. The first- 
order state becomes 

(19.12) 

The factors eiiwot preceding In+l> in the final two terms are factors 
appearing in Eq. (19.8) if energies are measured relative to that of In>, so no 
factor appears with the first term, 10. To obtain the polarizability from this 
we evaluate <yl -ex lp  using again Eq. (16.25) . All time-dependent phase 
factors e+imot cancel in these first-order terms and we obtain 

(19.13) 

There is an important lesson from this result. We have used a complex 
perturbation eEe-imt and should add its complex conjugate, to correspond to 
a real perturbation. This will give a term equal to Eq. (19.13) with o 
replaced by -0. However, the sum for the two second terms is purely 
imaginary, proportional to isinot. If we proceed more carefully, as with the 
small viscous term which we introduced with the classical equations, this 
term will lead to the absorptive term which we shall treat separately in a 
moment. Similarly, the sum of the two first terms will lead to one term 
which is purely imaginary and a second which leads to a real 
2e2Ecosot/[M(oo2 - d ) ] .  This corresponds exactly to the real part of the 
classical result, Eq. (19.7), if 6 is taken equal to zero. Perturbation theory 
which led to Eq. (19.10) correctly gives the dressing of the state, and the 
polarization of the state, as long as the frequency o is far enough from 
resonance that absorption is not occurring and the denominator 0.102 - 02 is 
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not becoming so small that the corrections are large. It is the direct 
generalization of the perturbation theory of Eq. (5.28) to time-dependent 
fields. 

For the absorptive term alone, the imaginary part, we can return to the 
simple time-dependent perturbation theory of Eq. (9.9), using the matrix 
elements obtained from Eq. (19.1 1) 

(1 9.14) 

The first term represents excitation of the oscillator and the second de- 
excitation (with negative w), with n the initial quantum number of the 
oscillator. This is still treating the alternating field as a classical field, rather 
than as the quantized field of Chapter 16. 

To compare with the classical result we would multiply the first term by 
hoo and the second by - hoo to obtain the net quantum rate of energy 
absorption, 

(19.15) 

We can now identify this absorption with the imaginary part of the 
classical polarizability in Eq. (19.7). We must allow a distribution of light 
fields Em with frequencies in the range of o = 00 in Eq. (19.7). Then for 
each there is a dipole induced equal to a(o)Ea and work done by the field 
equal to the field times the rate of change of the dipole, -ioa(o)Ew2. We 
should sum this over all frequencies to obtain a classical rate of energy 
absorption, 

(1 9.16) 

For small 82  this function of frequency is seen to be strongly peaked at 
o = oo such that an integral over o (from -- to -) of the final factor is x/2. 
Thus the final factor in Eq.(19.16) can be written n6(o-o0)/2 = 
nh6(ho - hw0))/2 and if we add an equal contribution for the complex 
conjugate fields we obtain exactly the quantum result, Eq. (19.15). An 
interesting aspect of this comparison is that the energy delta function which 
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appears in the Golden Rule is present also in the classical result. It is not 
original with quantum theory. 

To treat both the real and imaginary part correctly at the same time, as 
we did for the classical case, we might introduce the quantum-mechanical 
density matrix, with a small imaginary term as in the classical treatment. 
There are also Green's-function formulations which accomplish this, but 
both go beyond the scope of this text. 

It may be useful to be reminded of these classical results, which are just 
the counterpart of the quantum effects we have been treating. All we have 
added to classical physics is our starting assertion of wave-like, as well as 
particle-like, characteristics of everything. When we  work in a large- 
quantum-number limit, where the wave aspects become unimportant, we 
must obtain the classical results. This is called the correspondence 
principle. 

19.4 Coherent Light 

In Chapter 18 we introduced normal coordinates for the photon field and 
noted that each mode, wavenumber and polarization, behaved as a harmonic 
oscillator. When we talk of coherent states of light we are talking about the 
states of a single mode. We are constructing states of the system which are 
sums of different excitation levels (or numbers of photons) and coherent 
amplitudes of the different excitation levels in that single mode. We should 
not get this concept mixed with a wave packet which is a combination of 
amplitudes in different modes. 

For the mode in question, with a particular wavenumber q, we construct 
combinations of states with different excitation levels, 

again with a time-dependent factor for the energy of each harmonic- 
oscillator state. If we let the magnitude of An, be slowly varying with nq, 
but peaked at some large value no, and we let the phase vary as eianq then 
we obtain coherent light. Most results from the preceding section carry over. 
We wrote the vector potential in terms of annihilation and creation operators 
in Eq. (18.9) as 

(19.18) 
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We obtain a vector potential <I~IAJw> varying as 42.nn~hoq&2 exp[i(q.r - 
coot - a)] from the first term, aqh, in analogy with Eq. (19.3). We obtain a 
complex-conjugate expression from the second term, aqhI, for the opposite 
q. This is a coherent state in which the vector potential and the electric field 
vary in a well-prescribed way as a function of position and time, cos(q.r - 
coqt - a) .  This is simply a classical light wave propagating with a 
wavenumber q, exactly as the coherent state of the harmonic oscillator in 
Section 19.1 oscillated in a prescribed way. 

It should be no surprise that lasers, in which the light is produced from 
stimulated emission, produce coherent light. However, it does not seem 
simple to show it from our equations. The inverted population of electrons 
in the atoms apparently behaves as a highly excited charged harmonic 
oscillator. Once there i s  light present, the light stimulates emission in phase 
with itself and this oscillating dipole radiates according to Maxwell's 
equations, producing coherent radiation with a dependence upon position 
and time corresponding to the phase of the starting radiation. In just this way 
a radio transmitter produces coherent radiation, with well-determined 
variation of the field corresponding to the current in the antena. 

Again, we have been discussing only the coherence between the phases 
of different excitation levels for a single optical mode. If we wish to discuss 
pulses of light, light packets in real space, we must match the phase of 
neighboring modes relative to each other. This is a different kind of 
coherence, but requires that the state within each of the modes is also 
coherent between excitation levels. Otherwise we cannot associate a phase 
with that mode, needed to construct the packet. 

19.5 Electromagnetically-Induced Transparency 

We discuss one further aspect of coherent light, closely related to our 
treatment of the harmonic oscillator in Section 19.1. It has been discussed 
much more completely by Harris (1997) and we follow a part of his analysis. 
We treat the simplest case first, the hydrogen atom with an applied static, or 
dc, field. We shall then return to the more interesting case with this dc field 
replaced by a light field. In neither case is the quantization of the light 
essential so we can proceed with coherent classical light. 

We have sketched the hydrogen levels in Fig. 19.2, with the states 12s> 
and 12p> having the same energy, as we saw in Section 4.1, and the state 
Ils> at lower energy. The dc field Ec is called the "coupling field" and it 
splits the energies of the 2s- and 2p-states in hydrogen. Such splitting of 
degenerate levels by an electric field is called the Stark Effect, and the 
splitting is usually of second-order in the fieId, but for 2s- and 2p-states we 
can see that it is first order. The coupling can be written eEc<2pk12s>, 
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Fig. 19.2. The energy levels of the hydrogen atom, with an electric field 
E, applied which produces a Stark splitting of the 2s- and 2p-levels into 
levels at E+ and E.. The system then responds to a probe beam of 
frequency w according to a polarizability as shown in Fig. 19.3 

which turns out for these states to be 3eEc@2/(me2)). Two such coupled 
degenerate states form "bonding" and "antibonding" combinations Iwk> = 
(120 f 12p>)/d2 with energies 

as we saw already in Section 5.1. We now apply a "probe field", an optical 
field Epe-imt (we could take the real part afterward) also indicated in Fig. 
19.2, which couples the I s  to the 2p-orbital, and therefore to the I w k l ,  
We may use first-order perturbation theory to correct the occupied 1s-state 
to I ls>(l). For time-dependent perturbations we may write the first-order 
state using Eqs. (19.8) and (19.10). We measure energies from &is in writing 
the phase factors e-iE&. We obtain 

In the last step we noted that the 2s-state is not coupled to the 1s-state and 
the p-states in the two terms enter with opposite sign. We may proceed in 
the same way to obtain the dipole associated with this state, <lsl(l)-exlls>(l), 
and equate it to a(o)eEpe-iWt to first order in the field to obtain the real part 
of the polarizability a(o) as 
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This is plotted in Fig. 19.3. We see that midway between the two levels the 
polarizability vanishes. One can examine the state at that frequency to see 
that only the 2s-state is contained in the first-order state, so there is no 
dipole. Correspondingly a medium made of such systems will have no 
refraction, and there is no loss in the system because there is no coupling 
between the 1s- and 2s-states. This is called an electromagnetically induced 
transparency at this intermediate frequency. 

For any atom but hydrogen the two states ~2~ and ~2~ would not be 
degenerate. We might guess that electromagnetically-induced transparency 
could be produced if instead of applying a dc electric field to the two states 
of the same energy we applied a coupling field E,e-iW (or the real part of 
this) with h a c  = ~2~ - ~2~ much as we coupled harmonic oscillator states 
with an ac field in Section 19.3. This speculation turns out to be correct, and 
it can be understood by treating the coupling field exactly as we treated the 
driving field in Section 19.3. We expand our state now in only two states in 
Eq. (19.8), which we label i = 2p and j=  2s Then Eq. (19.9) becomes 

hoc)t/h (19.22) 

and the corresponding equation with 2s and 2p interchanged. In both cases 
the phase factor on the right becomes one when the coupling field is tuned 

h 
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Fig. 19.3. The polarizability of the Stark-split hydrogen atom, Fig. 19.2, 
as given in Eq. (19.21). 
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appropriately. The two equations can be combined as - h2a2~2~lat2 = 
<2slH112p><2plH112s>u2, with solutions u2p = u2s = d Q R t  and ~2~ = -u2s = 
e i Q ~ t  . Here QR called the Rabifrequency, 

(19.23) 

Just as the perturbation-theory correction to the states could be generalized 
to time-dependent potentials in Eq. (19.10), two nondegenerate states can be 
coupled by an appropriate time-dependent field to form bonding and 
antibonding dynamic states. These two dynamic states play exactly the role 
played by the Stark-split 2s and 2p states in hydrogen. They are peculiar 
states, and not eigenstates as we have discussed extensively, in that the two 
terms in the wavefunction, Iyr> = ( ~ 2 ~ e - i % &  1 2 0  f ~ 2 ~ e - i E p h  12p>)e*iQ~t , do 
not change phase at the same rate. However, they respond to a probe field 
much as did the Stark-split hydrogen states. 

If we now introduce a probe light wave at a frequency op near ( ~ 2 ~  - 
&ls)/ti (note that this is the energy difference between the 1s-state and the 2p- 
state) it will couple an occupied electronic 1s-state to an upper dynamic state 
at ~2~ + ~ Q R  and a lower dynamic state at ~2~ - ~ Q R  , just as the probe in 
the degenerate case coupled the 1s-state to states split by .t <2plexEc12s>. 
For probe frequencies between these dynamic levels raised and lowered by 
the Rabi frequency, the two modes enter the response with opposite signs, 
just as they did for the degenerate case in Eq. (19.21). With vanishing 
polarizability at the midpoint between the states, the system is completely 
transparent. There is no absorption nor refraction. Again this is 
accomplished with a state with only Is- and 2s-occupation. Absorption rises 
with the square of the frequency difference from the crossing point. 

The range of quantum-optic effects, of which this is an example, is 
enormous. Our object here is only to introduce the concepts and methods by 
which they are understood, not to explore the many possibilities. 
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VII. Many-Body Effects 

The step which made electronic structure understandable was the one- 
electron approximation, which we introduced in Section 4.2. In looking at 
the state of one electron, the effects of other electrons were included in an 
average way by including an averaged potential from those electrons. This 
one-electron picture provided us with states in terms of which we could 
discuss transitions and tunneling and optical absorption and emission. They 
also proved the basis for statistical analysis when many particles were 
present and could be used to estimate total-energy changes when atoms 
were rearranged or moved. We turn finally to some cases in which this one- 
particle picture is inadequate and see how we can proceed to understand 
such systems. 
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Chapter 20. Coulomb Effects 

The principal interaction between electrons is the Coulomb interaction, 
and it is the basis of most of the effects we shall discuss. When we discuss 
superconductivity in Chapter 23, the important interaction between 
electrons will arise indirectly through the phonons. In particle and nuclear 
physics the interactions come from fundamentally different sources as we 
saw in Section 17.4. There are many qualitatively different effects arising 
from the interaction between particles. If we understand the physical nature 
of any effect, we can ordinarily frame the problem in terms of that 
understanding, much as we took variational wavefunctions to correspond to 
bonding states in molecules, or propagating states in solids. Including 
many-body effects is not a straight-forward addition of another term to the 
one-particle Hamiltonian; it is an asking of new questions. We begin with a 
discussion of Coulomb shifts, which arise because the charge on an 
individual electron is not infinitesimal. 

20.1 Coulomb Shifts 

We made a one-electron approximation in constructing electronic states 
in atoms in Chapter 4. This was a seeking of approximate many-electron 
states in the form of a product wavefunction, or an antisymmetric 
combination of product wavefunctions, of the form y ~ l ( r i ) y ~ ( r 2 ) . . . y ~ ~ ( r ~ )  
for the N electrons present. This led to a one-electron eigenvalue equation 
with a potential based upon which states were occupied, and the solution of 
that equation gave a set of energy eigenstates E i ,  the lowest of which were 
occupied in the ground state, corresponding for example to a 1 ~ 2 2 ~ 2 2 ~ 2  
configuration for carbon. We indicated that these eigenvalues were 
approximately equal to the removal energy of an electron from the 
corresponding state. It is also true that the energy required to transfer an 
electron in the atom to an excited state of the atom is given approximately by 
the difference in the eigenvalues corresponding to the states between which 
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the electron is transferred. For example, changing from a 1 ~ 2 2 ~ 2 2 ~ 2  to a 
1 ~ 2 2 ~ 2 ~ 3  configuration for carbon requires approximately &zp - ~ 2 ~ .  The 
new configuration actually corresponds to a slightly different charge 
distribution and potential which should be used to obtain new eigenvalues, 
but we have neglected such small corrections, which are many-body effects. 

However, if we were to remove a second electron from an atom, going 
from ls22s22p to ls22s2 for carbon, it is clear that much more energy would 
be required to remove that second electron than the &zp which was required 
for the first, It would be working against the extra -e2/r from the doubly- 
charged atom as it was removed. Similarly, adding an electron to a neutral 
carbon atom, going to a 1 ~ 2 2 ~ 2 2 ~ 3  configuration would not gain the energy 
~ 2 ~ .  An electron returning to the ionized atom to make it neutral gains ~ 2 ~ ,  
but that coming to a neutral atom gains less by an energy equal to the 
Coulomb interaction U between two p-electrons. It is of order seven 
electron volts for silicon and the heavier elements but over eleven eV for 
carbon (estimates are given for all the elements in Harrison (1999), p. 9). 
This corresponds to e2/r with r of the order of 28, as expected for charge 
distributions of atomic size. This is all in accord with the familiar fact that 
the electron ufinity of an atom, the binding energy of the additional electron 
in a negatively charged atom, is much smaller than the ionization energy of 
the neutral atom. The difference is this Coulomb interaction U which is 
also approximately equal to the difference in the first and second ionization 
energies of the same atom (assuming both removals are from the same state, 
e. g., a 2p-state). 

One might have thought that this Coulomb effect would spoil the 
prediction of cohesive energy of an alkali halide which we made in Section 
6.3. We took the energy gained in forming the solid as the energy gained in 
adding an electron to the halogen atom, minus the energy required to remove 
it from the alkali atom. Here we would say that an energy U should be 
added to the free-atom term value we used for the halogen. That is true, but 
the energy of that added electron is also lowered by the presence of the six 
positive alkali ions surrounding it, raised by the twelve nearest halogen ions, 
etc. The sum over neighbors is called the Madelung energy, equal to 
-1.8e2ld (see, for example, Harrison (1999) 326ff), and approximately 
cancels the Coulomb U.  The cancellation is no accident. The atoms in the 
ionic crystal select a spacing such that the transfer of electrons between 
states on different atoms does not greatly change their proximity to the 
nuclei. Such cancellations have made many of the simplified one-electron 
estimates meaningful in spite of real Coulomb shifts. 

One might also have thought that such Coulomb shifts did not apply to 
the transfer of an electron from the valence band in a semiconductor to the 
conduction band in the semiconductor since we think of both states as spread 
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throughout the entire crystal. This would be misguided since the crystal is in 
fact made of atoms and an atomic description is also meaningful for the 
crystal. Thus we may think of the transfer of an electron to the conduction 
band as a transfer from a bonding state (for which the energy eigenvalue 
applies) to an antibonding state in a site where the bond levels are both 
occupied. Thus we might expect the eigenvalues - the results of a band 
calculation - to underestimate the gap by an energy of the order of the U for 
the constituent atoms. That is true, but we may also see that this 
enhancement of the gap is reduced by a factor of UE, with E the dielectric 
constant equal to 12 for silicon, 

U 
E '  

mgap = - (20.1) 

This is not because the dielectric medium intervenes between the interacting 
electrons, but because an extra electron in a bond polarizes the surrounding 
medium so that the potential is +e2/(Er) and reduced by a factor of 1/E at the 
surface of the atom or bond. This enhancement of the gap, of order 7 eV/12 
= 0.5 eV for silicon, relative to band calculations, is seen experimentally. It 
can be calculated more completely by the mathematical methods of many- 
body theory, as by Hybertsen and Louie (1985), but it is given rather well by 
Eq. (20.1) for all semiconductors and insulators (Harrison (1999), 207ff). 

Adolph, Gavrilenko, Tenelsen, Bechstedt and Del Sol (1996) have made 
a rather complete study of the effect of this enhancement on various 
properties. It is found that the enhancements tend to be rather independent 
of wavenumber in the bands, as suggested by the Eq. (20.1), so that the 
correction is approximately a displacement of the entire band, without 
changing the dependence upon wavenumber. This is sometimes called a 
"scissors" operation, like cutting a page on which the calculated bands are 
plotted, and shifting the conduction bands upward in energy by U/E in order 
to describe the real excitations to conducting states. For calculating energy 
shifts by perturbation theory, as for the dielectric response in Problem 5.3, or 
band curvatures in the so-called k . p  method, one should again use the 
enhanced band gap, including the contribution from Eq. (20. l), in the energy 
denominators. This is not completely obvious, and would not be the case if 
the perturbation-theory shifts corresponded essentially to excitation within 
each bond site, as would be the case if the excitons discussed briefly in 
Section 14.3 were localized to a bond site and had binding energy (relative 
to a separated electron and hole) given by Eq. (20.1). Excitons are in fact 
spread over many bonds in semiconductors and much more weakly bound 
relative to a separated electron and hole. 
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We note finally that in a metal, for which we think of E = co, no 
enhancement is expected and the metallic conductivity associated with a 
finite density of excited states per unit energy at the Fermi energy is 
retained. As we go from a semiconducting state to a metallic state by 
shifting the conduction bands downward, the dielectric constant E increases 
and the real excitation energies become closer to those from the band 
calculation until they coincide exactly as the gap becomes zero. 

20.2 Screening 

Asserting an infinite dielectric constant for a metal is an 
oversimplification which really applies only to fields constant in time and 
constant in space. In this section we consider the effects of space-dependent 
and time-dependent applied fields which redistribute the electronic charge 
and modify the applied potential, an effect called screening. The problem 
requires a self-consistent solution : in order to calculate the potential which 
is present in the system we need to know the charge distribution, and to 
calculate the charge distribution we need to know the potential. There are 
two ways in which such self-consistent solutions are often obtained. For 
numerical solution one guesses the potential, perhaps as a superposition of 
free-atom potentials, and then calculates the wavefunctions and charge 
distribution From this charge distribution one recalculates the potential, and 
repeats - or iterates - the process until both potential and charge distribution 
have settled down at the self-consistent solution. The second, which we 
shall use here, is to linearize the response to the potential, allowing an 
expansion in independent components. Then the response equation and 
Poisson's Equation can be solved together self-consistently. 

The simplest basic formulation is the Fermi-Thomas method, a 
semiclassical theory which we discuss here. We shall then outline the 
quantum treatment of the same effects and give the results. The Fermi- 
Thomas approximation envisages a net potential V(r) (including any 
modifications from charge redistribution) which varies slowly over distances 
of the order of the electron wavelength, a few Angstroms in metals. Then 
we imagine the system of electrons in equilibrium, with a single Fermi 
energy as described in Section 10.5. Since the potential is varying slowly in 
space, we may consider a region at r where the potential is essentially 
constant and the electronic energies given byl%@/(2rn) + V(r). The states 
will be filled to the Fermi energy, an energy h2k~2/(2rn) + V(r) with a Fenni 
wavenumber related to the electron density in that region n(r) ,  given in Eq. 
(2.10) as k$(r) = 3n2n(r). However, the Fermi energy to which we fill is 
the statistical Fermi energy p which we introduced in Section 10.5. and is a 
constant of the system. Therefore, 
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(20.2) 

at all r. We see that if the net potential, V(r), varies slowly with position, so 
also must the electron density. Through Poisson’s Equation we know that 
there must be a contribution Vs(r) , called the screening potential, to this net 
potential V(r) satisfying -V2Vs(r) = 47ce2n(r). The net potential V(r) also 
contains other applied contributions Vo(r), such as the potential from the 
nuclei, which we ordinarily know at the outset. The Fermi-Thomas method 
solves these two equations together. It can even be applied to an atom with 
2 electrons and an applied potential Vo(r) = -Ze2/r , solving for n(r)  rather 
than for the wavefunction as in the more complete quantum calculation. It is 
called semiclassical because it retains the Pauli principle but not the full 
wave mechanics. The method has not proven very useful for such systems 
for which the real electron density varies as rapidly with position as in atoms 
and molecules. 

Of much greater interest is the application to metals for which the 
electron density is rather uniform. It is then appropriate to linearize Eq. 
(20.2) and the equations can be solved analytically. We in fact see from Eq. 
(20.2) that the change in electron density 
potential is 

due to a small change in net 

(20.3) 

with the density of states n(E) per unit energy and per unit volume given in 
Eq. (2.11) and evaluated at the Fenni energy. We may understand the final 
form by noting that as the potential fluctuates from point to point the filling 
varies much as the depth in a swimming pool varies as the floor fluctuates up 
and down. This is illustrated in Fig. 20.1 for the electron gas. 

Once we have linearized the equations it becomes appropriate to Fourier 
transform any applied potential as W(r)  = CqVqoeiq. r and treat each Fourier 
component separately to obtain a dielectric function which describes the 
modification of each term in the potential by the redistribution of the 
electron gas. The screening potential for each component will have the same 
dependence eiq. r and the coefficient is written VqS, so the coefficient for the 
net potential is 

vq = vqo + vqs. (20.4) 

In Poisson’s Equation, given above, the V2Vs(r) becomes -q2VqS so 
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Fig. 20.1. In the linearized Fermi-Thomas approximation the statistical 
Fermi energy p is a constant of the system, but if the potential fluctuates, 
the kinetic energy level to which states are filled, EF,  must fluctuate, 
giving an electron-density fluctuation equal to -6V(r) times the density of 
states ~ ( E F )  per unit energy per unit volume near the Fermi energy. 

(20.5) 

Finally, in terms of Fourier components Eq. (20.3) becomes 

nqs = -n(EF)Vq. (20.6) 

We may solve these three equations together by adding Vqo to both sides of 
Eq. (20.5) so the left side becomes Vq. Then nqs on the right side of Eq. 
(20.5) is written in terms of Vq using Eq. (20.6) and the result solved for Vq 
as 

v -  32 
- E ( 4 )  

(20.7) 

with 

(20.8) 
4rce2n( EF) K2 

q2 = I+F> E(4) = 1 + 
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called the wavenumber-dependent dielectric function because any 
component of the applied potential, or applied electric field, of wavenumber 
q is reduced by a factor of l/&(q). The Fermi-Thomas screening parameter 
K is given by 

(20.9) 

obtained using Eq. (2.1 1) for n(&F). 
Recall that we have linearized the equations so it is really valid only for 

small perturbations and we have used the Fermi-Thomas approximation 
which assumes perturbations which vary slowly with position, meaning that 
q is small compared to kF. In spite of these limitations in principle, the 
theory often works well quantitatively even when we go beyond those 
limitations. This may be because the self-consistent solution prevents large 
unrealistic deviations from the correct solution. 

We already made use of this screening in obtaining the matrix elements 
of an empty-core pseudopotential in Section 13.1. Because the problem was 
linearized, we could calculate the screening of each atomic pseudopotential 
in a metal separately. This is a case where the applied potential, wO(r) = 
-Zez/r for r > rc and zero otherwise, changes abruptly with position, but the 
result is a useful one. Our first step was to obtain the Fourier expansion of 
this applied potential in Eq. (13.9). [Actually we sought <k + qlwO(r)lk> = 
(l/Qo)ld3r wO(r)eh r , which is the same thing.] The integration required a 
convergence factor, e-Kr , but we could take K equal to zero afterward to 
obtain 

(20.10) 

We are to divide this Fourier component by the dielectric function of Eq. 
(20.8) to obtain -47cZe2cosqrc/[Qo(q2 + K2)], the form which we used. 

We noted further at that point that this form, with a q2 + ~2 in the 
denominator, was exactly what was obtain in the integral <k + qlwO(r)lk> 
with the convergence factor, so we know the inverse Fourier transform. 
For the simple Coulomb potential with rc = 0 the screened Coulomb 
potential becomes 

(20.1 1) 
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[It is best to use the rc = 0 form here because of small terms, proportional to 
K, dropped in the integral.] The effect of the screening is very clear in Eq. 
(20.11). It simply eliminates in a smooth way the large-distance tale of the 
potential, leaving the potential very much the same at small distances. 

This makes an extraordinary simplification of the theory of metals (see, 
for example, Harrison (1999), Chapters 12-14). In this Fermi-Thomas 
theory the interaction energy between metallic atoms must also take this 
screened Coulomb form (actually the interaction between two metal atoms, 
with valences Zi and Z 2  and core radii r c i  and rc2 becomes 
Z1Z2e2cosh~r~lcoshKr~2e-Kr/r ). Much of the dynamics and statics of 
interacting metal atoms becomes describable in terms of simple, two-body, 
central-force interactions, with additional volume-dependent terms in the 
energy. In this case it has been possible to incorporate these many-body 
terms arising from the interaction between the electrons in the metal in a 
simple self-consistent theory. 

The assumption of potentials slowly varying with position, which was 
intrinsic to Fermi-Thomas theory, can be eliminated by a full quantum 
theory, while still retaining the linearization which is the most essential 
aspect. To first order in the potential 6V(r), or its Fourier components <k + 
q16V(r)lk> or <k + qlw(r)lk> , we may calculate the modified free-electron 
states in first-order perturbation theory as 

(20.12) 

We may square this, keep terms linear in 6V(r) ,  and sum over occupied 
states k < /+ to obtain the 6n(r) in terms of  6V(r),  which we obtained in the 
Fermi-Thomas approximation in Eq. (20.3). The rest of the analysis 
proceeds exactly as above, leading to a more complicated dielectric function 
given by (e. g., Harrison (1970)), 

(20.13) 

This is called the Hartree dielectric function, since it is based upon the 
Hartree approximation discussed in Section 4.2, or the Lindhard dielectric 
function after the first person to derive it. It replaces the less-accurate Eq. 
(20.8) and is almost as easy to use. 

This quantum dielectric function is plotted in Fig. 20.2, and compared 
with the Fenni-Thomas approximation to it. As expected, they approach 
each other at small q where the assumptions of Fenni-Thomas theory apply. 
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They also both approach one at large q so that indeed the Fermi-Thomas 
theory has done quite well. However, if we look closely at the region near 
q / k  = 2 we notice a subtle fluctuation in the quantum dielectric function. 
Examination of Eq. (20.13) near this point shows that it takes the form 
(q-2k)lnlq - 2kI and has a negatively infinite d&/dq at that point. In spite 
of the subtlety of the singularity, it has significant consequences. If we use 
this dielectric function to screen a spherically-symmetric potential, as in Eq. 
(20.11), we find (e. g., Harrison (1970)) a term which varies at large 
distances as cos(2,kFr)/(,kFr)3, rather than exponentially as in Eq. (20.1 1). 
These large-distance fluctuations, called Friedel oscillations, are real and 
interesting, but have turned out to have surprisingly few consequences. At 
large q one may also see that the quantum dielectric function approaches 
one as l/q4 rather than as the llq2 in the dielectric function of Eq. (20.8). 

We finally consider time-dependent screening. There are many aspects 
which can be described in terms of transport theory, as in Chapter 11, with 
the addition of a potential which then depends self-consistently upon the 
distribution functionf(p rt) .  One of the most important many-body effects, 
plasma oscillations, can be understood this way and in fact in the even 
simpler approximation described at the end of Section 11.3. It is basically 
the same calculation which we made for the speed of sound in Section 1.8 
but now for a charged electron gas. We characterized the compressional 
wave by a displacement of the medium in the z-direction given by u(z, t)  = 

3 

2 
--. 
s” 

1 

0 

Fermi-Thomas Approximation 

t 

Fig. 20.2. The quantum dielectric function of Eq. (20.13), with K l k ~  taken 
equal to one and the Fermi-Thomas dielectric function of Eq. (20.8) with 
the same parameters. 
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ugei(¶z-mt (or the real part) which in an electron gas of density no gives rise 
to a density fluctuation -noVu(z, t )  = -iqnougei(qz-mt). This gives rise to a 
potential fluctuation, given by Poisson’s Equation, Eq. (20.5), as Vqei(qz-mt) 
= -iq(4ne2/q2)ngugei(¶Z-mt 1. The corresponding force on an electron is -V 
V(z) = -4~ce2nougei(qz-mt , which we may equate to the electron mass m 
times the acceleration of the gas, -c$uoei(qz - cot 1. Equating these leads to a 
frequency cop, called the plasma frequency, given by 

In contrast to sound 
wavenumber because 

(20.14) 

waves, it has turned out to be independent of 
of the long-range nature of the electron-electron 

interaction. They are a many-body effect, a direct consequence of the 
electron-electron interaction. They show up in any complete treatment, 
classical or quantum-mechanical, of the dynamics of an electron gas. Once 
they are suggested, they can be understood by the simple argument we have 
given. For no corresponding to metallic densities these turn out to have 
energies of order hcop = 10 eV. They are observed in the energy-loss 
spectrum of high-energy particles passing through metal foils. 

It may be interesting that the same argument could have been made for a 
collection of metallic ions, each of mass M and charge 2, if we ignored the 
important effect of the electrons present. This gives the ion plasma 
frequency as 01p2 = 4n$e2/(MQ4)), with no the volume per ion. The effect 
of the real compensating electron gas is to screen the interactions, reducing 
the force, the acceleration, and therefore the frequency-squared, by a factor of 
l/&(q). If we use the Fermi-Thomas dielectric constant, the result at long 
wavelengths, small q, is 

(20.15) 

With the interactions screened, as we have discussed, the frequency becomes 
proportional to the wavenumber as for a sound wave in a metal, which is 
what this compressional wave is. This prediction of the speed of 
longitudinal sound in a metal, called the Bohm-Staver speed of sound, is in 
reasonable accord (within 10 or 20%) with experiment for the simple metals. 
If we substitute Eq. (20.9) for ~2 we see that the speed of sound is given by 
d m t i m e s  the Fenni velocity h b / m  of the electrons. 
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Chapter 2 1. Cooperative Phenomena 

There are systems for which many-body effects make dramatic changes 
in the behavior. These ordinarily arise from the cooperative effect of many 
particles, like the condensation of vapor into a liquid. Hear we discuss such 
cooperative phenomena in the context of quantum theory. One of the most 
familiar such cooperative phenomena is ferromagnetism, but we postpone 
that discussion till the next chapter after we discuss other magnetic effects. 

2 1.1 Localization and Symmetry Breaking 

Another cooperative phenomenon is associated with localization of 
electronic states and can be understood already in the simple Liz molecule 
which we treated in Section 5.1. We found a ground state, in our one- 
electron approximation, with both valence electrons in a bonding orbital, and 
consequently with a 50% chance at any moment of being on the same atom. 
If we imagine pulling these atoms slowly apart, Vsso decreases and 
eventually becomes unimportant, but we are retaining a state with a 50% 
chance of both electrons on the same atom with a corresponding Coulomb 
interaction U. Clearly the energy will be lower if we change to a state with 
one electron on each atom. This corresponds to a correlated motion of the 
electrons since they tend to avoid each other, rather than each forming a one- 
electron state, independent of the other, as we assumed. The correlated state 
is also often called a localized state. We proceed to see how the system 
changes from a bond-like to a localized state. 

We describe each electron in terms of four states, the 2s-state on each 
atom with the spin o either up ('?) or down (J). The Hamiltonian, in the 
operator notation of Section 16.1, would be written 
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In the context of this formulation, we can add the electron-electron 
interaction which describes the increase in Coulomb energy U if two 
electrons are on the same atom as opposed to separate atoms, and they would 
need to have opposite spin if on the same atom. That electron-electron 
contribution to the Hamiltonian is 

As we have indicated, adding the interaction with four operators 
tremendously complicates any problem. However, this problem started out 
so simple that we can in fact solve it exactly, in the context of this 
formulation. This has become a two-electron problem, but there are only six 
two-electron states. One basis state is with a spin-up electron on atom one 
and a spin-down electron on atom two, which we write clTtc2J,tlO>. 
Another is clJ,tc2ttlO>. There are also two basis states with both electrons 
on the same atom, clttcl.J,t(O> and c2?tc2JtlO> and two basis states with 
parallel spin, clTtc2?tlO> and clJ,tc2J,tlO>. These six basis states have 
energies 2 ~ ~ ,  2~~ , 2~~ + U ,  2~~ + U ,  2~~ , and 2~~ , respectively, before 
introducing the Vsso . In addition, the first basis state is coupled to the third 
and fourth by Vsso (which couples individual electron states of the same 
spin on the two atoms) and so also is the second basis state couple to the 
third and fourth by Vsso . All other states are uncoupled. The 
corresponding six-by-six Hamiltonian matrix can be solved easily. The last 
two basis states, with parallel spin, are eigenstates with energy 2 ~ ~ ,  
uncoupled to the other basis states or each other. We could think of these 
states as having one electron on each atom or one in a bonding state and the 
other in an antibonding state of the same spin. (When the state is written 
out, terms with both electrons on the same atom cancel as the Pauli Principle 
tells us they must.) 

The remaining four eigenstates are even and odd combinations of the 
remaining four basis states. Of most interest is the ground state, which will 
be even. One even combination is: [clTtclJ,tlO> +c2ttc2J,tlO>]/d2 , with 
energy of 2~~ + U . The other is: [clTtc2JflO> + clJ,tc2TtlO>]/$ with 
energy 2cs . We may verify that they are coupled by 2Vsso and solve the 
quadratic equation for the two even eigenstates as 

&* = 2Es +c 2 -  + d(Z" p +4vsso2 . (21.3) 
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Use of creation operators for the states assures the appropriate 
antisymmetry, which is of no consequence in this simple example. With 
only one orbital per atom there are no exchange terms in the model. The 
minus sign in Eq. (21.3) gives the ground state. Note that if U is neglected 
it gives 2 ( ~ ~  + Vsso)  , with Vsso negative, the solution we obtained in 
Chapter 5.  If on the other hand, Vsso becomes very small, the energy 
approaches 2~~ . The electrons indeed separate onto different atoms. 
Furthermore, the energy and the state vary smoothly between the two limits 
as the atoms are separated from each other. Because of the smooth 
variation, over the entire range of Vsso/U,  all states are correlated to some 
extent but the correlations only become important when U is of order or 
larger than V,,, [In passing we note that in addition to the ground state 
there is a high-energy state obtained with the plus in Eq. (21.3). There is 
also one odd state with energy 2~~ which, with the two parallel-spin states 
mentioned before, form a triplet, three states of the same energy, and 
corresponding, it turns out, to parallel spins of 1/2 units each totaling one 
unit of spin with three orientations. There is also an odd state with energy 
2~~ + U, We are only interested here in the ground state.] This system is 
frequently discussed in terms of the exchange interaction which we 
introduced in Section 4.2, but we regard that as misleading and confusing. 
There is only one orbital per atom and exchange can only enter if we 
introduce artificial self-exchange and self-direct interactions as we discussed 
in Section 4.2. For the understanding of these systems there is considerable 
advantage in not introducing these artificial effects and in retaining only the 
real electron-electron interaction. 

It is interesting to compare the energy we obtain by an exact solution, 
Eq. (21.3), with the one-electron solutions which we have used throughout 
the book. Evaluating the expectation value for the Hamiltonian, Eqs. (21.1) 
and (21.2) with respect to these bonding states yields U/2 - 2JVssol, 
compared as the curve "HF" (for Hartree-Fock) with Eq. (21.3) plotted as 
"Exact" in Fig. 21.1. We imagine this as a plot of energy versus spacing, 
since the abscissa, U/IVssol , increases with increasing spacing. The exact 
energy is lower than the approximate solution (this follows from the 
variational argument of Section 4.2), but they become rather close at small 
spacings where the real molecules are rather well described by the one- 
electron approximation. The large error of U/2 at large spacings, mentioned 
above, is apparent. 

It is also possible to improve upon the one-electron solution by allowing 
the spin-up solution to be of the form sinqIl?> +cosq12T> and the spin- 
down solution to be of the form cosqlld,> + sin ql2d,>, with the coefficients 
chosen to retain normalization but allow segregation of the electrons by 
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Fig. 21.1. A plot of the exact total energy, Eq. (21.3), for the two-level 
model of the Li2 molecule, compared with the one-electron approximation 
(HF) used in Chapter 5. Also shown is a third solution, UHF, a one- 
electron approximation in which the spin-up and spin-down electrons are 
allowed to break symmetry and localize, dividing the region into bond-like 
and localized regions. 

varying q , and the total energy expectation value of the Hamiltonian is 
minimized with respect to q. This is another example of selecting a 
variational solution which encompasses the physical concept which we think 
is important. This particular choice is called Unrestricted Hurtree-Fock 
(e. g., Harrison ( 1  999), 595ff), and the result is plotted as UHF in Fig. 2 1.1. 
Indeed it eliminates the U/2 discrepancy at large spacing, but it retains too 
small a binding by a factor of two and in fact for U < 21Vssol the minimum 
energy comes at the symmetric state, giving the energy of the HF solution, 
as seen. 

This Unrestricted Hartree-Fock approach does incorporate an 
appropriate spin segregation on the two atoms, but it is misleading in doing 
it in a discontinuous way (the second derivative of the energy with respect to 
the abscissa is discontinuous at U = 21Vssol). Frequently that is not a serious 
drawback. When a condensed-matter system has two qualitatively different 
states, such as the localized and the bond-like solutions, the energy of the 
localized solution is ordinarily minimum at larger spacing. The bond-like 
solution may have a minimum energy at a smaller spacing. This is sketched 
in Fig. 21.2, giving the energy of a system as a function of the volume of 
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that system. If that minimum for the bond-like state is higher in energy, as 
shown there, the stable state is the localized one. However, if a pressure P 
is applied, there is an additional term in the energy equal to P(Q - Qo), also 
sketched in Fig. 21.2. Adding it to the Etot shifts the minimum to a slightly 
lower volume and brings the bond-like energy minimum down. The 
common tangent, also drawn in Fig. 21.2, is also rotated counterclockwise. 
If sufficient pressure is applied that this common tangent has positive slope, 
the energy will be lower in the bond-like state and the system will make a 
first-order transition (a transition with a discontinuous change in volume) to 
the bond-like state. If the approximate descriptions of these two states are 
good in the region of their minimum energy, the prediction can be accurate, 
and it does not matter than neither description is very good at intermediate 
volume. That intermediate volume is not accessed by the experiments. 
[See Harrison (1999), Chapter 16, for studies of this aspect for the rare 
earths and actinide metals.] There may be cases where the entire range of 
states between two limits is accessed, and then a more complete description 
such as Eq. (21.3) may be needed. 

The most important results from this section are, first, seeing that the 
electron-electron interaction can fundamentally change the approximations 
which are appropriate for discussing the systems, and, second, that it is not 
always necessary to study the most difficult intermediate case. Often 
transitions are made between states of condensed matter which are 

I I ,  I 

Fig. 21.2. A schematic plot of total energy versus volume for a system 
which has lowest energy with the electrons localized to their atoms at a 
large volume 520. If a pressure P is applied, an additional term is added, a 
straight line with a slope equal to P. If the slope of that pressure line 
exceeds the negative slope of the common tangent shown, the system will 
transform to the bond-like state at the smaller volume. 
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fundamentally different, but both may be simply understandable. 

21.2 The Hubbard Hamiltonian 

The Hubbard Hamiltonian is the direct extension of the Hamiltonian 
given in Eqs. (21.1) and (21.2) to a long chain of N atoms such as we 
discussed in Section 6.1, 

usually with one electron per atom and sometimes extended to a square 
lattice or simple-cubic lattice. It introduces the essential feature of the 
Coulomb interact but eliminates any unnecessary complications, as it did for 
the two-atom case discussed in the preceding section. It cannot be solved 
analytically, as was the two-atom problem, because the basis contains so 
many N-electron states but the approximations introduced there can give 
insight into the behavior of such a system and important solid-state systems 
which share these features. We discuss here symmetry-breaking and 
antiferromagnetic insulators. 

With only the first line in Eq. (21.4) we constructed one-electron states 
and obtained the simple energy band &k = E~ + 2Vssocoskd . We can 
similarly construct two-electron states 

This approach is used for N = 2 in Problem 21.1. These states are normalized 
(except if k '  = k and (J' = 0, in which case the state is zero). Once we have 
seen how the normalization has worked out, we can see that the expectation 
value of the first sum in Eq. (21.4) with respect to this state is 2~~ per atom 
and for the second is 2Vsso(coskd + cosk'd). This clearly generalizes to 
many-electron product states, which are also antisymmetrized by our use of 
creation operators. 

For 
each atom in a sum over i', < ~ ( 2 ) 1 U ~ i ~ c i ~ t ~ ~ i ~ ~ ~ i ~ J t c i ~ J  Iy(2)>, the only 
contribution from the states of Eq. (21.5) will come when both i a n d j  are 

Of course it is the second line in Eq. (21.4) which is interesting. 
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equal to i' . If the spins are parallel, the c i ~ ~ t c i ~ ~ t  for the state is zero and 
there is no contribution. If the spins are antiparallel we obtain U/@ and 
there are N such terms, so the Coulomb energy is UIN , as we obtained in 
the last section for N = 2. This also generalizes to the N-electron state, with 
the lowest half of the band filled with N/2 electrons of each spin, in that 
there is no contribution from states of parallel spin, and the expected 
contribution for no correlated motion of the electrons of antiparallel spin. 
Each spin-up electron on a given site will see on average a half an electron 
of opposite spin, and no electrons of the same spin. We can add this up for 
all spin-up electrons to obtain NU/ 4 and all interactions have been included 
once. (We mentioned the double counting of interactions if we add shifts for 
all electrons in Section 4.2.) 

As in the two-atom case, there is reason to correlate the motion. We can 
in fact see an instability of the many-electron generalization of Eq. (21.5) 
using an Unrestricted Hartree-Fock state with lower symmetry as we did for 
the two-atom problem, and see that a lower energy can be obtained. We do 
this for one electron per atom and proceed by constructing Bloch sums as in 
the first form in Eq. (21 S) ,  but with different coefficients on odd- and even- 
numbered atoms, shifting spin-yp electrons to one set and spin-down 
electrons to the other. This will shift the energy, through the U-term in Eq. 
(21.14), for each electron differently upon the different atoms. If we knew 
the result, a net average fraction sin2q of up-spin electrons on even atoms 
and cos2q on odd atoms, and thus a shift from the final term of (U/2)sin2q 
upward for up-spin on even atoms and down-spin on odd atoms, and a shift 
of (U/2)cos2q upward for down-spin on even atoms and up-spin on odd 
atoms, we could proceed with the one-electron calculation for each set. 
However, we do not know q so we must proceed self-consistently to guess 
q ,  do a band calculation, and then use the resulting states to estimate the 
shift and thus q,  as we did for the screening calculation. 

The important results can be gotten rather easily. Given a value of q we 
have a simple band calculation with a Bloch sum of spin-up states on even 

atoms .\luNCi (even)e'kd'cittlO> with energy ES +(UL!)sinaq. It contains no 
nearest-neighbor atoms so V,,, does not enter the expectation value of its 
energy. It is, however, coupled by 2VsSocoskd to a Bloch sum of spin-up 

states on odd atoms, (odd)eikdiCirtlO>, and is not coupled to any 
other Bloch sum. The variational solution, or band calculation, is carried out 
with a state given by u l ( k )  times the Bloch sum on odd atoms plus u2(k) 
times the Bloch sum on even atoms. The solution is obtained from the 
solution of a quadratic equation as 



21.2 The Hubbard Hamiltonian 277 

(21.6) 

U 
2 -  = Es + - + 4 @cos22q/16 + 4Vsso2cos2kd . 

These bands are plotted in Fig. 21.3 choosing the - for kd < n/2 and the 
+ for kd > n/2. We really have doubled the cell size by taking alternate 
atoms different and should plot both in a Brillouin Zone with kd < n/2 as 
done in the dotted curve to the left, but the scheme we use makes clearer the 
effect of breaking the symmetry. We see that it has opened up a gap at n/2, 
just where the Fermi wavenumber comes. Energy is lowered by populating 
only states below the gap. 

These were the bands for spin-up electrons. Of course the bands for 
spin-down electrons are exactly the same, but they correspond to electrons 
shifted to the other set of atoms. Spin alternation between atoms is called a 
spin-density wave, or an antiferromagnetic state, and in this case with a gap 
opened up at the Ferrni energy, it is an antiferromagnetic insulator. 

To complete the calculation we must calculate, given a particular q in 
Eq. (21.6), the charge distribution and the resulting shifts which should equal 
(U/2)cos2q and (U/2)sin2q for a self-consistent choice. The solution of two 
simultaneous equations leading to Eq. (21.6) is exactly parallel to that 

0 7112 kd 71 

Fig. 21.3. A plot of the bands with broken symmetry. With alternate 
atoms different, the primitive cell is larger and the Brillouin Zone is 
reduced to 0 < kd < nl2 with two bands as shown. They may also be 
understood as opening a gap in the original bands for 0 < kd < x. 
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leading to Eq. (5.15) for molecular orbitals, and the states take the same 
form. If we define a V2 = 2Vs,&oskd and a V = Ucos2q/4, then the 
coefficients of the two Bloch sums become 4- with ap = 

on an even site for 
a Bloch state of wavenumber k is (1 
over the states of one spin, and divide by half the number of atoms to obtain 
the charge from that spin on a particular atom as 

V3/4-2 . Then the fraction of 
. We may sum 

(21.7) 

with 

(The integral is for the half-filled band.) But this Z+ is what we have 
written cos2q or sin2q or (1 k cos2q)/2, so our self-consistency condition is 

(21.8) 

We related the integral to an elliptic integral, and wrote the final form for 
small a . Correction terms are of order a2 lnlal but this form is reasonably 
accurate for 0 < a < 2. There is always a solution and a gap since, no matter 
how small U is, a cos2q can be chosen small enough that logl4/al will be 
large enough to match the left side. The gap is given by E g  = 1/2Ucos2q = 
41Vssola. We may exponentiate the first and last forms in Eq. (21.8) to 
obtain 

There is always an instability against such a transition in a one-dimensional 
case at zero temperature, but these qualifications are important. At finite 
temperature there will be some electrons excited across the gap which 
contribute to the final term in Eq. (21.7) with opposite sign. We may in fact 
repeat the evaluation for finite temperature using a Fermi distribution with 
the Fermi energy midgap, E~ = E~ + U/2 as seen from Eq. (21.6). Then the 
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integrand in Eq. (2.18) is multiplied b l/(e(Ek - F I ~ ~ B ~  + 1) and from Eq. 
(21.6) we see that &k - Em = 2Vss0 + a2 + cos2kd . We then subtract a term 
for electrons excited above the gap by subtracting a factor l/(e -(Ek - %&BT 
+ 1) so that the integrand in Eq. (21.8) is multiplied by 
tanh(2Vssoda2 + cos2kd / k B  T ) and the limits on the integral remain the 
same. At low temperature, this tanh approaches a step function at the n/2 
limits and the result is unchanged. However, at higher temperatures it 
becomes proportional to 2Vssoda2 + cos2kd, cancels the factor in the 
integrand which is diverging at small a and eliminates the logl4/al which 
always allowed a solution. The conclusion is that when the zero-temperature 
gap becomes small, of the order of kT , the transition cannot occur. In a 
similar way, if the system were two- or three-dimensional, the singularity is 
lost and the transition is not required. [This can be seen by replacing the 
chain by many chains, weakly-coupled to each other, so that the Fermi 
wavenumber along the chain varies slightly with transverse wavenumber and 
provides the smearing of the cut-off, which temperature provided above.] 

We treated the case of the exactly half-filled band, with the net spin 
alternating from atom to atom. However, a similar argument can be made 
for a one-dimensional system with k~ different from half filling. We simply 
introduce a spin-density fluctuation varying as cos(2.kr;d) and band splitting, 
just as in Eq. (21.6) is produced at the Fenni surface. This is called an 
incommensurate spin-density wave since the period of the fluctuation is no 
longer locked to multiples of the lattice spacing. 

Of course our analysis was based upon Unrestricted Hartree-Fock, not an 
exact solution, but the conclusions are believed to apply to real systems: 
one-dimensional metals are regarded as unstable with respect to formation of 
a spin-density wave, forming a gap and an insulating state. There are 
complications concerning phase transitions in lower-dimensional systems, 
arising from very large statistical fluctuations. The nature of the transitions 
depends upon the order in which limits are taken; for example, the size of 
the system becoming infinite or the coupling between an array of one- 
dimensional systems becoming small. These questions are too mathematical 
to discuss in detail here, but we may note that if such an insulating state is 
formed in a three-dimensional system, and the gap is small, the gap will 
decrease and finally disappear as the temperature is raised. This occurs 
sharply at a transition temperature, but the gap and the energy are a 
continuous function of temperature, with a discontinuity only of the second 
derivative of the energy with respect to temperature. Such a transition is 
called a second-order transition. The disappearance of ferromagnetism at 
the Curie temperature and of superconductivity at the critical temperature are 
other examples of second-order phase transitions. 
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The two-dimensional analog of the transition to an antiferromagnetic 
insulating state which we have discussed in detail for one dimension is 
important because it is closely related to high-temperature 
superconductivity. It concerns a square lattice with a half-filled band. Then 
the energy bands generalize to E k  = E~ + 2Vsso(coskxd + coskyd) and a 
square Brillouin Zone. When half-filled, the Fermi surface is at Ek = E~ or at 
k ,  = f ( d d  - Ikxl), as illustrated in Fig. 21.4. Then in the Unrestricted 
Hartree-Fock Approximation an antiferromagnetic state with alternate atoms 
polarized in opposite direction opens up a gap over the entire Fermi surface 
exactly as in one dimension and the analysis which we gave for that case 
applies. If a large gap is formed, then adding small second-neighbor terms 
which deform the original Fermi surface are of little consequence. This 
explains the antiferromagnetic insulating state of the copper-oxide 
compounds, which however become metallic if they are doped away from 
half-filling and form the high-temperature superconductors. 

One way of treating such systems, estimating total energies and spin 
densities, is to approximate the integrals over a band by a special point k*, a 
wavenumber which seeks to represent an average of the band. (This is also 
called a Baldereschi point (Baldereschi (1973)) and discussed in Harrison 
(1999) 348ff.) For the one-dimensional band it would be the wavenumber 
half-way to the Zone edge, k*= 7c/2d, where the leading Fourier component 
of the band, coskd , is zero. For a square lattice, the two sets of leading 
Fourier components, cos kxd + cos kyd and cos (kx + ky)d + cos (kx - ky)d, 
vanish at the point k* = [n/(26),~/(2d)] half-way from the origin to the 
corner of the BZ. In the particular case, shown in Fig. 21.4, the introduction 

7 
2 d d  

Fig. 21.4. A two-dimensional square lattice with spacing d gives a square 
Brillouin Zone with edge 2 d d .  For nearest-neighbor tight-binding bands, 
the Fermi line (Fermi surface in two dimensions) is the square shown with 
all states occupied inside. 
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of the antiferromagnetic order reduces the Brillouin Zone to the small 
rotated square, the Fermi line, and we wish to integrate over that portion of 
wavenumber space. Then the special point becomes [O,.n/(24]. The bands 
are evaluated at that point and the problem reduces to the two-level problem 
we treated in Section 2 1.1. The magnetism of the cuprates was treated in 
exactly this way in Harrison (1987). 

21.3 Peierls Distortions 

Having found an instability of a system does not mean that it will make a 
transition along that path. Sometimes there are other instabilities and a 
system will tend to follow the strongest one. In the particular case of a half- 
filled band in a one-dimensional metal, a Peierls distortion (see, for example, 
Peierls (1979)) always provides an instability. For this distortion we 
imagine starting with the undisturted metallic chain and allow alternate 
atoms to be displaced to the right and the left by some distance u . This will 
cost some elastic energy, proportional to u2 if the system was initially at the 
equilibrium spacing. However, it will also open up a gap at k = n/2d 
through a matrix element proportional to u , as we have seen for the 
electron-phonon interaction, whether we were using pseudopotentials or 
tight-binding. This produces bands as we found in Eq. (21.6) with Ucos2q/4 
replaced by a term proportional to u and a gap opened up as in Fig. 21.3. 
The analysis proceeds exactly as for the antiferromagnetic instability and 
there is always a solution with some finite distortion u. 

There are some important features to notice about this result. First, the 
alternate displacement has paired the atoms up, so that if this is a lithium 
chain we may think of it having formed Li2 molecules with bonding and 
antibonding states. There is a residual coupling between them, so they form 
bonding and antibonding bands, but this is a completely natural result and 
could have been anticipated without the analysis. We may further note, that 
there will be electron pairs in each bond site, every 2d along the chain, and 
less charge in the sites between. We have produced a charge-density wave 
by this distortion, very much like the spin-density wave we produced in the 
preceding section. It is a different instability, and which can lower the 
energy most will depend upon U , Vsso, the electron-phonon coupling, and 
the elastic rigidity. 

Another feature may be very helpful for understanding cooperative 
phenomena in general and superconductivity in particular. The state which 
we have found corresponds to a finite amplitude of a phonon mode for the 
wavenumber q = n/d. If we wished to discuss this in terms of phonons we 
must make a mixture of excitations of different numbers of phonons and 
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these must have coherent phases as we showed in Section 19.1. This order 
in the system is sometimes called off-diagoizal long-range order, referring to 
order in a density matrix which we have not discussed. The coherent state 
we have generated is essentially a classical state, as we saw in Chapter 19, 
and requires that the number of phonons present be poorly defined. We shall 
see that the construction of a superconducting state requires, in a very 
similar way, that the number of electrons present be poorly defined, a much 
more difficult situation to imagine. 

There is a second feature which both the spin-density wave and the 
charge-density wave have in common with superconductivity, and that is the 
dependence of the gap on the coupling which caused it. In the case of the 
spin-density wave, caused by U, it was given in Eq. (21.9) as ~ - ~ ~ ~ V S S O I N ,  
with U appearing in the denominator of the exponent. Similarly, the gap in 
the charge-density wave contains the electron-phonon interaction in the 
denominator of an exponent. The total energy depends upon the same factor 
and we note that e - ~ ~ \ V S S O \ / ~  cannot be expanded in a series XnanUn. That 
means also that it would never be possible to obtain these states proceeding 
from the normal state and treating the coupling in perturbation theory, even 
i fwe carried it to all orders in U.  It was only possible to obtain the state by 
proposing a variational solution which reflected the instability in question. 
In hindsight, one can see that this was the essence of the theory of 
superconductivity by Bardeen, Cooper, and Schrieffer (1 957). 

2 1.4 Superconductivity 

Superconductivity is a cooperative state in a metal which arises from an 
attraction between electrons. The origin of that attraction is the electron- 
phonon interaction, which we saw in Section 17.3 causes the lattice to 
deform and lower the energy of an electron, as a polaron. A second electron 
which happened to be at the same position would also have its energy 
lowered by that distortion, which means that there is an attraction between 
the two electron arising through the electron-phonon interaction, much as 
two heavy balls rolling on a mattress which we illustrated in Fig. 17.3. 
There is also a Coulomb repulsion between the electrons, but the 
superconducting state manages to take advantage of a net attraction from the 
phonons, at least in conventional superconductors predating the cuprates. 

This attraction leads to an instability which was pointed out by Cooper 
(1956). He addressed the state of a three-dimensional metal, with all states 
filled to a Fermi sphere of radius k~ and in which there was some attractive 
interaction V(ri - rj) between pairs of electrons. He then sought a state 
y ( r l , r 2 )  for two electrons which had energy lower than simply placing them 
at the Fermi surface; this would be an instability. This state could be written 
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in terms of the center-of-mass R and a relative coordinate r, and in fact 
factored into functions of those two coordinates separately since there are no 
terms in the Hamiltonian coupling them. The center-of-mass factor will be 
e*K. R and the lowest-energy state will have K = 0. The remaining factor is 
written y(r1 - 1-2) . 

This two-electron state was taken to consist of two electron of opposite 
spin and must be orthogonal to all of the occupied states for k < k ~ ,  so he 
sought to expand it in terms of the plane waves outside that surface, 

(2 1.10) 

This is often referred to as pairing of two electrons moving in opposite 
directions but it is just pairing without any drift momentumhK. One may 
expect that a spherically-symmetric state is of lowest energy, so the 
expansion can be made instead in spherical waves d m j  sin(k'r )lr , in a 
large sphere of radius R ,  (these are orthonormal eigenstates of -h2V2/m 
based upon the reduced mass, ml2, with pair energy 2 e ~  = h2kQIm ) as 

(21.11) 

with r the distance between electrons. This is a variational solution for the 
Hamiltonian, which we write H = -Ii2V2/m + V(r), and the resulting 
eigenvalue equation HW = EW can be rewritten as 

(21.12) 

sinkr 
r We multiply by dg- and integrate over the volume to obtain 

( 2 ~ k  - E)ak = - k>b ak' dr  sink'r sinkr V(r). c R (21.13) 

The matrix element (2lR)jdr sink'r sinkrV(r) is taken to be negative. We 
neglect its variation with k and k'  over a small range AE of states near the 
pair Fermi energy where we let the ak be nonzero, and write that matrix 
element -V , for an attractive potential. 
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We may now obtain a solution, and the method is different from any we 
have used before. Again, for V a constant, the right side of Eq. (21.13) is 
independent of k so we may define it to be a constant C and solve for a k  = 
C/ (2&k - &). Then substituting for a k  on both sides in Eq. (21.13), and 
canceling the C from both sides, we have 

(21.14) 

To see the solutions, we plot the right side as a function of & as in Fig. 21.5. 
The sum diverges wherever & is equal to one of the 2&p in the range over 
which we have taken the ak' nonzero, as seen in the figure. The solutions of 
Eq. (2 1.14) come where this sum is equal to 1, also sketched in the figure. 
We see that we have a solution just to the right of each 2&k' , a state of 
slightly larger energy. Much more importantly, we have one solution at very 
much lower energy, an energy well below the F e d  energy. This is indeed 
the instability Cooper sought. Had the potential not been attractive, V(r) > 0, 
the singular solution would have been of higher energy, far to the right in 
Fig. 21.5. 

We may finally solve for the energy of the Cooper pair from Eq. (21.14). 
We see from Fig. 21.5 that E for the Cooper-pair state is well removed from 
all of the 2&ki over which we sum so the summand is smooth and we may 
replace the sum by an integral, &I + f d & r  n(&kl)/2 with n(&k')/2 the number 
of one-electron states per unit energy (and per spin; e. g., electron-one with 
spin up) in the system, taken as independent of energy over the small one- 
electron energy range A& . Then the integral may be performed to obtain 

Fig. 21.5. A plot of V Ck 1/(2&k' - E), summed over a set of pair states just 
above the Fermi energy, as a function of E. Where that sum equals 1 , 
there is a solution of Eq. (21.14) and a state. 
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(21.15) 

with E measured from the Fermi energy. We divide through by V ~ ( E F ) / ~  and 
exponentiate both sides. The energy of the Cooper-pair state E is small 
compared to the energy range ~ A E  so that the result is 

Note the resemblance to the energy of the antiferromagnetic state given in 
Eq. (21.9) in the appearance of the interaction in the denominator of the 
exponent. This exponential will ordinarily be very small, as we assumed in 
taking E small compared to AE. 

The next task undertaken by Bardeen, Cooper and Schrieffer was to seek 
the ground state. In constructing the single Cooper pair, we used terms from 
a range of states and we cannot simply repeat the process for additional 
states because of the Pauli Principle. A variational solution was tried in 
which the number of pairs of electrons was ill-defined, as was the number of 
phonons in the Peierls state. That is, the BCS state was taken to be of the 
form, 

Each factor in this extended product contains one term (uk) with no 
electrons and one (vkc-kltckrt) with two electrons. This was exactly the 
key point. A Hamiltonian was taken with electron kinetic energies and with 
an electron-electron coupling which could scatter the electron pairs from one 
State to another, Ck'kVk'k Ck'ttc-k'J,tC-kJ,Ckt, as in Eq. (16.10). Given the 
variational state, Eq. (21.17), the calculation is straightforward and followed 
the calculation of the Cooper pairs given above. They evaluated 
<YBCS~HIYBCS> and used Lagrange multipliers to fix the expectation value 
of the total number of electrons and the normalization conditions uk*uk + 
vk*vk = 1. This was minimized with respect to all uk and vk. In place of the 
constant C an energy-gap parameter Ak was defined by 

(21.18) 

and taken to be A,  independent of k, by taking Vkfk equal to a constant, -V, 
as we did for the Cooper-pair calculation. Note that to contribute to A both 
uk' and vk' must be nonzero for each k' and for A to be large the phase of 
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uki*vki must be coherent in the sense we discussed in Chapter 19 from one k 
to another. Thus the state is quite analogous to the classical Peierls 
distortion discussed in Section 21.3. The counterpart of Eq. (21.15) is called 
the energy-gap equation and solved using an energy range A& within the 
Debye energy ~ O D  = hvqD of the Fermi energy. This Debye energy is the 
range of phonon energies as defined for Eq. (10.14), and believed to be the 
range of energy over which that electron-electron interaction is attractive. 
The resulting formula for the energy-gap parameter was close to Eq. (21.16) 
for the Cooper-pair energy, 

with ~ ( E F )  as always the number of electron states (including the factor of 
two for spin) per unit volume and per unit energy. 

The energy gain in forming the superconducting state was found to be 
l /4n(E~)A~.  A gap of 2A was opened in the excitation spectrum, analogous 
to that shown in Fig. 21.3. It is possible to construct a drifting 
superconducting state, simply by transforming to a moving coordinate 
system, equivalent to shifting the entire superconducting state, and each 
electronic wavefunction, by some wavenumber q. This can be seen from 
Eq. (21.17) and (21.18) to have the effect of multiplying the energy-gap 
parameter by e 2 h  r . Then A(r) becomes essentially a superconducting 
wavefunction, such as had been introduced earlier (without the factor 2 in 
the exponent) by Landau and Ginsburg (1950). This Landau-Ginsburg 
theory is a quantum theory of superconductivity, based upon the single 
superconducting wavefunction describing the many-electron 
superconducting state. 

In a superconducting ring A(r) may increase in phase by some integral 
number of 2ds,  associated with a particular value of the current, and that 
number cannot change without forcing A(r) to go through zero somewhere 
along the ring, requiring a macroscopic energy. This is the origin of 
persistent current: it will not decrease at all over extraordinarily long times. 
This is also the origin of quantized flux. Each increase in the number of 2n's 
produces an additional magnetic flux quantum of nhde. The consequences 
of this theory by Bardeen, Cooper and Schrieffer are immense, and very 
many of them were obtained in the original paper, possibly the most 
extraordinary physics paper of this century. 
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Chapter 22. Magnetism 

We return to a number of aspects of magnetism which have not been 
discussed, ending with a discussion of ferromagnetism. Magnetic-field 
strengths are most frequently given in units of the gauss, and to evaluate 
expressions we will need to go beyond the values for h2Jm , and e2 in eV and 
8, which we gave in Eq. (1.10). When working with magnetic fields, in 
gauss, we can substitute e in electrostatic units (esu) and all other values in 
centimeter-gram-second (cgs) units, 

e = 4.8x10-10esu. 
h = 1.054~10-27 erg-sec. (equivalent to 6.6~10-16 eV-sec.) 

c = 3~101Ocm/sec. 
me = 9.1~10-28 g. 

and our results will be in cgs. In this chapter, as in Section 2.4, we write the 
electron mass as me to avoid confusion with the quantum number m for the 
z-component of angular momentum. 

22.1 Free Electrons in a Magnetic Field 

We found in Section 3.3 that the effects of a magnetic field H on the 
dynamics of an electron could be included using a vector potential A from 
which the field could be derived as H = VxA. Then in the kinetic energy in 
terms of the momentum, p is to be replaced by p - (-e/c)A. Thus for a free 
electron, the Schroedinger Equation becomes 

(22. I )  
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Different choices may be made for the vector potential which will give the 
same constant magnetic field H in the z-direction, 

(22.2) 

and they will yield different forms of energy eigenstates. The different 
choices are called different gauges,  and although the wavefunctions are 
different for different gauges they are all equivalent and will give the same 
properties. For constructing free-electron states the Landau gauge, A, = Hx,  
is the most convenient. Then the eigenvalue equation from Eq. (22.1) 
becomes 

We try a solution of the form 

(22.3) 

(22.4) 

and substitute it in Eq. (22.3) to obtain 

or (22.5) 

This equation may come as a complete surprise! We have found that 
@(x)  satisfies the harmonic oscillator equation, for an oscillator centered at 

hkyc xo = - eH 
(22.6) 

and spring constant K = e2@/(mec2) .  This corresponds to a frequency o = 

(22.7) 
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the classical cyclotron frequency, or Larmour frequency. (Note that it may 
be obtained in radians per second using the constants from the beginning of 
the chapter.) Then the result becomes sensible, though unexpected. A 
cyclotron orbit, viewed from along the y-direction, has a motion x = ro 
cosoct,  as does a harmonic oscillator and we may think of the state, Eq. 
(22.4), as a tight-binding sum Cn eikydyn of circular orbits centered at points 
(xo,dyn ) as illustrated in Part a of Fig. 2.1. The energy associated with the 
harmonic-oscillator state $n(x) is hoc(n + 112) so from Eq. (22.5) we have 
eigenstate energies of 

(22.8) 

The energy is independent of the wavenumber k, which determines the 
position along x of the orbit through Eq. (22.6). The electron may 
propagate freely along the field, as for a classical orbit, contributing the 
energy h2kz2/(2me). We may think of the quantization as coming from the 
circular orbits [this point is tricky because the states depend upon the gauge 
chosen for the vector potential] giving states spaced equally in energy for 
motion in the xy-plane, h2k2/(2me) = hoc(n + 1/2), and therefore with equal 
spacing in cross-sectional area in the xy-plane of wavenumber space. This is 
shown schematically in Part b of Fig. 22.1. There we construct cylinders in 
wavenumbers space, with axes parallel to the z-axis, and with cross-sectional 
areas differing by 2 7 ~ m e ~ c h  (from A(Pk2/2me) = hot) from one to the next. 

Y 

I > 
- T i c  X 

eH 

b. 

Fig. 22.1. In Part a is a schematic sketch of a Landau level for a free 
electron in a magnetic field. Part b illustrates the quantization of such 
levels in wavenumber space with fixed orbit areas in the xy-plane, and free 
propagation along the field in the z-direction. The surrounding sphere 
might represent the Femi surface, containing the occupied states. 
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Each cylinder represents an allowed xy-motion, with varying propagation 
along the z-axis. 

As the field is increased, oc increases and the separation of the cylinders 
increases. If we imagine a system, as in Part a of Fig. 22.1, with dimensions 
Lx,  L,, and Lz, we may apply periodic boundary conditions for the state, Eq. 
(22.4), in the y- and the z-directions. This gives a spacing of the levels along 
ky of 27r/Ly and the range of wavenumbers k, is limited by Eq. (22.6): if xo 
is restricted to a range Lx , then ky is restricted to a range eHLx/ hc. Thus the 
number of allowed ky-values is eHL,Ly/(2?t hc), proportional to the cross- 
sectional area of the system, as it should be. Further, the number of allowed 
k ,  also increases in proportion to the magnetic field so that the number of 
states up to a certain energy, such as that for the Fermi sphere shown in Part 
b of Fig. 22.1, remains approximately constant. As the field increases the 
cylinders expand but the number of states accommodated on the cylinders 
within the sphere remains nearly fixed. 

The number of states within a thin shell of energy at that surface does 
vary with field. It is proportional to the area of cylinder within the shell and 
just as a cylinder becomes tangent to the sphere the area becomes much 
larger. Thus the density of states at the Fermi energy fluctuates as the field 
is increased. This fluctuation shows up in the diamagnetic susceptibility an 
effect called the de Haas-van Alphen Effect. The period of the fluctuation in 
1/H gives a direct measure of the cross-sectional area of the Fermi surface 
and proved a powerful tool in the study of Fermi surfaces of simple metals, 
mentioned in Section 14.1. Generally the number of electrons is kept 
exactly fixed, so the Fermi sphere must fluctuate very slightly as the density 
of states varies. In addition to these fluctuations there is a small smooth 
increase in the total energy as the field increases, describable by a 
diamagnetic susceptibility Xd, negative, with the energy increase given by 
- 1 / 2 ~ d H 2 .  That susceptibility is not so easy to derive, but it is given by (e. 
g., Seitz (1940) 583ff) 

(22.9) 

for a free-electron gas of N electrons per unit volume. This is an important 
consequence of quantum theory because one can rigorously show that a 
charged classical gas has vanishing diamagnetic susceptibility. The field 
simply deflects classical electrons without changing their energy. Only in 
quantum theory can there be a magnetic susceptibility. For a quantum gas 
the susceptibility can be understood physically in terms of currents due to 
edge states, for example harmonic-oscillator wavefunctions +"(x - xo) with 
xo adjusted such that the nodes of that wavefunction come at a surface of 
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constant x where vanishing boundary conditions are applied. These provide 
current in the y-direction at this surface, which is not completely canceled by 
states with reversed velocities in this region. 

Another important feature of Eq. (22.9) is the appearance in the 
denominator of mec2, the rest energy of the electron of a half-million 
electron volts. The other factors inevitably lead to an energy (since x is 
dimensionless) which is of the order of electron volts. Thus the magnetic 
susceptibilities tend to be very small, of order 10-6, while electric 
susceptibilities are of order one. This appearance of rest energy in the 
denominator, and also the smallness of the values, signifies that magnetism 
is a relativistic correction to classical behavior, as well as a quantum effect. 
This is closely associated with the fact, which we shall indicate in the 
following section, that when quantum theory was made relativistic by Dirac, 
the electron spin, its associated magnetic moment, and the resulting 
contributions to the susceptibility seemed to come automatically. A 
consequence is that it can be dangerous to discuss magnetic phenomena as 
we are doing without including other relativistic effects. There seems not to 
be any serious error for the properties we discuss here. We return to further 
discussion of magnetic susceptibilities in Section 22.3, finding a canceling 
paramagnetic contribution. 

The motion of electrons in a two-dimensional electron gas, with the 
magnetic field perpendicular to the plane, is especially interesting. The 
analysis given above is applicable, but there is only a single state associated 
with motion in the z-direction, such a s m s i n ( n d d )  for a slab of thickness 
d. Then the cylinders shown in Fig. 22.1 are reduced to circles, each 
accommodating some number of electrons. As the field is increased, 
electrons leave the outer-most occupied circle as it expands until it is 
completely empty, and then electrons begin to leave the next circle in. One 
might expect some peculiar behavior just at the field where one circle is 
completely occupied and the next empty state is hwc above it. von Klitzing 
and coworkers (1980) in fact found that when strong uniform magnetic 
fields in the z-direction were applied to a two-dimensional xy-plane of an 
extremely clean, cold semiconductor, the two-dimensional Hall conductivity 
oxy, which gives the current density in the x-direction due to an electric field 
in the y-direction, was given very exactly by an integral multiple of e2/(2nh) 
at just these fields. The fields at which such a circumstance arises are 
calculated in Problem 22.1. At these same fields the two-dimensional 
resistivity measured by the field in the x-direction went to essentially zero. 
The values of Hall conductivity, oxy = ne2/(2nh) with integral n ,  are so 
accurately given that this Quantum Hall Effect can be used as a standard for 
determining this combination of the fundamental constants, or the fine- 
structure constant e2/ hc = 1/137 using the accurately known speed of light. 
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It was subsequently found by Tsui, Stormer, and Gossard (1982) that 
there was also this singular behavior at odd fractions, e. g., 1/3, 1/5, of the 
fields at which this filling occurs. Laughlin (1983) explained this behavior 
in terms of a collective state, describable by the Laughlin wavefunction, 

(22.10) 

for fraction lln, with zj related to the coordinates of thejth electron by zj = 
x j  + iyj. For further discussion of integral and fractional Quantum Hall 
Effects, see Prange and Girvin (1987). 

22.2 Magnetism of Atoms 

We turn next to spherically-symmetric systems in a uniform magnetic 
field. For such a system a more convenient gauge for the vector potential is 
A = b2Hxr, which is A, = 1/2Hx , Ax = - 1 ~ H y  for a magnetic field H in the 
z-direction as illustrated in Fig. 22.2. The kinetic-energy term in the 
Hamiltonian is again given by Eq. (22.1). We add the potential V(r) and 
now we may expand A for small r to obtain 

+ 4c2 (x2 + y2) 
p. Hxr @e2 

2c (22.1 1) 

Recalling that A. BxC is the volume of a parallelepiped with edges A, B, 
and C, we know that the second term is unchanged by rotating the vectors as 
p- Hxr = H. rxp = H.L = HLz, with L the angular-momentum operator as 
described in Section 16.3. Thus, this term in the Hamiltonian linear in the 
magnetic-field strength is 

Fig. 22.2. a. A uniform magnetic field parallel to the z-axis is applied to a 
spherically-symmetric system, such as an atom. b. The three electronic p- 
states in such an atom are split into three levels, E~ and E,, kl/&coc, called 
the Zeeman spitting. 
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(22.12) 

with oC again the cyclotron frequency given in Eq. (22.7). This is illustrated 
for atomic p-states in Fig. 22.2b, and for d-states in the very simple Problem 
22.2. It is striking that this splitting is into equal steps in energy, as was the 
motion of a free electron in a magnetic field in Eq. (22.8), but the steps are 
just halfas large as for the free electron. We could understand this factor of 
two in detail for the case of the spherical harmonic oscillator discussed in 
Section 2.5, but it is in fact a very general result. 

We have obtained this splitting as arising from a modification of the 
electron dynamics by the electron's deflection in the magnetic field. We can 
also think of it as from an interaction -p.H between the magnetic field H 
and the magnetic moment p arising from the orbit, analogous to the 
interaction between a magnetic field and an ordinary permanent magnet. 
From the first form in Eq. (22.12) we see that the magnetic moment to be 
associated with the orbit is 

(22.13) 

The ratio - e / ( 2 m e ~ )  is called the gyromagnetic ratio. For this orbital 
interaction there is no moment for an s-state, and one Bohr magneton 

(22.14) 

for a p-state. It is quantized as the Lz is quantized, being related by the 
gyromagnetic ratio. The d-state has two Bohr magnetons of magnetic 
moment. 

We expect a similar interaction between a magnetic moment arising 
from the electron spin angular momentum, and might have expected the 
same gyromagnetic ratio, giving half the splitting for the spin-half electron. 
However, the spitting is the same, corresponding to twice as large a 
gyromagnetic ratio, -e/(mec). Thus the Bohr magneton of Eq. (22.14) is also 
the magnetic moment of the electron due to its spin of one half. It follows 
that the energy of an electron in an s-state, as in the hydrogen atom, will also 
be split in a magnetic field into levels at 

&mag. = * PBK (22.15) 
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relative to the degenerate level with no field, and there is splitting of the 
levels in the p-state in addition to those shown in Fig. 22.2b. 

This all follows from the relativistic theory of the electron, Dirac theory, 
where the splitting of levels in the magnetic field comes automatically. It is 
possible to rationalize the result by thinking of the electron charge as being 
distributed on the surface of a sphere while the mass is distributed 
uniformly through the bulk of the sphere, but it is not clear what this means 
for a point particle. 

The magnitude of the gyromagnetic ratio for any system divided by the 
value d (2mec)  from Eq. (22.14) is called the g-value. Our discussion here 
would indicate a g-value of 2 for the electron spin, but the measured value 
can be slightly different. This arises from the interaction between the 
electron spin and its environment such that a rotation of the spin causes also 
rotation of orbital moment. 

These various splittings can be directly detected by observing the 
absorption of electromagnetic radiation by the corresponding systems in a 
magnetic field. We may substitute values from the beginning of the chapter 
into Eq. (22.14) to see that ~ B H  is 5.9~10-6 eV for a field of one kilogauss, 
of the order of easily attainable fields. We may convert this to a frequency 
by equating it to hco and divide it into the speed of light to see that it 
corresponds to electromagnetic wavelengths of a few centimeters, 
microwave frequencies. Thus the experiment can be done with specimens in 
a microwave cavity, varying the magnetic field and looking for fluctuations 
in the microwave absorption. These are called spin-resonance experiments. 
If a level is occupied by electrons of both spins, as for the 1s-states in 
helium, no energy can be absorbed by flipping a spin. That is the usual 
circumstance in solids, where all bond-states are occupied and antibonding 
states empty in a semiconductor, or all chlorine states filled and sodium 
states empty in rock salt. However, in a solid with a defect, such as rock salt 
with a chlorine atom missing, resonance can be observed for an electron 
attached to that defect. Spin resonance experiments usually ignore the bulk 
of the crystal and give direct information about the defects, or about surfaces 
if there are unpaired electrons (as opposed for example to electron pairs in a 
bond) at the surface. Spin resonance can also be observed it metals, and it 
involves only those electrons at the Ferrni energy, which can be excited by 
flipping their spins. 

The gyromagnetic ratio formulae apply also to nucleons, but the mass 
which enters is the nucleon mass, larger by a factor of order 105 than the me 
of the electron. Thus the spin-splitting of the nuclear levels is very tiny in 
comparison to that for electrons. Correspondingly any resonance 
experiments on the nuclei such as hydrogen are carried out with radiation of 
wavelength some 105 times larger, radio waves. This is called Nuclear 
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Magnetic Resonance (NMR) and has turned out to be much more important 
than electron spin resonance. It is used in magnetic resonance imaging for 
medical purposes by observing with one radio frequency and a magnetic 
field which brings protons into resonance only over a plane. The reflected 
waves can be used to image the proton density. It is also heavily used in 
chemistry, observing subtle differences in the environment of individual 
nuclei when their atoms are in different bonding sites. 

22.3 Magnetic Susceptibility 

We already noted that the diamagnetic susceptibility of a free-electron 
gas could be obtained by equating the shift in the energy of an electron gas, 
as illustrated in Fig. 22.1, to -1/2x@. This was a positive shift in the energy, 
corresponding to diamagnetism so the susceptibility was written x d  and 
given in Eq. (22.9) as a negative number. There is another contribution to 
the susceptibility which arises from the electron spin moment. It is 
considerably simpler to calculate. We found in Eq. (22.15) that the energies 
for two different spin orientations were shifted up and down by ~ B H .  Thus 
we may imagine free-electron energies as a function of wavenumber (or 
energy bands in solids) separately for spin-up and spin-down electrons, as 
illustrated in Fig. 22.3. With a magnetic field parallel to the z-axis the spin- 
down electrons may have their energies uniformly lowered by ,LQH and the 
spin-up electrons raised by the same amount, as shown. In equilibrium the 
same Fermi energy EF applies to both spins, each with a density of states at 
the Fermi energy of n ( & ~ ) / 2 ,  so there is now an extra density of spin-down 
electrons ~ ( E F ) ~ B H  /2 and the density is reduced by the same amount for the 
spin-up electrons. With each having a magnetic moment along the field of 
+ p ~ ,  the magnetic moment density M = x P H  is ~ ( E F ) ~ B ~ H .  It is parallel to 
the field, lowering the energy, corresponding to a paramagnetic 
susceptibility, positive, and we have written it xp. This is also called the 
Pauli susceptibility and we have found it to be given by 

(22.16) 

where in the final form we wrote the density of states as ~ N / ( ~ E F )  with N the 
electron density and substituted for p~ from Eq. (22.14). This is three times 
as large and of opposite sign to the diamagnetic contribution which we gave 
in Eq. (22.9). The combination, two thirds of Eq. (22.16), is in rough accord 
with measured values for simple metals. However, there are corrections to 
both contributions, a g-value different from two for the spin moment, and 
any change from me in the dynamic mass which enters the diamagnetic 
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Fig. 22.3. A plot of spin-up and spin-down bands, shifted up and down by 
the interaction of the electron spin with an applied magnetic field. With 
the same Fermi energy for both spins, ~ ( E F ) ~ B H /  2 per unit volume are 
shifted to the spin-down band to give the magnetic susceptibility of Eq. 
(22.16) 

contribution. In transition metals both corrections are large. 
To calculate the magnetic polarizability of atoms, or the resulting 

susceptibility, we return to the Hamiltonian of Eq. (22.1 1). We calculate the 
energy to second-order in the magnetic field for each atom, multiply by the 
density of atoms, and equate the shift to -1/2x@ to obtain the susceptibility. 
Again there are both diamagnetic and paramagnetic contributions. The 
diamagnetic contribution comes from the final term in the kinetic-energy 
operator, which is already quadratic in the field and therefore enters only in 
first-order perturbation theory for the electronic state w. The shift in energy 
is 

(22.17) 

For a spherical system the expectation value for oc2> and for <y2> will be 
1 /34 '> ,  of the order of an atomic radius squared, or internuclear distance 
squared, so we multiply by the density N of such electronic states (the atom 
density times the number of orbitals per atom of each type) to obtain 
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(22.18) 

quite similar in form to that for the free-electron gas. A remarkable feature 
of this contribution is that it arises even if all states are occupied with both 
spins. There is even a contribution from the core electrons in an atom, 
though the corresponding <r2> is very small. The contribution of the filled- 
d-shell electrons in noble metals is large enough to lead to a net 
diamagnetism, in contrast to other simple metals. Such contributes also arise 
for molecules, though then the must be evaluated for bond states. The 
calculation for semiconductors also involves a sum over contributions from 
bond states (see for example Harrison (1999), 159ff). 

The paramagnetic contribution to the susceptibility of atoms and 
molecules arises from the term in the Hamiltonian linear in magnetic field, 
which we wrote in Eq. (22.12), as eHLZl(2me~), proportional to Lz. Most 
systems in the absence of a field will have no net angular momentum so the 
expectation value of Lz will vanish and there will be no first-order term, 
linear in H .  have net angular 
momentum, such as the 0 2  molecule, shortly. In the more usual case, the 
shift in the energy must be obtained in second-order perturbation theory and 
will again be quadratic in H .  Substituting from Eq. (22.12) for the matrix 
elements between some starting state li> and the states b> to which it is 
coupled, we obtain a second-order shift in energy of the i'th state of 

We shall return to systems which do 

(22.19) 

For an atom, spherically symmetric, for which the energy eigenstates can 
be taken as eigenstates of Lz , the orthogonality of b> and li> guarantees that 
the matrix elements are all zero and there is no contribution. Similarly, if the 
magnetic field is applied along the axis of a cylindrically-symmetric 
molecule, there will be no contribution. However, in a semiconductor, with 
bonds along all cube-diagonal directions, all magnetic fields are guaranteed 
to be skewed with respect to some bond axes. States can again be chosen to 
be angular momentum eigenstates with respect to the bond axis, but then the 
magnetic-field interaction in the Hamiltonian, proportional to H.L as 
indicated just before Eq. (22.12), must be written in terms of Lx &, and Lz 
relative to these bond axes, which can in turn be written in terms of raising 
and lowering operators as discussed in Section 16.3. Then there is coupling 
between the bonding and antibonding states through the matrix elements of 
the raising and lowering operators which couple the s- to the p-states on the 
same atom. Note that it always gives a lowering in the energy of the 
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occupied states and is therefore a paramagnetic contribution, called the Van 
Vleck term in the susceptibility. The needed matrix element is an intra- 
atomic one, which can be estimated, and gives a reasonable account of 
paramagnetism in semiconductors. In particular, the Van Vleck term is seen 
to decrease for polar semiconductors with larger gaps, while the diamagnetic 
term, called the Langevin term, is quite insensitive, as would be guessed 
from Eq. (22.18). (See, for example, Harrison (1999), 159ff.) 

We return finally to systems, such as 0 2 ,  which have net angular 
momentum in the absence of fields. If we construct molecular orbitals for 
the oxygen molecule, we obtain a set which is qualitatively just like those we 
found for N2 and showed in Fig. 5.7. The difference is that each oxygen 
atom contributes one less electron than a nitrogen atom so the bonding x- 
state, which was the highest-energy occupied state in N2, contains only two 
electrons though there are two n-states (x-oriented and y-oriented) and each 
could accommodate electrons of two spins. We noted in Section 4.2 that 
when a set of degenerate orbitals are only partly occupied, the exchange 
interaction favors occupying them with parallel spin to the extent possible 
(Hund's rule). Thus one of the x-electrons will be in the x-oriented n-state 
and the other will be in the y-oriented n-state with the same spin. The net 
moment of the molecule is two Bohr magnetons from these spins, and there 
is no net orbital angular momentum. This is called a paramagnetic molecule 
because in an applied magnetic field the moment will tend to align with the 
field to lower its energy, a paramagnetic response. In this case the tendency 
is inhibited only by statistics. There are states for each molecule with the 
spin-angular-momentum components along the magnetic field of h, 0, and 
-h. Following just the procedure we used in Chapter 10 we see that the 
relative probability of the three states is e - ~ P B W ~ B T ,  1, and e ~ P B ~ ~ B T .  
This leads to a dipole which is proportional to H at small fields, where the 
exponentials can be expanded, and corresponds to a susceptibility of 

with No2 the number of oxygen molecules per unit volume. 

22.4 Ferromagnetism 

(22.20) 

This same exchange interaction which was responsible for the 
paramagnetism of oxygen molecules is responsible for ferromagnetism in 
solids. It is in fact rather easily understandable for metals in terms of Fig. 
22.3. We noted in Eq. (4.15) that the exchange energy of a free-electron gas, 
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arising from the correlated motion of each electron with that of the electrons 
of the same spin, is 

3 e 2 b  
471 Eex = -- per electron, (22.21) 

If we were to arbitrarily shift some electrons from the spin-up band to the 
spin-down band, the exchange energy would become more negative for the 
spin-down band, and less negative for the spin-up band, as shown in the 
figure, and with more electrons in the spin-down band the total exchange 
energy would definitely be more negative. We may ask if this lowering 
could ever be greater than the increase in kinetic energy which this transfer 
causes. If so we have found an instability of the free-electron gas which 
would lead to a spin-polarized - that is to say, a ferromagnetic - state. 

We gave in Eq. (2.12) the kinetic energy for electrons in a free-electron 
gas as 

per electron. 
3h2kF2 

Ekin = ~ 1 Om, (22.22) 

We now separate the electrons by spin and Eqs. (22.21) and (22.22) apply to 
each set. We gave in Eq. (2.10) k~ in terms of the electron density, which 
we can rewrite for the number of electrons N+ = N /2 of a given spin 

(22.23) 

We can substitute for k~ in Eq. (22.21) and (22.22) and multiply by N+/Q 
to obtain the total energy density for the electrons of each spin, 

(22.24) 

If we increase the spin-down density by 6n , and decrease the spin-up 
density by the same amount, the change in energy to first order in 6n is 
a&la(N+/Q) [6n - 6n] = 0, but to second order is 1/2 d2E+la(N+/Q)26n2, so 
if the second derivative is negative, the system is unstable against spin 
alignment. The condition for an instability is 

N+ -2/3 5 2 3h2 ! 3e2(6n2)1/3 + ------(6712)2/3 < O ,  (22.25) 
3 3 471 (Q)  3 3  lOme 
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which can be written as 

(22.26) 

When this condition is satisfied, the energy continues to drop as more 
electrons are shifted, so it should proceed until all spins are aligned, as in 
Hund's rule. The ICF of Eq. (22.26) is only slightly less than the smallest 
Fermi wavenumber for the simple metals, 0.65 A-1 for cesium. Thus it 
correctly suggests that all simple metals should be stable with equal numbers 
of both spins. In the transition metals, the density of states at the Fermi 
energy is higher, which decreases the kinetic energy term without changing 
the exchange term, as if me  were increased in Eq. (22.26). Thus it is to be 
expected that ferromagnetism could occur in transition metals. 

The conclusions are correct, and the physical origin is correct, but the 
picture can be misleading. First, it is not certain that this is the greatest 
instability. At low density the spin-density wave discussed in Section 21.2 
may also be favored. Another instability at low density, the formation of a 
lattice of localized electrons, called a Wigner crystal, can also be favored. 
To see this we may construct a variational state in which each electron has a 
wavefunction which is a Gaussian around an individual lattice site. Then the 
Coulomb plus kinetic energy can be minimized with respect to the spread of 
the Gaussian. The resulting energy of that crystallized state can then be 
compared with the Coulomb plus kinetic energy for the uniform electron 
gas. At a spacing similar to that in Eq. (22.26) the Wigner crystal is found to 
be favored. There is another complication in our description of the 
ferromagnetic state in that the density of states is complicated in a transition 
metal, not simply an increased mass. The problem is more appropriately 
addressed in tight-binding theory, where it semiquantitatively accounts for 
the observed occurrence of ferromagnetism in the transition metals (Harrison 
(1999), 589ff). 

Another aspect of the free-electron picture is misleading. It would seem 
to suggest that as we increased temperature and excited electrons into the 
reversed-spin band, the tendency to form the ferromagnetic state would 
weaken, as we discussed for the antiferromagnetic insulator in Section 21.2, 
and that ferromagnetism would disappear, as is found experimentally. In 
fact when ferromagnetism disappears experimentally, at the Curie 
temperature, there remains the same magnetic moment on each atom, and it 
is only the parallel orientation of the moments on different atoms which 
disappears. Thus the magnetic properties above the Curie temperature are 
those of a paramagnetic crystal, as we discussed for the 0 2  crystal in the 
preceding section. The ferromagnetic transition metals are more easily 
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understood in the atomic picture, with d-state spins aligned according to 
Hund's rule, and then weakly coupled between atoms to form the 
ferromagnetic state at low temperatures. 

22.5 Spin-Orbit Coupling 

There are important one-electron effects, as well as many-body effects, 
from the coupling between spin moments and orbital magnetic moments. 
This is an appropriate place to discuss that coupling. The origin of the 
interaction between the electron spin and its orbital motion arises from the 
magnetic field due to the relative motion of the electron and the nucleus, 
seen then by the electron spin magnetic moment. The interaction follows 
directly from the Dirac relativistic theory of the electron. It is not so easy to 
derive it from the nonrelativistic theory we have used, but we can understand 
the form it takes. If the electron were at rest and a particle of charge Q 
passed by, its current, which is proportional to Q and its velocity v, would 
produce a magnetic field at the electron proportional to the current, inversely 
proportional to the square of the distance r , and to the sine of the angle 8 
between r and v . The magnetic field would in fact be given by H = 
Qrxvlcr3 = Exvlc where E is the electric field arising from the charge Q. 
The factor of the speed of light c makes the units of E and H the same. We 
can then make a transformation to the coordinate system of the nucleus (this 
should be done using relativistic equations). For a spherical system, the 
electric field E can be replaced by (rler) dV(r)ldr with V(r) the potential 
energy of the electron (charge -e) due to the nucleus and other electrons 
present. Then with rxv equal to the angular momentum L divided by me, 
the magnetic field is found to be 

(22-27) 

(See, for example Schiff (1968), p. 433.) The factor 1/2 is called the Thomas 
precession factor and comes from the use of a relativistic transformation. 

The important point is that the magnetic field is proportional to the 
angular momentum of the orbit L, and the magnetic moment of the electron 
is given by the spin angular momentum S times its gyromagnetic ratio of 
-e/(mec), given just before Eq. (22.15). Thus the interaction of the spin 
moment with the orbital field is given by L.S times a factor, depending only 
upon r , 

(22.28) 
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For a Coulomb potential the interaction is proportional to Ze2 as we would 
expect. 

If only the interaction of a single electron with its spin is of interest, Hso 
does not couple states of different 1 , so electronic orbitals of only a single 1 
are of interest. We shall always use a basis of atomic states, with specific 
values of 1 and m and the matrix elements between them arising from spin- 
orbit coupling are written 

with 

(22.29) 

(22.30) 

having the units of energy. They have been calculated by Chadi (1977) for a 
number of elements which are important in semiconductors and are listed in 
Table 22.1. [In some studies h is defined differently by a factor of two, but 
we used Chadi's definition.] We note that they grow rapidly with atomic 
number because they are dominated by the potential near the nucleus, 
proportional to the nuclear charge, and in fact they grow much more rapidly 
due to additional changes in Rl(r). 

For 
isolated atoms, spin-orbit coupling modifies the energies of the states, giving 
fine structure to the simple spectra we discussed in Chapter 4. We consider 
that first for hydrogen, or an alkali metal where only a single electron is 
involved in an important way. 

When there is an interaction between two contributions to the angular 
momentum in a spherically-symmetric system, it is physically clear that 

How we now proceed depends upon the system we consider. 

Table 22.1. Spin-orbit coupling parameters d (in eV) for valence p-states, 
renormalized for use in solids, compiled by Chadi (1977). The spin-orbit splitting 
at the top of the valence band is 3d in elemental semiconductors. 

A1 Si P S 
0.008 0.015 0.022 0.025 

Zn Ga Ge As Se 
0.025 0.058 0.097 0.140 0.160 

Cd In Sn S b  Te 
0.076 0.131 0.267 0.324 0.367 
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there will not be eigenstates of each individual contribution, but there are 
eigenstates of the total angular momentum 

J = L + S .  (22.3 1) 

For the isolated atom, the eigenstates of the total angular momentum J can 
be described just as were the eigenstates of L in Section 16.3. There are 
eigenstates of the squared total angular momentum 52 with eigenvalues 
j ( j  + 1)@. The quantum numbers j can only be Z * s depending upon 
whether the spin of 112 is parallel or antiparallel with respect to the orbital 
angular momentum. Each eigenstate of 5 2  can be chosen to also be an 
eigenstate of the z-component of total angular momentum J z  with 
eigenvalues hjz and withj, taking valuesj,j - 1 , j  - 2, ... - j .  

Further, we may write 

so that the b,jz> are also eigenstates of L.S with eigenvalues obtained by 
solving Eq. (22.32) for L.S[j,j,>. They are given by u(j + 1) - Z(1 + 1) - 
s(s + l)fi212. Thus, using Eqs. (22.28) through (22.31) a one-electron 
eigenstate of energy q in the absence of spin-orbit coupling, would be split 
into levels of quantum numberj = Z k s with energies given by 

For p-states, u(j + 1) - 1(1+ 1) - s(s + 1)]/2 is 1/2 f o r j  = 3/2 and is -1 f o r j  = 
112 so there are four states (jz = 312, l12, -112, -3/2) at E~ + h and two (jz = 
- +1/2) at E~ -2h, rather than three states, of two spin orientations each, without 
spin-orbit coupling. This splitting is illustrated in Fig. 22.4. 

The values appropriate to the free atom are typically 213 of those 
renormalized for the solid and given in Table 22.1. The atomic spectra 
allow measurement of the energy differences between various spin-orbit- 

(2) j = 1/2 cP-2 \ 

Fig. 22.4. The splitting of the hydrogen p-state by spin-orbit coupling, Eq. 
(22.33) 
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split states for various Z-values. We see from that table that the splittings are 
quite small on the scale of the difference between different atomic term 
values so the splitting is indeed small, and appropriately called fine 
structure. In Problem 22.4, this same analysis is carried out for d-states. 

The analysis is more intricate when more than one electron is included, 
so that there is spin-orbit coupling between different electronic states, but the 
principle is the same. For example, for carbon, for which we start with a 
configuration 1 ~ 2 2 ~ 2 2 ~ 2 ,  the lowest state (by Hund's Rule) will be with the 
two p-states of parallel spin, so we imagine a two-electron state with spin 
quantum number S = 1 ,  using a capital S for the total-spin quantum number. 
If we take the total orbital momentum to be approximately conserved, which 
is often reasonable since the interaction with the spins is weak, that total 
orbital-angular-momentum quantum number can be L = 0, 1,  or 2. These 
different states will have different Coulomb energy from the electron- 
electron interaction. For each choice one can then evaluate the L.S energy. 
Other approaches can be taken when the terms which dominate are different 
from what was assumed here. 

We note briefly an important effect of spin-orbit coupling for the band 
structure of semiconductors (Chadi, (1977)). We noted in Section 13.5 that 
the states at the top of the valence band are made purely of p-states. We can 
expect those bands to be split into two (doubly-degenerate, since there were 
four total) bands at slightly higher energy and one (doubly-degenerate) band 
at slightly lower energy, and that is the case. The spin-orbit coupling can be 
directly included in a tight-binding band calculation, doubling the size of the 
Hamiltonian matrix since now the spin-up and spin-down orbitals are 
distinguished. Spin-orbit coupling provides intra-atomic matrix elements 
from Eq. (22.29), in addition to the interatomic matrix elements arising from 
the Vsso, V,,,, etc. The intra-atomic matrix elements are evaluated by 
writing 

L+S. + L_L+ 
L.S = LXSX + Lysy  + LZSZ = + Lzsz (22.34) 

using Eq. (22.32). Then the procedure is straight-forward and leads to the 
expected splitting . 

How the bands go away from k = 0 is less obvious, but is shown in Fig. 
22.5. In Part a are seen the doubly-degenerate (four-fold, including spin) 
heavy-hole bands and light-hole band. The heavy-hole bands can be written 
in terms of states which have fi angular momentum around the 
wavenumber of the state. These are split up and down depending upon 
whether the spin is parallel or antiparallel to this orbital angular momentum. 
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The light-hole band must match with the upper band since it is the one with 
the higher degeneracy as seen in Fig. 22.4. The result would be that the 
light-hole band drops rapidly with wavenumber and would cross the lower 
heavy-hole band. However, bands can only cross if they are uncoupled to 
each other. Any coupling will cause the bands to move apart, sometimes 
called an anticrossing. This is precisely what occurred in the formation of 
the antiferromagnetic insulator discussed in Section 21.2 . Before the 
symmetry was broken we could draw free-electron bands as in Fig. 21.3 in a 
reduced zone (0 < kd < n/2), or in an extended zone (0 < kd < n), or both, 
and they cross because there is no coupling between them. Once the 
symmetry is broken, the two crossing bands are coupled and the crossing is 
avoided as shown there. In Part b we see that exactly this happens here and 
the lowest band switches from heavy to light in the region where they 
would have crossed. These are important bands in an important region of 
energy so the result is of considerable consequence. 

0 . 2 r  , , , , , I , , 

-0.4 1 I '  

-o.6 -0.8 I 

0 2  

-0.2 

-0.4 

-0.6 

-0.8 

$ 1 1  / , I  

(a) -0.4 -0.3 -0.2 -0.1 0 0 I 0.2 0.3 0.4 (b) -04 -03  -0.2 -0.1 0 0.1 0.2 0.3 0.4 
kd kd 

Fig. 22.5. The top of the valence bands of germanium (a) without spin- 
orbit cou ling and (b) with spin-orbit coupling. The energies are in units 

Part (b). [After Harrison (1999)l. 
of h 2 h d  4 . Note that the light-hole band is at the upper energy at k = 0 in 
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Chapter 23. Shake-Off Excitations 

Shake-off excitations would seem to be a specialized topic, but they 
have turned out to be so central to a wide variety of quantum-mechanical 
properties, and so central to a number of insights, that they definitely deserve 
at least a chapter. They also are very suitable as a concluding chapter. They 
concern the behavior of "spectator" systems, such as an electron in an atomic 
state, when a second electron is removed. By way of introduction we 
discuss two limiting approximations for time-dependent problems. 

23.1 Adiabatic and Sudden Approximations 

One problem we have not discussed is boundary conditions which 
change with time. There are many situations related to this, but we illustrate 
it for an electron in a one-dimensional quantum well, as in Section 2.1 and as 
shown in Fig. 23.1. The Hamiltonian contains only the kinetic energy, but 
the positions at which the vanishing boundary conditions are applied change 
with time. 

There are two limiting cases for which the answer seems obvious. The 
energy levels are discrete and if the boundary conditions change very slowly 
it is clear that an electron in the lowest state has no chance to jump to a 
higher state. An electron in this state, or in another state, is expected to stay 
in the expanding state, called following the state adiabatically, in analogy 
with the slow expansion of a gas against a piston, cooling the gas. On the 
other hand, if the boundary were very quickly to be expanded, it is clear that 
the initial state Iwo(O)> cannot change quickly; it changes only according to 
the Schroedinger Equation, Eq. (1.16). Thus we may neglect its change 
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Fig. 23.1. If the well in which an electron is bound is increased in size 
slowly, the state will follow adiabatically as to the dashed line to the right. 
If it is increased suddenly, the state will initially remain as it was, as in the 
solid line to the right. 

during the boundary shift, expand the original wavefunction in the 
eigenstates IWj(t)> appropriate to the new boundary, and can then easily 
follow the time evolution of each state. In fact, the squared expansion 
coefficients <\lro(O)l~;(t)> of the original state in each of the new states is 
exactly the probability of a transition occurring to that state. This is called 
the sudden approximation and is analogous to expanding the chamber 
holding a gas so rapidly that the atoms have no chance to do work against 
the moving walls. 

It is not immediately obvious for the system in Fig. 22.3 what the 
criterion for fast or slow is, though we shall show that if the time taken to 
change the potential is small compared to h divided by the energy difference 
to some excited state, we may regard the change as fast, and if it is large, we 
may regard the change as slow. We do this by expanding the wavefunction 
in the eigenstates which depend upon the length L(t) which in turn depends 
upon time, very much as we did in treating time-dependent perturbations in 
Sections 9.3 and 19.3, 

Here 

I> = -\/2/L(t) cos[n(2j +l)x/L(t)], 

with x measured from the center of the well and energy 

(23.1) 

(23.2) 

(23.3) 
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There are also states with energyl?[2nj/L(t)]2/(2rn), which are odd around x 
= 0, but these are not coupled to the states we consider. They are a separate 
problem. We may think of the adiabatic limit where the uo is one initially, 
and remains near one. We may see how any other uj grows with time by 
substituting Eq. (23.1) into the Schroedinger Equation, multiply on the left 
by a particular <jl , dropping the zero-order terms, and keeping only the 
largest first-order term, that with uo =: 1. This leads to 

(23.4) 

Note that a term ht aoolat <jlO> was dropped because <j10>=0. To evaluate 
<jp/& lo> we take the derivative of lo> with respect to t, using Eq. (23.2). 
The term from a/& d m i s  again zero because <jlO> = 0, but the other 
term gives <jlaiatlo> = (2 /~( t ) ) (n /~( t )2) (ay t>/a t )  1 cos[n(2j +I ) x / ~ ( t ) l x  
sin[ndL(t)] dx . We write 

(23.5) 

= 2 I -1/2,1/2 cos[n(2j +l)u]u sin[n:u] du, 

which is independent of t and of order one. Note again that there is no 
coupling to the states which are odd around x = 0. With this form we have 

(23.6) 

In order to proceed further we must specify L(t). One way to represent a 
small change in length AZ, taking place in a time to is to take L(t) = L + 
AL(e -uto - 1). Then (l/L(t))dL(t)/dt =: -(AUL)e -%/to. We may substitute 
into Eq. (23.6), integrate from zero to a large t , now taking W j  - coo 
independent of time since changes are of higher order in AWL. We obtain 
the probability of a transition to the state b> as 

(23.7) 

If the time to taken to change the boundary is small compared to 
l/(Oj - 00) =h/(Ej  - EO), the final factor is near one and we have a form for 
the transition rate which we may associate with abrupt changes. It will tend 
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to decrease with increasing j because hj from Eq. (23.5) will tend to drop as 
l/j. If to is long compared to h/(Ej - EO) , the final factor will become small 
and we expect few transitions, associated with an adiabatic following of a 
slowly-changing boundary. In Problem 23.1 we treat the other limit, where 
the change is rapid, and find explicitly the probability of particular 
transitions. 

Similar criteria can be derived for a harmonic oscillator when the 
parameters, such as the spring constant, change with time. In that case 
transitions tend not to occur if the changes in parameters occur over a time 
long compared to the period of the oscillator, physically a very natural 
criterion. It is in fact closely related to the criterion we just found for the 
system in Fig. 23.1 since the energy to the excited states in the oscillator is 
of order hco, and that energy divided into h is the period of the oscillator. 

23.2 Vibrational Excitations 

We turn to the question of vibrational shake-off excitations which may 
arise when an electronic transition occurs. Perhaps the simplest case 
conceptually is illustrated in Fig. 23.2. We imagine a particle bound in a 
state lo> on a platform, with an energy which varies as h u  with the 
displacement u of the platform. h would be rng for a particle of mass rn in 
a gravitational field, or it could be the shift in energy level in a molecule as 
the internuclear distance is changed. The Hamiltonian will also contain a 
harmonic-oscillator kinetic and potential energy associated with the platform 
displacement u. Finally, there will be a set of freely propagating electronic 
states Ik>, coupled to the local state by a matrix element Vok = <OIH(r)lk> 
with H involving only the electronic coordinates. The term hu is absent 
from the Hamiltonian when the electron is in a state Ik>. This Hamiltonian 

Fig. 23.2. In Part (a) a particle is bound in a local state, in which its 
energy is shifted by a displacement u of a harmonic oscillator. That state 
is coupled to freely propagating states, Part (b), in which there is no 
coupling with the displacement. 
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can be written, before we treat the vibrational terms quantum-mechanically, 
as 

with M and K the mass and spring constant for the platform oscillator. 
Now we imagine the particle bound to the platform, and the spring 

compressed to its shifted equilibrium position. If the particle makes a 
transition off of the platform, the platform will return to its position, 
unshifted by the weight of the particle. The question might arise whether we 
should make the sudden, or the adiabatic, approximation: is the platform left 
vibrating (called a shake-off excitation), or does it adiabatically shift to its 
new equilibrium question. We are left with the question: "How fast does the 
transition occur?" The answer is far from obvious, and most people would 
guess incorrectly. The correct approach is simply to do the calculation, 
including the platform in the quantum-mechanical problem, and we can 
interpret the result afterward if we wish. The model captures the physics of 
a wide variety of problems in which we feel we should ask how long some 
process takes and often the result can be guessed by generalizing the result 
we obtain here. In other cases, one can redo the new problem. 

We shall use the Golden Rule, with the perturbation VOk, and the 
principal task is finding the initial and final states. In the initial state, with 
the particle on the platform, the equilibrium position is shifted to uo such 
that (d/du)(1/2~u2 + hu ) = 0, or uo = - h / K .  It is essential to treat the platform 
quantum-mechanically (it is always essential to include all parts of the 
system in the quantum theory if it makes a difference, or if we cannot see 
how to proceed otherwise) so we might let the oscillator be in its ground 
state @o(u - uo), with $0 the ground-state harmonic-oscillator eigenstate 
given in Section 2.5. Then the initial state is 10,0> = $O(U - uo)IO>, with the 
first zero in 10,0> referring to the electronic state and the second referring to 
the vibrational state. The final state Ik,n> might also be in a ground state of 
the unshifted harmonic oscillator $o(u), or it might be an excited state @n(u), 
with an energy higher by n fim. That is what we wish to learn. It is 
important that we use unshifted final states here so that the energy can be 
specified. 

For the excited state, the matrix element for the transition becomes 
<k,nlH(r)]O,O> = VOk < $n(U)l@o(U-UO)>, with the overlap integrals given by 
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(The harmonic-oscillator functions are real.) The same forms apply if the 
final state of the oscillator is the ground state, n = 0. We may immediately 
write the transition rate for each excitation level of the final state from Eq. 
(7.91, 

(23.10) 

All of the interesting questions can be answered by looking at this result. 
First, if there is no coupling, h = 0, then uo = 0 and all of the overlap 
integrals are zero, except n = 0, for which the overlap is one. The oscillator 
is never excited and the usual formula, (27th) Ck VokVko 8(Ek - FO) applies, 
as it should. When the coupling is nonzero, the probability of a transition 
with no excitation is reduced by a factor < $o(u)l$o(u-uo)>2. This reduction 
is compensated for by some probability of transition to a state In>, with 
probability proportional to < $n(u)l$o(u-uo)>2, with shake-off excitations of 
n ho. In fact this compensation is in some sense complete since 

if the sum includes n = 0. This is called a sum rule and it follows from the 
fact that the states I@n(u)> are a complete set. Thus we may expand 
$o(u - uo) in the $n(u) as J$o(u-uo)> = Cn I$n(u)>< $n(u)l$o(u-uo)> and then 
Eq. (23.1 1) is just the normalization condition on I$o(u-uo)> There may be 
slight differences in the Vok which enter, and the density of states will be 
different for different n , so the compensation of lost probability to n = 0 by 
probability to other n is only approximate. In that approximation, 
<~o(u-uo)l$n(u)><$n(u)l$o(u-uo>> is the conditional probability that the 
particle will leave n quanta of excitation when it leaves the platform. 

This <$o(u-uo)l$n(u)>< $n(u)l$o(u-uo)> is in fact just the formula for the 
sudden approximation, the squared expansion coefficient of the initial state 
in the possible final states. However, now that the oscillator has been 
quantized, it describes also the probability of remaining in the ground state - 
appropriate to the adiabatic approximation. 

We have indeed answered the question as to the probability of different 
events occurring and we may learn something by looking at the results. A 
convenient way is to plot the probability of the electron emerging from the 
system with different energies, EO - nho, illustrated in Fig. 23.3. If the shift 
in the equilibrium position uo is small compared to the zero-point fluctuation 
a0 of the oscillator (defined after Eq. (2.43)) we have a weak-coupling limit. 
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The two Gaussian states will only be shifted slightly from each other and 
<$o(u)l$o(u-uo)> will be near one. The values of <@n(u)l@O(u-uO)> will be 
small for other n, and decrease rapidly with n as shown in Fig. 23.3 (a). We 
may think of the slight reduction in Po as the probability that the oscillator 
makes a large enough zero-point fluctuation to bring the oscillator into the 
unshifted position. 

If the shift in the equilibrium position uo is large compared to the zero- 
point fluctuation a0 of the oscillator, the shifted Gaussian will barely 
overlap the unshifted Gaussian and there will be almost no chance of 
emission with n = 0. This is also true of small n but once we go to large 
enough n that the peaks in the harmonic-oscillator wavefunctions are large 
near u = uo, states of energy n h o  near the classical vibrational energy 
l/2Kuo2 (as we saw in Problem 2.9) the probabilities become large, as 
illustrated in Part (b) of Fig. 23.3. We may think of this strong-coupzing 
limit as the classical limit and it is exactly what is expected in classical 
physics for the abrupt removal of the particle. The transition of the particle 
leaves the oscillator in its original displaced position, with energy l/2Kuo2 
which then appears as vibrational energy. In fact, the state of the oscillator 
is a coherent packet representing a harmonic oscillator with displacement 
approximately equal to uo, and that packet will oscillate as a classical 
oscillator. Many systems correspond to this strong-coupling, or classical, 
limit in which the behavior is as if the electronic transition were very fast 
and the harmonic oscillator, or atomic system, is slow. This statement is 
called the Franck-Condon Principle, but it is only true for some systems. 

We may now go back and ask what time we should have assumed it took 
the transition to occur if we wished to guess whether the result corresponded 
to an abrupt or an adiabatic transition. The criterion for a "fast transition", 

Fig. 23.3. The emission spectrum of a particle leaving a state coupled to 
an oscillator, as in Fig. 23.2. Part (a) is the weak-coupling limit in which 
the probability is high of leaving with the original electronic energy and 
leaving no shake-off excitations. There is a small probability of leaving a 
few quanta of energy behind. Part (b) is the strong-coupling limit in 
which the particle leaves approximately n h o  = '/2KUo2 behind in shake-off 
excitation. 
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for the Franck-Condon Principle to apply, is that the equilibrium shift uo be 
large compared to the zero-point fluctuation ao, or a02 << uo2. We may 
multiply both sides by l / 2 K ,  and I /2KaO2 was seen in Eq. (2.44) to be ho/4. 
Further , 1 / 2 ~ u 0 2  is the spring energy in the relaxed state, twice the energy 
gained Erelax, by letting the spring relax as in Fig. 23.2 (a). Thus the 
condition for a fast transition is 

This is the condition that h/Erelax is short compared to 8/0 = 8T/2n, with T 
the period of the oscillator. We would have guessed correctly when the 
sudden approximation is appropriate if we had said that the time for the 
particle to make a transition from the platform was h/Erelax. This was the 
transition time which we suggested most people would guess incorrectly. It 
has nothing to do with the lifetime of the state on the platform, nor the 
matrix element VOk with the external states, but only upon the parameters of 
the oscillator which we are using as the instrument to "measure" the 
transition time. This is a particularly important message in a time when it is 
often the style to guess answers by asking what are the relevant time scales, 
or distance scales, in order to avoid making a model and doing a calculation. 
The latter is much safer. 

Electron tunneling is an important example which contains the same 
physics as this example, Fig. 23.2. If we think of the transition from the 
platform as a tunneling event, and ask whether the tunneling should be 
considered fast or slow compared to an oscillator period, we find that the 
tunneling time is again h/Erelax and has nothing to do with the thickness of 
the barrier. One place where this comes up is in the tunneling of electrons in 
a polarizable medium such as a semiconductor. We saw in Section 17.3 that 
a carrier polarizes the medium, reducing its energy to form a polaron. If that 
carrier tunnels to a different place, we might ask if it leaves vibrational 
energy behind, or does the polarization of the lattice disappear during the 
process. The answer is obviously that it will tend to leave vibrational energy 
behind if h/Erelax (with Erelax the energy gain in forming the polaron) is 
small compared to l /o .  Probably a better, and equivalent, criterion is that it 
will tend to leave vibrational energy behind if Erelax is large compared to 
ho. Such a case is frequently called a small polaron. It has distortional 
energy large compared to a phonon and usually well localized. This also 
means that if the Erelax is small compared toho  it is unlikely to emit a 
phonon, and it certainly cannot emit a part of a phonon. Another important 
example is electronic excitations in a molecule. Usually such a transition 
will shift the equilibrium spacing so that the molecule may, or may not, be 
left vibrating after the transition. We have seen how to learn which. 
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In our analysis we began with the oscillator in the ground state, but it is 
quite clear how to repeat the analysis with a starting excitation n = no . Then 
there are processes in which vibrational quanta are absorbed as the transition 
occurs, often called phonon-assisted transitions, as well as those with shake- 
off excitations. 

A final closely related example is the Mossbauer effect (Mossbauer 
(1958)). When an atomic nucleus emits a gamma ray (Section 4.4) of 
momentum hq of magnitude holc, the atom must recoil with equal and 
opposite momentum, -hq. This conservation of momentum comes always 
from the matrix element and in this case it means that the terms in the 
Hamiltonian which describe the emission process within the nucleus must 
contain a dependence upon the center-of-mass coordinate R of the nucleus 
given by e -iq. R. Then if a free atom has a nucleus initially in a state 
e i k . R / m  it will go to a final state ei(k+S).R/m Now, if the atom in 
question is part of a solid, we may ask whether the nucleus is left vibrating, 
as if the gamma-ray emission were very rapid compared to a typical 
vibrational frequency OD of the solid, or if the momentum would be 
transmitted to the entire crystal with negligible recoil energy, as if the 
emission were very slow. The last situation is called the Mossbauer effect. 
It is quite easy to answer the question (see, for example, Harrison (1970)) 
much as we did above. We may write the component of R along the 
direction of q as u ,  and represent the binding of the atom in the solid as a 
harmonic oscillator with frequency OD. Then the matrix elements for the 
nuclear transition contain a factor <nle-iquln' > = Idu @n(u)e -"lU@nl(u) with n' 
the level of excitation before, and n the level of excitation after, the 
transition. If prior to the transition the system is in the vibrational ground 
state, the conditional probability of finding it in the n'th vibrational state 
after is I<nle-iqulO>l2. In particular, the probability of remaining in the 
ground state is readily evaluated using the harmonic-oscillator ground-state 
wavefunction (Eqs. (2.40) and (2.43))and found to be 

(23.13) 

It is notable that we could solve this problem without knowing anything 
about the nuclear process other than the momentum transfer. It turns out that 
this formula applies also if the fluctuations come from thermal vibrations, 
with the zero-point uo2 in Eq. (23.13) replaced by the thermal <u2>. Thus, 
to increase the probability of the Mossbauer effect occurring, one goes to 
low temperatures so that it is suppressed only by the zero-point fluctuations. 
The effect is important since it leads to very sharply-defined gamma-ray 
energies, with negligible broadening from nuclear recoil. 
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Finally, we could ask what we should have assumed was the time 
required to emit a gamma ray if we wished to decide if the process was 
sudden or adiabatic. After the above analysis it may not be surprising that 
we should have taken the emission time as h divided by the classical recoil 
energy, h242/(2M), with M the nuclear mass. (This form actually also 
illustrates the fact that if the recoil is by the entire crystal of mass NM the 
recoil energy is negligible.) As we expect, this "transition time" has nothing 
to do with half-life of the nuclear state. 

23.3 Electronic and Auger Processes 

The vibrational system in the preceding section has been a spectator to 
an event involving an electron, or other particle. In just the same way we 
can treat electronic states which are a spectator to another process. For 
example, in the beta-decay of a nucleus (discussed in Section 9.5), the 
emission of a beta ray increases the atomic number by one, and any 
electronic state on that atom will shift closer to the nucleus due to the extra 
nuclear charge. We may ask whether an electron in that state will follow the 
state, or whether it will be excited to a different final state. The answer is 
quite obvious by analogy with the results for vibrational excitations. If we 
write the electron state before the beta-decay as \yo'>, and the eigenstates 
after the decay as Iyn>, we can define a conditional probability (probability, 
given that the beta-decay occurred) of finding the electron in the n'th state as 

Again because of the different energies for the resulting beta-ray, there are 
corrections to this probability, usually not so important. 

Another illustrative case is an electron in a donor state in a 
semiconductor. We found in Section 14.2 that the effective-mass 
wavefunction for such a state is hydrogenic, 

with energy relative to the conduction-band minimum of 

(23.15) 

(23.16) 

with Z = 1. If an electron is removed from the core of the donor atom, by an 
x-ray, the effective charge binding the donor state will increase from 2 = 1 to 
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2 = 2. The energy drops by a factor of four and p increases by a factor of 
two. Then the conditional probability of the electron shifting to the new 
ground state of the donor with p = 2p' is 

(23.17) 

This is again consistent with a sudden approximation but gives the 
probability that the electron remains adiabatically in the ground state as Eq. 
(23.17). 

When the excitations in question are electronic, and the change in 
potential is electronic, as in the case of the donor state, these are called 
Auger transitions. Another example is a transition in which a valence 
electron in an atom drops into an empty core state, which may shake off 
another valence electron, frequently ionizing the atom. When a valence 
electron in a metal drops to fill an empty core state, the screening of the 
resulting change in potential makes only a small change in each electronic 
state, very much like the small change in each state in a scattering, or 
tunneling, resonance (Section 8.4). Thus the probability of any one state 
making a shake-off transition is extremely small, but when summed over all 
states some shake-off is certain, as first showed by Anderson (1967). These 
transitions in the metal come at very low energies. The corresponding x-ray 
emission spectra would otherwise resemble the density of occupied states as 
a function of energy, but the spectra are modified near the highest-energy x- 
rays. 

23.4 Inelastic Processes 

We saw how a tunneling particle, as in Fig. 23.2, can leave vibrational 
energy behind, which is called inelastic tunneling. Similarly the tunneling 
electron can leave vibrational energy in the medium into which it tunnels, 
which is calculated the same way. A particularly interesting third case is in 
tunneling through an intermediate state as described in Section 9.1. The 
system is illustrated in Fig. 23.4, in analogy with Fig. 23.2. The transition 
rate is written as in Eq. (7.9), 

(23.18) 

but now the initial state is cltlO>, and we choose to put the harmonic 
oscillator in its ground state I$o(u). (The analysis is the same, as in Section 
23.2, if we choose an excited initial harmonic-oscillator state.) The 
intermediate states Ji> are all c~tlO>, with the spring relaxed but with various 
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I 
Fig. 23.4. An initial electron state cltlO> is coupled to an intermediate 
state c2t(O> by T12, which is in turn coupled to a set of final states ck3?(0> 
by T23. There is a polarization term, hu cZtc2, in the Hamiltonian, as in 
Fig. 23.2 and Eq. (23.8), so vibrations can be introduced in the 
intermediate system during tunneling. 

vibrational states @n(u - uo). We write their energy 12 - Erelax +n'hm. The 
final state is ck3t10> , with no relaxation since no particle is on the platform, 
and can have different vibrational states @n(u). Its energy is &3 + dm. Thus 
the sum over intermediate states, the second-order coupling of Eq. (9.2), 
becomes 

(23.19) 
- TI 2T23<@0(u)l@n'(u-uo>><@nl(u-u0)l~(u)> 

~1 - ( ~ 2  - Erelax + n' hm> - z,. 
and the energy delta function becomes ~ ( E o  - E f )  = 6(&1 - ~3 - nhm). 

without excitations, n = 0. Then the second-order matrix element becomes 
One interesting case has the final state, as well as the initial state, 

(23.20) 

and the delta function is 6(Eo - Ef) = 6(&1 - ~ 3 ) .  We have a sum of 
contributions from the intermediate states, of the same sign if T12T23 has 
simple behavior and ~2 > ~ 1 .  The transition goes through an intermediate, or 
virtual, state of higher energy. If ~2 < 1 1  there may be intermediate states of 
the same energy as the initial states and the possibility of real transitions to 
the intermediate state. 

The case in which there are excitations in the final state has the full 
factor <@o(u)l@n'(u-uo)><@n'(u-uo)l~n(u>> from Eq. (23.19). It is interesting 
to note the two limits we discussed in Section 23.2. If the shift uo is large 
compared to the zero-point fluctuations ao, the overlap <@o(U)l@n(u-uo)> is 



318 Chapter 23. Shake-Off Excitations 

small unless n' takes a large value, corresponding to a classical distortion of 
the spring from its relaxed position at uo to the initial position u = 0. Then 
for that large n' the overlap <$ni(u-uo)l$n(u)> will only be large if n is near 
zero for the same reason and there will be no energy lost to the oscillator. 
This is the classical result, in which we may think of the platform as 
remaining at its initial position u = 0, with the electron darting through the 
intermediate state as in Section 9.1. This is in fact quantitatively what Eq. 
(23.19) gives for this limit with n = 0. With approximately the same elastic 
energy n ' h  = l/2Kuo2 = Erelax added to each intermediate-state energy, the 
factor 1/[&1 - (E2 - Erelax + nho) ]  = 1/[&1 - &2] can be taken out from under 
the sum in Eq. (23.19), and the sum rule of Eq. (23.1 1) gives T12T23 for the 
sum over the numerator of Eq. (23.19) with n = 0. Thus we find 
<f lGnd lO>= Ti27'23/(Ei - ~ 2 )  as if the platform never moved. 

In the other limit, with the shift uo small compared to the zero-point 
fluctuations, the overlap <$o(u)l$,(u-uo)> is large for n' = 0 and small 
otherwise. Similarly then, with n' = 0, we see that <$n(u-uo)l$n(u)> will 
only be large if n is also equal to zero. Thus we again find no loss but in 
this case <flGndlO>= 7'12T23/(&:1 - (&2 - Erelax)) as if the platform shifted to 
its equilibrium position while the electron was present, with no phonons 
excited. 

Loss to the harmonic oscillator arises only when the zero-point 
fluctuations are of a similar size to the shift uo in the equilibrium position. 
We may note that this was the condition that the tunneling time, h/Erelax , is 
comparable to the period of the harmonic oscillator. This makes a very 
plausible intuitive picture. It is much like a person stepping briefly on a 
platform in passing over it. If he is on the platform for a small time 
compared to the period, it scarcely moves and no energy is lost. If he steps 
very slowly onto the platform and off, it will displace adiabatically down 
and up, again with no energy lost. Only if he steps on for a time of the order 
of the period of the oscillator will energy be transferred causing the platform 
to vibrate. 

This same system can be used to address another interesting quantum- 
mechanical question, which is frequently discussed in terms of inelastic 
events causing a "loss of phase" of a wave packet. It is generally agreed that 
there is interference between two packets following different paths, but if an 
inelastic event (an energy loss or gain) occurs along one of the paths, the 
interference is lost. This is often interpreted as a randomization of the phase 
of that packet, which would indeed destroy the interference. However, if we 
consider a system for which we can distinguish a loss of phase from the 
elimination of one packet, a "collapse of the wavefunction", we find that the 
latter is the correct explanation (Harrison (1994)). 

In order to address this question we need additional paths as shown in 
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3 4 5 

Fig. 23.5. An electron initially in the state lo> can tunnel through either of 
two intermediate states )1> and 12> into three final states as shown. With 
all matrix elements the same the amplitudes at j4> from the two paths add, 
so the probabilities of ending in 13>, 14>, or 15> are in the ratio 1:4:1. If an 
inelastic event occurs in 12>, the ratios are 0:l:l (as expected), not 1:2:1 as 
would be predicted from a phase randomization by the inelastic process. 

Fig. 23.5. We shall see that there is interference between the two paths 
leading to the states labeled 14>, so that if all matrix elements are the same 
there is four times the probability of that final state relative to that labeled 
(3> or that labeled (5>. We shall then allow an inelastic event of the type 
illustrated in Fig. 23.4 to occur in the intermediate state labeled 12>. We 
expect that this indicates that the electron took the path to the right, so that 
the probability of arriving at 13> is zero, and of arriving at 14> or at 15> is 
equal, and we shall find that to be true. If the inelastic event simply 
randomized the phase of the packet, it would indeed eliminate interference 
but would incorrectly predict equal probability for )3> and )5> and double 
probability for 14>. Such an assumption of randomized phases would give 
the correct average over equal numbers of inelastic events in both channels, 
but for the wrong reason. It is of interest to see how the inelastic event 
eliminates the second path in the correct theory. 

We may again look at the second-order matrix element, which enters 
squared in the probability of each final state in Eq. (23.18). Without a 
coupling to vibrational states which could give inelastic processes these 
second-order matrix elements to the three final states are 

(23.21) 
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As we indicated, if all matrix elements entering are the same and €2 = €1, the 
second-order matrix element to the middle state 14> is double so the 
probability is four times. If we randomized the phase for the two 
contributions, the cross term would vanish and the probability of a transition 
to 14> would only double. 

Now let the state 12> interact with an oscillator, as in Fig. 23.4, and let 
the corresponding oscillator be initially in the ground state Qo(u) but excited 
Ql(u) in the final state. [For purposes of this calculation we need consider 
only an oscillator for the state 12>.] Any vibrational state is allowed in the 
intermediate state, and if the intermediate state has the electron in the state 
12> the intermediate states are Qn(u -uo) (we use an n rather than the n’ of 
Eq. (23.19) for the intermediate state) with energy €2 -Erelax + &io . On the 
other hand if the intermediate state does not have the electron in the state 
12>, but in the state Il>, the intermediate states are Qn(u ) with energy €1 + n 
hio. We may rewrite the first line in Eq. (23.21) for the path through state 
Il> to 13> then as 

(23.22) 

We see that every term is exactly zero, either from the first overlap or from 
the second, or both. Thus there is no second-order matrix element, and no 
probability of the electron arriving in the state 13> if the final state has Ql(u), 
exactly as we expected. If the final state had no phonons, the overlaps 
entering in Eq. (23.22) would be <Qo(u)lQn(u)><~n(u)l~o(u>> which equals 
one from the n = 0 term and transitions to the state 13> are allowed, again as 
they should be. In fact the oscillator coupled to the state 12> has no effect 
for this transition to the state 13> with no phonons excited. 

The same factors, <Qo(u)lQn(u)><Qn(u)lQl(u>> when there is an 
excitation to n = 1 in the final state, enter the first term in <41@nd10> in Eq. 
(23.21) and it does not contribute. This orthogonality has eliminated the 
path through the state Il> from the results, as if the wavefunction had 
collapsed, though that is a clumsy way to describe a clear result. On the 
other hand, for the second term in <41H2nd10> with a single phonon in the 
final state the overlaps enter as <Qo(u)lQn(u-uo)><Qn(~-uo)lQl(u)> which are 
nonzero for every n . The paths through the state 12>, with or without 
excitation in the final state, are calculated exactly as in the system in Fig. 
23.4. All of the results of the calculation for this model are as we expect on 
physical grounds, and we have seen in detail how an excitation removes 
alternate paths. 



23.4 Inelastic Processes 321 

Another system we should consider would again be that in Fig. 23.5, but 
now with a classical raising and lowering of the platform u( t )  randomly in 
time. This could be a representation of tunneling through a state which was 
shifted by thermal fluctuations. Then the corresponding matrix elements in 
Eq. (23.21) become time-dependent as in Section 9.3. If the fluctuations are 
sufficient, the growth of the coefficient of the final state through this term, 
calculated as in Section 9.3, becomes random in phase relative to 
contributions through the other path, and indeed a randomizing of the phase 
has occurred. Perhaps we can say that it corresponds to an array of inelastic 
processes as we described above, averaged over absorption and emission 
events, which then does give the same result as a randomized phase. This 
becomes more a matter of exactly what question is being asked than of how 
a particular physical system is being modeled. 

This analysis sheds light on the question of how a particle, represented 
by a plane wave, can produce a string of droplets, a track, in a cloud 
chamber. Why cannot this plane wave generate a droplet far from the main 
track? The answer clearly can be given that the matrix elements needed for 
producing that droplet contain factors of the overlap of states associated with 
droplets in the main path. These overlaps are zero for the electron in the 
distant droplet. 

This system represented in Fig. 23.5 also helps clarify the concept of 
"entangled states" which is often discussed in quantum theory, though we 
have largely avoided it here. We may introduce harmonic oscillators for 
both the intermediate states I1> and 12> . Then in the course of transmission 
of the electron from lo> to the final states there are many terms in the 
intermediate state, some with the harmonic oscillator for the state Il> in an 
excited state. However, for those terms, the harmonic oscillator for the state 
12> is definitely in the ground state. When the oscillator for the state 12> is 
in the excited state, that for state Il> is always in the ground state. We 
cannot discuss the two oscillators separately because their states are 
entangled. 

This entanglement feature is essential to quantum computing, which is 
currently under extensive discussion (e. g., Averin (1999), Nakamura, 
Pashkin, and Tsai, (1999)). It is usually based upon spin states, which we 
have been able to describe as spin-up or spin-down for almost all of our 
discussion, except in connection with spin-orbit coupling, because the spin 
did not appear in the Hamiltonian and these two eigenstates were degenerate. 
For computing in a binary system, each bit of information is a zero or a one, 
which we may represent as a spin up, I?>, or a spin down, lJ>, called a 
qubit, a bit of quantum information. The quantum computer represents 
numbers with an array of such qubits. More generally the spin state of each 
qubit can be a mixture of spin up and spin down, cosqI?> + sinqIJ>, and in 
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fact such combinations arise automatically when the qubits interact with 
each other, and the interacting qubits are entangled in just the sense 
described for oscillators above. The lowering of one spin is inevitably 
accompanied by the raising of the other. It is this entanglement which may 
make it possible to greatly reduce computational time by following several 
scenarios (Section 1.5) at the same time. For this to succeed, it is also 
necessary to retain each scenario and to conserve the relative phases of the 
array of cubits, which may be the most difficult part. 

This same mixture of spin-up and spin-down states is the basis of one 
method of "quantum cryptography". With an axis selected, binary 
information can be transmitted by sequentially sending particles of I?> 
representing 1 and lJ> representing 0. If the receiver knows the axis 
direction, he can set his detector and read the message. If the message is 
intercepted by someone who does not know the direction, and guesses a 
direction off by some angle @, he will read the wrong digit a fraction 
1/2sin2@ of the time, be unable to read the message, and have no way to 
correct his error. This same method can be used with photons with the 
polarization of the light playing the role of spin orientation. However, it is 
essential that the message come one photon at a time, or the interceptor can 
receive with multiple receivers, with multiple orientations, and sort it out 
afterward. It is the particle aspect which is essential, not the representation 
as polarization by cosqII'> + sinqIJ>. That wave aspect is also there in the 
remarkable feature of classical light that crossed polarizers will prevent 
transmission of any light, but if a third polarizer is placed between them, at a 
450 angle, 25% of the light will be transmitted. That result is immediate in 
the wave picture, but difficult to picture in terms of the spin-orientation of 
photons. 

Epilogue 

If we look back over the extraordinary range of topics we have 
discussed, we should remember that we have been exploring the 
consequences of a single idea, complementarity, which we introduced at the 
outset: Everything is at the same time a particle and a wave. That the 
consequences could be so pervasive, and yet not recognized before this 
century, is because the constant h which relates the particle and the wave is 
so small on the scale of everyday experience. It is however large enough 
that all modern engineers and scientists should understand this basic rule by 
which the world operates, and learn the approximations which allow them to 
apply it to their work. 
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bxercises 

1.1 Compton scattering of an electron 

'k 
A photon of momentum p =hq is absorbed and another p' =hq' emitted at the same 

time by an electron initially at rest, called Compton scattering. The electron must pick up 
the missing momentum hk (all components) and also pick up the missing energy. Using 
conservation of energy and momentum is enough to put a condition on the momentum 
gained by the electron in terms of the angle 8 between q' and q . One must use the 
relativistic form of the electron energy, 

relative to the rest energy. Your result can be written in terms of the change in 
wavelength M of the light as 

Ah = 2 h c  sin2(8/2) 

with hc = 2nh l(mc ) =h l(mc)= 2 . 4 3 ~ 1 0 - l ~  meters, the Compton wavelength. Derive this 
result. This is one of the few derivations in this set of exercises. 

2.1 n-states in a benzene ring 

electrons confined to such a circular ring. 
The benzene ring of six carbon atoms has a radius of about 1.53 A. Imagine free 

a) Obtain the wavenumbers and energy of the free-electron states (V(x) = 0). 
b) Actually we shall see that one electron per carbon lies in such a state. (These are 

called the n-electrons.) What is the lowest sum of electron energies, allowing one 
electron of each of two spins in each state? 

states? hw equal to this difference gives the optical absorption threshold. 
c) What is the energy difference between the lowest empty and the highest occupied 

2.2 Energy to break a benzene ring 

the ~ ( 0 )  = v(L) = 0 . (Note V' (L) = -yf (0) is not ruled out now.) 
Imagine breaking the benzene ring, keeping the length the same, and thus requiring 

a) Find the energy for these states. 
b) Find the lowest sum of one-electron energies for the six electrons, and then the 

change from this sum in Problem 2.1. This is a contribution to the change in energy upon 
breaking the ring. (It might be called the energy of a resonant n-bond.) 
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2.3 Fermi energy in free-electron metals 

per atom for the three elements are 39.3A3, 23.0 A3, and 16.6 A3, respectively, what is 
the Fermi energy EF = h2Iq?/2m to which the free-electron states are filled for each? 

Na, Mg, and A1 have 1 , 2 ,  and 3 free electrons per atom, respectively. If the volumes 

2.4 Density of states in a free-electron metal 
Obtain the density of states n(E) = cW/(Ad&) per unit energy per unit area for free 

electrons (E  = h2k2/2m) moving in two dimensions (kx, ky) following the derivation in 
Section 2.2 for three dimensions. Note the difference in the dependence of n(E) on 
energy E. [E is customarily used for energy when it is just kinetic energy, E when it 
includes the potential and is therefore measured from some standard.] 

2.5 Quantized conductance 
We evaluated in Eq. (2.19) the net transmission of a channel with transmission Ti = 

T2 the same at each end. Reevaluate that sum with the two different (though of course at 
each end the transmission for flow to the left must be the same as that to the right). Note 
whether it can be asymmetric, corresponding to a rectifying channel. 

2.6 A round quantum wire 
Imagine a quantum wire, as in Fig. 2.4, but with a circular cross-section of radius ro , and 

great length L. The energy eigenstates can be written in terms of cylindrical coordinates r, 4, 
and z . The radial solutions obtained from Eq. (2.23) with V(r) = 0 are Bessel functions of 
integral order J,(kr) as indicated in the text. These J,(kr) are similar in form to thejl(kr) 
shown in Fig. 2.9, with Jo(kr) going to 1 at kr = 0, and J l (kr )  going to kr /2 at small kr. The 
only properties we shall need for this problem are the relation between k and the eigenvalue in 
Eq. (2.23), E = h Z k 2 / ( 2 ~ ) ,  and the zeros of the first two Bessel functions, 

J&) = 0 at x = 2.40, 5.52, 8.65 ... 

and 

Jl(x) = 0 at x = 3.83, 7.02, 10.17 ... 

obtained from Mathews and Walker (1964) p. 224. 

= 1 states? To what Fermi energy would we need to fill the rn = 0 band to accommodate 1 
electron per 8, of length if ro is = 3 A? Would this Fermi energy place electrons also in the 
lowest m = 1 band? In the second m = 0 band? [If it helps, you could take L = lOOOA.1 

2.7 States in a large spherical cavity 
When we consider the ionization of a (spherically symmetric) atom or impurity in a 

solid, we will want to treat free-electron states(V(r) = 0) using a large spherically 
symmetric boundary, rather than the parallelepiped we used in Section 2.2. The radius 
R of the boundary is very large. It is often convenient to work in terms of the full 
wavefunction v(r), rather than the radial factor alone, R(r), and we do that here. 

Ajo(kR) = 0. 

What are the energies of the two lowest bands of m = 0 states, and of the lowest band of n 

a) Obtain the energies of the 1 = 0 free-electron states (s-states) by requiring v(R) = 
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b) Normalize these states, hy*(r)~(r)d3r  = 1, by integrating over all space in the 
volume of radius R. 

c) Obtain the number of s-states per unit energy in terms of R and energy E = 
h2k2/(2m), including the factor two for spin. [It will be proportional to R rather than to 
volume. If we were to add the density of p-, d-, etc., states, the total would eventually 
approach the density of states proportional to volume as we found for the parallelepiped.] 

using t h e j ~ ( k r )  given in Eq. (2 .35) .  (Note that one term is smaller by a factor of order 
ll(kR) and can be dropped when you setjl(kR) = 0.) 

of cos28 and care would need to be taken with the radial integration for such higher I 
since individual terms diverge as r goes to zero.] 

d) Similarly obtain the energies of the free-electron I = 1 (p-states) for very large R, 

[We will not do the normalization integral for p-states , which contains an integration 

2.8 Existence of bound s-states 
A deep spherical quantum well, of depth -Vo, and radius ro , will have bound s-states. 

However, for fixed ro , it will not have any bound states if Vo is too small. How large must VO 
be, as a function of ro, in order to have at least one bound s-state. [The solutions of Eq. (2 .32)  at 
E = 0 will need to turn over for r less than ro to match to a decaying exponential.] 

2<9 Harmonic-oscillator states 
a) Integrate the Schroedinger Equation numerically, 

with h2/m = 7 .62  eV-A2 (for m the electron mass) and K = 2 eV/A2 (so hw = h G m  = 
3.90 eV) to obtain the n=7 solution. You might proceed as follows, or in some other 
way: 

matter that the resulting ~ ( x )  is not normalized; for even n one could have used = 1 
near x = 01. For odd n ~ ( 0 )  = 0, we can take ~ ' ( 0 )  = 1, and from Eq. (l), w" (0)= 0 . 
You can obtain y ( A x )  from 

Start with E = 7 l / 2  hw and w = x near x = 0 [appropriate for an odd n, and it does not 

V(X + Ax) = ~ ( x )  + v' (x)Ax + ' /zv"(x)Ax2 

and 

W ' ( X  + Ax)) = v ' ( x )  + y"(x)Ax 

and again ~ " ( x  + Ax) from Eq. (1) using everywhere x + Ax. The process is repeated 
interval by interval to a large x ,  and the energy adjusted up or down until it goes to zero at 
large x and has n nodes (for all x , including x = 0 and x < 0, not counting the zeros at x 
= k m). (You might use an interval Ax = O.lA, adjusting the energy to three significant 
figures to get w(8A) = 0 . It won't be quite the right energy since Ax is not infinitesimal 
and 8A is not infinite. ) 

b) Plot the result. (You need not normalize and x >O is enough.) 
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c) How does the x-value for the largest peak agree with the classical x,,, obtained 
from E = 
7.5hw since xmax is not so close at this small an n.)  

from use of the finite interval. 

=,ax2? (Use your calculated E , but it would not matter if you used the 

d) Reestimate the energy using Ax = 0.02 A, to see what sort of error was incurred 

3.1 Lagrangians and canonical momentum 

periodic boundary conditions at the ends. V(x)  = 0 . 
Imagine a spherical bead of mass M sliding on a wire with position 0 < x 5 L with 

a) What are the energy eigenvalues? [We have obtained exactly this before.] 
b) If the bead can also freely rotate 0' spin (through angle 8)  on the wire, its 

rotational energy would classically be l/2Ze2 with the moment of inertia Z = 2/y14r02 for a 
homogeneous ball of radius ro . What are now its energy eigenstates, allowing both spin 
and translation of the ball? [ You may have to go through the Lagrangian, L , and the p 
conjugate to coordinate 0 

c) Letting L = 2nro so that both motions depend upon the same parameters, what is 
the ground state energy and that of the next two lowest states, all in terms of M ,  ro, and h. 

d) Now let this bead roll along a line without slipping, so the rotation speed 
6 = x' lro, and there is again only one independent coordinate. What are now the energy 
eigenvalues if we again apply periodic boundary conditions on L = 2nro? Note that L is 
chosen so that when the bead reaches the end the angle 8 is exactly the same as at the 
start, so periodic boundary conditions are still satisfied at the ends. [It is an interesting 
possibility to take L f 2nro. It allows nonintegral angular momentum, when combined 
with the nonslipping condition, as we shall discuss for electrons in Section 10.5.1 

if it is not clear how to proceed. Then p + (h/i) a/a8 .] 

e) What are now the lowest three energy eigenvalues, in terms of M ,  ro, and h? 

3.2 Tumbling, translating, and vibrating Liz 
Lithium atoms have a mass M and form a molecule Liz with an equilibrium spacing do = 

2.67 A. We describe the electronic structure in Problem 5.1, writing the electronic energy plus 

L 

X 

A lithium molecule, moving in a plane. 
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an overlap repulsion. This leads to a spring constant K = a2E&/dd21&, = n2h2/(mdo4) (with m 
the electron mass) giving a potential energy V(d) = '/2K(d-d0)~ = '/2Ku2. 

If we confine the atoms to a square plane, L on each edge, (confine with vanishing 
boundary conditions on the center of gravity) the molecule can translate, rotate, and vibrate. 
There are no potentials except the V(d) . 

specify the state, and the parameters M ,  do, L, and h. 

four motions . 

a) Describe the states of this molecule in terms of the quantum numbers which are needed to 

b) Write an expression for the ground state energy, ground state with respect to the three or 

Comments: We neglect any excitation of electrons to excited states (discussed in Problem 
5.1 d). We also neglect any effect of stretching, u =d-4,  on the moment of inertia for the 
rotating modes. [Note that a displacement of one atom by Un, and the other in the opposite 
direction by Un produces the separation do + u . There are many factors of 2. ] You can obtain 
the kinetic energy, Lagrangian, and the momentum for each coordinate, pu, etc., and go to the 
energy eigenvalue equation. 

4.1 Variational state for hydrogen 
To see how well variational solutions work, try W(r) =A exp(-a 9) 

solution for the ground state of hydrogen (which has a correct solution 
What is the lowest energy E you can get with this Gaussian form? You may evaluate 

5 4 n r 2 ~ ( r )  (HW(r)) d r  
5 4nrzv(r)2 d r  

E =  

analytically, with 

and tabulate i t  numerically as a function of a to obtain the minimum E to a few 
hundredths of an eV. Compare with -13.6 eV. 

4.2 Spherical systems 
We gave in Fig. 4.1 the energy levels for hydrogen, including the two lowest I = 0 

states and the lowest set of 1 = 1 states. Obtain the values for the corresponding states and 
sketch the levels for 

a) a spherical cavity (infinitely high walls) of radius 2. A . (You can use thejl(kr) 
given in Eq. (2.35) but need a numerical solution to get that energy.) 

b) Repeat for a spherical harmonic oscillator, V(r) = l/2Kr2 , with K chosen to give 
the same energy as in a) for the lowest 1 = 0 state. (2s-states can be made of a 
spherically-symmetric combination of states such as n,=2, ny = n, =O harmonic oscillator 
states, similar to the way we made the p-states from n=l and n=O states in Section 2.5.) 

Note: for both a) and b), all energy eigenvalues are positive. The shell model of the 
nucleus is usually used with the potential from part a), but sometimes with that from b). 
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4.3. Pseudopotentials and p-states 

by finding the value which will give the correct s-state energy by solution of the radial 
Schroedinger Equation based upon x = rR(r), Eq. (4.2), 

An empty-core pseudopotential radius, r, , can be obtained for an alkali-metal atom 

with 
I ~ f o r  r<rc 

I -e2/r for r x C .  
w(r) = i 

a) Obtain rc for lithium ( E ,  = -5.34 eV) and sodium ( E ~  = -4.96 eV), integrating the 
Schroedinger Equation as described in detail in Problem 2.9 . Use a step in r of 0.01 A 
and adjust rc to within 0.01 A so w(SA)=O. 

b) Use the sodium r, and find E~ , the lowest p-state energy (within about 0.01 eV). 
It is interesting to compare this result with the empirical rule, Eq. (4.17). 

Suggestions. It is helpful again to use h2/m = 7.62 eV-A2 and e2 = 14.4 eV-A. Then 
for this s-state we can seek a solution of Eq. (1) above by numerical integration. It may 
save time to start with the Problem 2.9 program. At small r, you may take x = r (not 
normalized) to set x(0) and x ' (O) ,  and obtain ~ " ( 0 )  = 0 from Eq. (1). Then proceed 
interval by interval as in Problem 2.9. 

The value of rc which gives a nodeless wavefunction that does not diverge at large r 
is correct. Using x(8A) rather than x(-) is good to around 0.01 A. You probably need to 
print out x(r) values to see that there is no node between r = 0 and r = 8, but a tenth of 
the values of r is plenty. [If you like, you can run it for E ,  = -3.4 eV also to obtain the r, 
used for the hydrogen 2s-state in Fig. 4.2.1 

For Part b you need to add h2Z(Z+l)l(2mr2) to w(r) in Eq. (l), fix r, and adjust the 
energy E~ to get a nodeless solution with x(8A) = 0. At small r, you may take x = r2 (not 
normalized). 

replaced by a more complete potential. 
The full free-atom calculation is a direct generalization of this procedure with w(r) 

5.1. Molecular physics 

atom from Hartree-Fock, Table 4.1. Based upon V,,, from Eq. (5.6), 
The distance between the two nuclei in Li2 is d = 2.67 A. E, = -5.34 eV for the free 

a) What is the energy of the bonding state and of the antibonding state? 
b) What is the total change in energy of occupied one-electron states in formation 

If this were the only contribution to the energy of Li2. the molecule would collapse. 
of the molecule from free atoms, obtained as C electrons SEj. 

The repulsion arising from the nonorthogonality of the two atomic s-states was 
approximated in Eq. (5.22) by an additional energy Md4. That is, the total energy 
becomes: 
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c) Adjust A such that the correct equilibrium spacing is obtained. With this added 

Formation energies are typically overestimated by as much as a factor of two for 
repulsion, what is the formation energy (positive number) of the molecule? 

first-row-element systems, though not for elements from lower rows. The experimental 
value is 1.07 eV for Liz. 

d) What energy of photon would you estimate is required to excite an electron into 
an excited electronic state of the molecule? 

5.2 Polarizability of Lit 

atoms are separated by d , this will make an energy difference between the two lithium 
atomic states of eEd, making the molecule polar. This will also shift the average 
occupation of each atomic orbital from the original ui2 = 

Calculate the dipole which arises to first order in the field, (two electrons in the 
bonding state) to obtain the polarizability a such that the dipole is p = aE.  [a (not to be 
confused with polarity a,) should have units of A3. Work through the polarity ap to first 
order in the field E. Magnitudes are enough; clearly the electrons move in the direction 
they are pushed.] 

Take an electric field E along the axis of the Liz molecule. If the s-states on the two 

with no field. 

5.3 Second-order perturbation theory 
Another way (different from Problem 5.2) the polarizability a is calculated is by 

noting that a molecule has its energy shifted by - l/2a@ by a small electric field E. 
a) Calculate the shift in energy of the electrons in the bond by second-order 

perturbation theory, noting <aleExlb> = l/2 (<I\ - <2l)leExl((l> + 12>) = -eEd/2 . Equate 
this to the - 1 / 2 ~  to obtain another estimate of a .  

electrons in a quantum-well state 
excited state 
quantum well and the area does not matter. There are also contributions from coupling to 
higher states, 
we do not include. The energies of the states are from f1~(nn/L)~/2rn.] 

b) Use this same perturbation theory to calculate the polarizability of a pair of 
s in(ndL) due to its coupling with the first 

sin(2ndL ). [L is the thickness, along the electric field, of the 

sin(nnx/L ) with n = 3,4, 5... (actually only even n contribute), which 

Comments: There are different ways to obtain the matrix element, any of which are 

One, you might look the integral up in the tables. [The author did not find it.] 
Two, you might evaluate it analytically using d/dajb,, sin(ax)dx = ~~,,xcos(ax). [The 

Three you might extract the L by changing variables and evaluate a remaining 

Four, you might use Mathematica, or some such program. 
In any case, you should end up with a formula which contains the dependences upon 

allowed: 

author did that.] 

integral numerically. [The author did it as a check.] 

the parameters of the problem with a numerical factor. The dependence upon L of the 
result is of particular interest. 

5.4. Nz molecule 

term values from Table 4.1, estimate the cohesive energy of the nitrogen molecule 
a) Using the molecular-orbital levels from the first column in Table 5.1, and the 
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(including division by a factor of two as a rough estimate of the effect of overlap energy). 
The observed cohesion is much smaller at 9.8 eV per molecule. 

b) Recalculate the cohesion using sp-hybrids (Is> f I p > ) / a  for the o-states and 
keeping only the largest coupling V2. (Again, d = 1.09 A.) Compare the resulting 
cohesion with the value obtained in Part a). 

5.5 sp-hybrids in CO 

molecular orbital energies using sp-hybrids on the C and 0 to obtain the o-states so that 
only a quadratic equation needs to be solved. You also need a quadratic equation to 
obtain the n-bonding states. See which states are occupied and obtain the cohesion as for 
N2 in Problem 5.4, to be compared with the experimental 11.0 eV. Again the 
overestimate is greater than the usual factor of two for first-row compounds. 

Consider the carbon monoxide molecule, with a spacing of 1.13 A . Calculate the 

6.1. Tight-Binding benzene .n-states 
We redo Problems 2.1 and 2.2 for the benzene ring, using tight-binding n-states 

rather than free-electron states. Use Vppn = -(n2/8)h2/(md2) with d = 1.53 A and we can 
measure energies from E~ . 

of the occupied states to the cohesive energy? (Divide by two for the effect of the 
repulsion from nonorthogonality.) 

the states needed to go to zero at N+l spacings. What is now the sum of energies of 
occupied states, divided by two? 

bond from Part a)? 

a) What are the energies of the six n-states (relative to E ~ ) ?  What is the contribution 

b) If we break the ring but keep the other spacings the same, we saw in Fig. 6.4 that 

c) How does the difference, the bond-breakmg energy, compare with the energy per 

6.2. Fitting interband coupling to free-electron bands 
a) Given the formulae for Vsso, Vppn, and Vppo we have used, what would &P - E~ 

have to be to fit the free-electron bands for a simple-cubic structure at k = O? 
b). No elements are simple cubic, but compare the free-atom term-value differences 

with the estimate based upon Part a) using simple-cubic spacings we estimate (if nearest- 
neighbor spacings vary with number of nearest-neig!bor atoms X as X1I4 (Harrison 
(1999)) for C (d=1.70A), Si (d=2.60A), Ge (d=2.70 A) and Sn (d=3.10 A). The term 
values do not vary nearly as much as this would suggest and are closest for systems 
where the band gaps are smallest (Sn). 

term proportional to kz2. The coupling vk(Sp) = 2iVsposinkzd entering Eq. (6.5) (good 
for a chain or for a simple-cubic structure) gives an additional term which can be 
calculated in second-order perturbation theory. It is proportional to kz2 at small k ,  since 
vk(Sp) is proportional to k, and the energy denominator can be taken as constant. We fit 
that band difference as [h2/(2rn)][2n/@ (plus a term in kz2 which only gives fourth-order 
terms in the band energy we are studying, and can be dropped). What must Vspo be to 
get the free-electron mass for the lowest band? Compare with the geometric mean of 
V,,, and Vppo. and with our choice of Vspo = (n/2)h2/(md2) . [The result could have 
been obtained by expanding Eq. (6.5), with &kS and &kP for the simple-cubic structure, 
for small k, but the way we did it may be good practice in the use of 2nd-order 
perturbation theory.] 

c) The s-band &kS of Eq. (6.4) can be expanded for small k, (or k, or ky)  to get a 
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7.1 Scattering by am impurity in two dimensions 

binding s-bands, such that the perturbing matrix elements <k'lHlk> were equal to 
We treated scattering by an impurity level in one and three dimensions for tight- 

(&.J*-i(k'-k) ' rj . 
a) Use this same matrix element for a two-dimensional band to calculate the total 

scattering rate as a function of the energy of the electron. Use free-electron bands, as in 
the derivation of Eq. (7.12), for converting the sum to an integral over energy. 

b) The Scattering center could be represented by the diameter D of a scattering disk 
(rather than the cross-section in three dimensions), vD/A = l / ~  with v the electron speed, 
A the area of the system, and l/z the scattering rate. What is that diameter (in A) for a 
thermal (E= 0.025 eV) free electron with the free-electron mass if &E, = 2 eV and the 
area per atom is 4 A2? 

7.2 Transition from a local state 

Imagine an electron bound in the lowest s-state lo> in a spherical quantum well (or 
bowl, since the minimum potentials are the same outside as inside) as above, with lo> = 
4- sinkr / r  for r<ro, with k = n/ro and energy hzk2/(2rn) We shall see in Chapter 
8 that such a state is coupled to s-states lk'> outside the well, which if R is very large 
have wavenumbers k' equal to an integer times d R ,  with energies h2k' 2/(2m). We shall 
see in Chapter 8 how the matrix elements between the state inside and those outside is 
estimated, and Eqs. (8.15) and (8.20) will suggest squared matrix elements given by a 
form, 

with K related to the energy and VO by h2~2/(2m) = Vo - E = VO, so we take it independent 
of energy. Note that this has units of energy-squared and appropriate dependences upon 
the normalization distances ro and R. 

Obtain a formula for the lifetime T for this bound state, or the rate of transitions out 
l / ~ ,  using the Golden Rule. Note that the sum over final states is a sum over k' for 
spherically symmetric states vanishing at radius R. 

8.1 Tunneling through a resonant state 
We construct a program to calculate the transmission as a function of energy for a 

row of atoms (or a stack of atomic planes) for a one-band system with atomic levels of 
energy Ej, coupled to nearest neighbors by the same V,,, (here = -1 eV). Let all E, be the 
same E, f o r j  < 0. Then the program begins with a transmitted wave to the left, uj = 
Te-ikdJ f o r j s  0, which satisfies Eq. (8.12) for thesej with energy E = E, + 2Vs,doskd. 
We can, for example, use this form to obtain the real and imaginary parts of uj f o r j  = -2 
and j = - 1 .  Then Eq. (8.12) can be used to obtain successive value of the real x, and 
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imaginary iy, parts of u, , keeping the same E and inputting the successive values of ~j for 
increasing j , as illustrated in Fig. 8.1, until we reach a j where all E, are the same (not 
necessarily the same as far to the left). Then we have passed the barrier and we may use 
Eq. (8.13) and any pair of neighboring u, to obtain the transmission. (If the constant E, on 
the right is different from that on the left, as illustrated in Fig. 8.1, the wavenumber k 
must be determined using E = E, + 2 V s s ~ o s k d  with the starting energy E from the left, 
but with the E, for the right, and therefore a different k than used on the left. This is 
because Eq. (8.13) was obtained by evaluating the ratio of incident to reflected waves of 
the wavenumber appropriate to the right side. In the present exercise we treat the simpler 
case where E, is the same to the left and right of the barrier.) 

For this problem we may again measure energies from the bulk E, appropriate on 
both sides of the barrier, and take V,,, = -1 eV throughout. That is, we take all ~j equal 
to zero except near the central barrier. For this problem we take all ~j = 0 except ~1 = ~3 

= 3 eV. Since ~2 = 0 this is a double barrier. The energies for propagating states run 
from 2V,,, = -2eV to -2Vss0 = 2eV . For each energy in this range kd for the transmitted 
wave is given in terms of the energy by E = 2V,,,cos(kd) and for each energy the 
program will work through the barrier and calculate the transmission. Plot that 
transmission for the energy range of the entire band. 

This double barrier has a resonance as described in Section 8.4 and you will find that 
the transmission goes to one at the corresponding resonance energy. Note that the same 
program, with different E, , and maybe different Vij , will solve an extraordinary range of 
transmission problems. One example is Problem 8.3. 

8.2 Scattering by a displaced atom 
We think of the chain of atoms of length Nd as in Fig. 7.3 and Problem 8.1, but 

instead of changing the energy E, for one atom, we displace it to the right by 6d. If the 
coupling V,,, varies as l/& the matrix element on the left decreases by a factor &/(d + 
6 4 2  and that on the right increases by a factor &/(d - 6d)2 , but all E, remain at the 
energy which we took as zero. 

Use the Golden Rule to calculate the reflectivity due to the displaced atom. Note 
that this could also be done numerically, and more accurately, using the program from 
Problem 8.1, but we wish here to see how the Golden Rule is used for such a case, and in 
particular how to calculate the needed matrix element. 

The states in zero order are Ik> = (1/dN) Cjeikxj and <k'l = (l/dN) Cie - ikxi .  The 
matrix element of the Hamiltonian without distortion is zero between states of different 
wavenumber, but there is coupling between the two from the changes in coupling just 
mentioned. If the position of the atom to be displaced is xo, there is a change in coupling 
between the atomic state at xo and that at xi of -2VSs0 6d/d,  to first order in 6d, which 
appears with a factor (l/N)[ e-ikxoeikxi +e-ikxieikxo 1. There is also a change in coupling 
between atomic states at xo andx.1 of +2Vs,,6d/d. This provides four terms in the 
matrix element. 



Exercises 333 

The calculation using the Golden Rule for 1A and for the rate of reflection, for k '=  
-k, is now straightforward. a) Carry it out for k and k '  small so that the sines in this 
matrix element can be taken equal to their arguments. The result will depend upon k . 

b) Carry it out for states midband, where kd = d 2 .  
c) We may think of this electron with periodic boundary conditions as moving to 

the right, crossing the displaced atom once for every length Nd it traverses, and reflecting 
each time with probability R . Write R for the defect for electrons near the bottom of the 
band from the result in Part a. Had we calculated reflection directly as in Problem 8.1, 
the result , to lowest order in 6d should be the same. 

8.3 Tunneling through complex barriers 
Problem 8.1 provides the basis for a wide range of interesting problems, simply by changing 

the parameters which enter. One such example is to calculate the transmission for a system as in 
Problem 8.1, with coupling Vsso = -1 eV and all Ej = 0 except for, in this case, 

& 1 = 3 e V  
~2 = 0 e V  
~ 3 =  1 eV 
&q=OeV 
~ 5 = 3 e V  
[Once you have iterated through the chain from the transmitted side to the incident and 

a) Plot the transmission for the energy range of the entire band. 
b) How would you interpret the result? 

reflected side, the reflectivity is obtainable as in Eq. (8.13).] 

9.1. Excitation from a quantum well 

d and area A as in the diagram to the left below, 
We consider carriers confined to the lowest subband of a quantum well of thickness 
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There is light on the system, which has its field E in the x-direction and wavelength large 
compared to the system so the perturbation can be taken to be e,Ex. Then, the quantum- 
well states are coupled to bulk states = d m )  sin(k,x)el(kyY+kzZ) of the same ky 
and k, with kxL/2 = nn. See the energy-level diagram to the right for this problem ( L  is 
large compared to d but small compared to the wavelength of light.) The well states are 
not coupled to bulk states of the form cos(k,x). [One could represent these bulk states 
more accurately, but this is a meaningful approximation.] 

a) For fixed k, and k, obtain the matrix element using the first term in H,I from Eq. 
(9.1 1). (One way of doing the integrals is using cosA cosB = [cos(A+B) + cos(A-B)]/2.) 

b) Use the Golden Rule and integrate over k,, (for large L) to obtain the absorption 
rate (proportional to q u q )  as a function ho and k,d , related to each other and to the 
energy E~ = h2kx2/2m above threshold as shown to the right above. We can use Eq. 
(9.10), and the relation between the vector potential and E above it to write u.quq as 
sZc2@/(4n02) to obtain a result proportional to @, or the light intensity, with no factors 
of volume. 

c) Plot the resulting absorption rate for an electron of given k, and k,, talung for 
simplicity d such that ,!?thresh. =h2/(2m&) . Then in units of ,!?thres. , we have ho = 1 + 
(k,@. For the plot do not worry about a leading factor, containing I? and fundamental 
constants, which is independent of k,d and o. 

the range 0 < k,d < 3 for the plot.] 
[One way to proceed is to calculate both hw and the absorption in terms of k,d over 

10.1 Probabilities of defect charge states 

of energy E, is proportional to the Boltzmann factor exp(-Ei/kBT) in equilibrium at 
temperature T. The same Boltzmann factor applies to a defect (maybe a vacant site in 
silicon) which can be neutral or which can have charge +e by removing an electron of 
spin up, or a charge +e by removing an electron of spin down, or can have a charge +2e 
by removing both electrons. We call 60 the energy at which the first electron is 
removed, and define a reservoir energy p at which it would be deposited (in 
equilibrium). It takes more energy, by U ,  to remove the second electron since it is from a 
positively charged defect. Thus the energy of each of the +e states of the defect, relative 
to the neutral state of the defect, is p - EO and that of the +2e state, relative to the +e 
states is p - (EO - U ) .  The sum of the probabilities of the four defect states is one. Write 
formulae for the probability of each charge state. 

- EO = 0.1 eV. You may take U = 0.5 eV, but it does not affect the results appreciably. 
Fermi statistics could be derived in a similar way and this p turns out to be the Fermi 
energy for the electrons. For this problem it enters only through the excitation energy p - 
eo and drops out once we set the total probability equal to one for the defect. For the 
evaluation in this problem, one of the probabilities is so small as to be negligible. 

We saw in Eq. (10.7) that the relative probability of occupation of a vibrational state 

Evaluate the probabilities numerically for kBT = 0.025 eV (room temperature) and p 

10.2 Zero-point energy in solids 

sound of vs = 6 . 4 ~ 1 0 5  cm/sec. and atomic volume S2o = 16.5 A3(aluminum). Use the 
Debye approximation of o = v,q up to a qD such that there are as many modes in each of 
the three branches as there are atoms. Take the speed of the transverse modes to be 
smaller by a factor 1/42. (It's actually smaller than that, at about 3x105 cm/sec.) 

Estimate the zero-point energy, per atom, in a solid with speed of longitudinal 
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The high-temperature vibrational energy is 3 h T ,  0.075 eV per atom at room 
temperature, for comparison. 

10.3 Carrier distribution in semiconductors 
We obtained a formula for the density of electrons in the conduction band in terms of 

the energy difference Ac between the Fermi energy and the conduction band, the effective 
mass and the temperature, in Eq. (10.28). A similar formula applies for the number of 
holes in the light-hole band in GaAs and the upper heavy-hole band. We neglect the 
number of carriers in the lower heavy-hole band. Given the band gap of Eg = 1.52 eV for 
GaAs and the masses: conduction band, m&n = 0.067; light hole band, rnlh/m = 0.13; and 
heavy-hole band, rnhh/rn = 0.62 , 

a) where is the Fermi energy in the gap in intrinsic GaAs (equal number of electrons 
and holes) at room temperature ( ~ B T  = 0.025 eV)? 

b) What is then the density of electrons (per cm3) in the conduction band? 
c) What is the average kinetic energy (energy above EC ) of these electrons? 

Conduction Band 

Y- 

Valence Bands 
Upper Heavy Hole 

Lower Heavy Hole 
Light Hole 

11.1 Time-dependent distribution functions 
We solved the Boltzmann Equation for the case in which there was no dependence 

upon position and no dependence upon time to obtain Eq. (1 1.6). For the case of a 
uniform field turned on abruptly at t = 0, this dependence upon p remains correct for t > 
0, but there will also be a dependence upon time. Try a solution fl(p,t) = fl(p)g(t) in the 
Boltzmann Equation, Eq. (1 1.5) with fib) from Eq. (1 1.6). This will lead to a 
differential equation for g(t). Obtain the general solution of the reduced equation, and a 
special solution of the full equation, and fit the sum to g(0) = 0 (when the field is first 
turned on) to obtain fl(p,t) for all t > 0. 

12.1 Van-der-Waals interaction in 3D 
We treated van-der-Waals interaction between two dipole oscillators oriented along 

the intemuclear separation. Atomic dipole oscillators can also o.scillate perpendicular to 
that separation. Transverse oscillators, of energy '/2Kyi2 + l/2rn~,~, will also contribute to 
the interaction. The transverse dipole p = ey1 will produce a field in the y-direction , at an 
atom a distance r away in the x-direction, of -p/r3, corresponding to an energy of 
interaction of e2yly2/r3. Calculate the correction, to second order in this interaction, to 
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the dipole frequencies WO= for these two coupled oscillators. Use this to obtain 
the change in the zero-point energy (to second order in the interaction) of the two 
oscillators in terms of the polarizability a = e2/K. Add this lowering in energy, and that 
for polarization in the z-direction, to that we obtained for the x-direction, to obtain the 
full van-der-Waals interaction between two three-dimensional oscillators each of 
polarizability a. You could directly generalize this to two oscillators of different 
polarizabilities. 

[It is an important point that this interaction applies directly to two atoms of 
polarizability a . Often a harmonic oscillator provides a valid model for an atom or 
molecule, with hw taken equal to the electronic excitation energy. Such an interaction is 
calculated more directly in the Problem 12.2. ] 

12.2 Many-body (van-der-Waals) interaction between atoms a n d  molecules 

the -2e2x1x21r3between the dipoles shown in Fig. 12.1. Let the nuclei on two helium 
atoms be separated by r .  There is a first-order term in the energy from the interaction 
between each s-electron on one atom and an electron on the other atom, given by 
approximately e2/r , which is not of interest. It balances an interaction energy between 
the electrons and a proton from the other atom. Now let the electron position on the first 
atom be r 1 relative to its nucleus and that of an electron on the second atom be 1-2 
relative to its nucleus. 
large, and in an x-direction, this may be expanded in the components of r1 and r2 to 
obtain the leading term in xlx2 again as -2e2x1x2/r3. (Including other components, y,, zi, 
would be analogous to Problem 12.1.) The factor xl  will have a matrix element between 
an atomic s-state vs l ( r l )  and an atomic p-state y p l ( r l )  (we consider the p-state which is 
proportional to q l r l ) .  We call that matrix element Xsp = .J' v p l ( r l )  XI v s l ( r ~ ) d 3 r l .  Thus 
a two-electron state for the two up-spin electrons, for example, of two helium atoms, 
vsl(rl)vs2(r2), will have a matrix element -2e2Xsp2/r3 with the state with both atoms 
excited, yp1(rl)vp2(r2). (This would also be true if we used antisymmetric 
combinations of states as in Eq. (4.14).) 

a) Use this coupling to obtain the lowering in energy of the molecule in second- 
order perturbation theory in terms of Xsp. and E~ - &,. Note that there are equal 
contribution for the excitation of both spin-down electrons, for the excitation of the spin- 
up electron on atom 1 and the spin-down electronic atom 2 ,  and also for the spin-down 
electron on atom 1 and the spin-up electron on atom 2. The total is the van-der-Waals 
interaction between two helium atoms. 

energy -1/2~<~plleEx~llysl>12/(&p - E,) of each electron by the perturbation eEXq due to 
the coupling with the same excited p-states, in analogy with Problem 5.3a. Equate the 
sum of the shifts of the two electrons to the -'/2aEx2 of one helium atom to obtain the 
polarizability a of that atom. 

c) Use Part b to write the van-der-Waals interaction of Part a in terms of 
polarizabilities for comparison with Eq. (12.2). 

d) Follow through the reasoning to see the form of the result of Part c for two 
different atoms (e. g., He and Ne, where the excitation energy for Ne would be A& = E,*- 

ep with E,* the energy of the lowest excited s-state). Note again that there are only the 
two transitions, spin-up and spin down, to the s*-state on each atom, 

For atoms or molecules the electron-electron interaction provides the counterpart of 

Then the electron-electron interaction is e2/1r2 + r - rll. If r is 

b) Similarly calculate the polarizability of the helium atom by calculating the shift in 
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13.1 Electron diffraction and Fermi surfaces 
The nearest Bragg reflection planes in a simple-cubic lattice (which make up the 

faces of the cubic Brillouin Zone) are the planes which bisect wavenumbers [2nf4 in 
cube directions. A divalent simple metal has a spherical Fermi surface with volume 
equal to that of the Brillouin Zone (a cube of edge 27cld for a simple-cubic lattice) which 
is seen to intersect that cube. 

portions of the sphere within the Brillouin Zone are Fermi surface in the first band. 

while there is a m a p &  field H present, perpendicular to the plane of the figure, that 
wavenumber will rotate with angular frequency oc = eH/mc (discussed in Section 14.1). 
As a free-electron it would complete a circular orbit, assume counterclockwise, in a time 
T = 2nmc/eH. However, due to the pseudopotential, when it reaches a Brillouin Zone 
face it will be diffracted (abruptly) to the opposite face and the wavenumber will continue 
to rotate counterclockwise until it again reaches a Zone face. Sketch the orbit which 
such an electron will follow in real space. (You will have the exact shape, in the 
diffraction limit, and do not need to work through the scale.) 

c) In units of T ,  how long will it take the electron to complete the orbit? 

a) Sketch a central cross-section (a (100) plane) of that cube and sphere. The 

b) If an electron has a wavenumber on one of those four segments from the first band 

13.2 Scattering by pseudopotentials, two dimensions 

with Eq. (13.15), leading to the two-dimensional counterpart of the second form in Eq. 
(13.17). The form is not as simple as in three dimensions. 

Redo the derivation of a formula for impurity scattering in two dimensions, starting 

14.1 Electron dynamics 
Consider an electron moving in a simple-cubic tight-binding band 

~k = E, + 2V,,o[~~skxd + coskyd + COSk,d ] 

with V,,, = -(n2/8)f&(m&) and d = 2 A. 

direction? 

electron at rest at k = 0 to again be at rest at k = O? (This assumes no scattering during 
this time, which is not realistic.) 

c) Where would i t  end up after this time, relative to its starting point, and how far 
would it have traveled? 

a) What is the maximum velocity (in c d s e c )  such an electron can have in an x- 

b) In a field of 100 volts per centimeter in the x-direction, how long would it take an 

15.1 Phonon dispersion 
Calculate the frequencies of transverse modes for q in a [ 1001 direction in a face- 

centered-cubic structure, assuming a nearest-neighbor spring constant K. The calculation 
follows closely the longitudinal calculation shown in Fig. 15.3, but the displacements are 
in different directions and the frequencies are not the same. 

15.2 Vibrational specific heat 

frequency oqi) for the total vibrational energy for an fcc (face-centered-cubic) crystal in 
Write the sum (over wavenumbers and polarization A = 1,2,3 for modes of 
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thermal equilibrium, using the average excitation number for each mode which we found 
in Eq. (10.11). Note that this does not assume a simple w = qv which led to Eq. (10.14). 
However, it becomes simple in the limit Of kBT much greater than all hoq . Obtain the 
leading term (in k g T / (  hw,)) in the vibrational energy per atom for that limit, and its 
derivative with respect to T, which is the specific heat per atom. 

16.1 Second quantization manipulations 

16.1 to see that these are true: 

are orthogonal, <Y((r j}) '  lY((ri})> = 0. 

many-electron states are orthogonal. 

This is so simple it is hardly worth writing down, but follow the analysis in Section 

a) If two states IY( ( ri})> and lY( ( r j  })I > have different numbers of electrons, they 

b) Show that if any state is occupied in lY((rj})' >, but empty in IY({ri})>, the two 

16.2 Harmonic-oscillator number operator 
Using the definitions 

and 

evaluate utu , noting also that px - xp = h/i. Then manipulate the result to see that the 
Hamiltonian (p2/(2M, + kx2/2 ) is hw(utu + l/2). 

17.1 Phonon emission by electrons 
Complete the calculation of the rate at which an electron of wavenumber k 

spontaneously emits a phonon (no phonons present initially) outlined in Section 17.3, 
again taking Vq = Voqdq and oq = WO, constant. 

18.1 The field energy for  photons 

need a sum over q and another over 9') to evaluate the expectation value of the electric- 
field energy l/gn ld3r @ for a photon state with nqoh0 photons in a single mode of 
wave wavenumber qo, polarization ho, and no photons in any other mode. Note that I? 
= A2(wdc)2 = A2qo2 for this mode. Note also that there are four terms each with two ugh. 
aqht, a q h ,  or as", and that in the sum over q, two terms contribute. 

Use the expansion of the vector potential in Eq. (18.9) to write A2 = A . A (you will 

18.2. Optical matrix elements 
We ordinarily get reasonable matrix elements taking atomic s-states as hydrogenic, 

y ( r )  = l / p3 /n  e-Pr , which is normalized, with fi given by E~ = - h2p2/(2rn ). p-states 
then are ypz(r) = A 2  e-P'r, etc., with FP = -h2p'2/2m, and A'chosen for normalization. 

a) Evaluate the A' which gives a normalized p-state wavefunction. 
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b) Evaluate the matrix element of a/az between the 1s-state of beryllium ( E ~  = -8.42 

[You could check that the result is the same if you interchange left and right states, 
eV) and the 2pz-state of beryllium (take E~ = -5.81 eV). It should be given in A-l. 

but you do not need to.] 

18.3 Excitation of atoms 
a) Take the absorption and emission rates from Eqs. (18.16) and (18.17) with the 

beryllium atom in a volume Q, and the sum can be written as an integral, as indicated. If 
f i S  andfip are independent of spin, Cspin gives a factor 2. Substitute for Htqh from Eq. 
(18.12), writing <2pZp/dz12s> = l/r, as in Eq. (18.14) and for every h there issome p- 
state oriented along the polarization direction and f2p applies to that p-state. Evaluate the 
integrals for absorption and emission, letting nqh be a smooth function of q, (which 
would be kgT/@cq) if we had a thermal distribution at high temperature, but we do not 
make that assumption here). The results will depend upon nqh, the distribution functions 
and r,. 

b) For a single electron ,f2p = 1 -f& and you can write the rate equation for df2ddt 
in terms of nqh evaluated at hog= E Z ~ - E ~ ~ .  One could use this even if we applied a nqh 
which depended upon time. 

as a function of nqh , which we may think of as h T  / hog. 

19.1 2nd-order Stark Effect in a quantum well 
The splitting of 2s and 2p-states in hydrogen due to a dc field, which we gave in Eq. 

(19.19), is called first-order Stark splitting, linear in field. The shift of the 1s-level due to 
coupling with the 2p-level is called a second-order Stark shift. Obtain the corresponding 
shift of the lowest quantum-well state ( yfl(z) = (42 / dL)sin(n?/L) for a well thickness L) 
due to coupling to the next-lowest state , yf2(z) = (42 / dL)sin(2n?/L), by a uniform field E 
in the z-direction (a term in the Hamiltonian, 6H = eEz). This will be a formula, 
proportional to @. [Jdudy would cancel and you don't need to include it. The result 
depends upon L .] 

c) What i ~ f 2 ~  (as a function of a steady nq) in steady state? Sketch the result forfzp 

20.1 Interatomic interactions in metals 

(20.11) as 
The interatomic interactions in a simple metal are given approximately following Eq. 

Z1Z2e2cosh~rcl coshKrc2e -KT 
r V(r) = 

Such a form can be used to estimate a wide range of properties of a metal. One simple 
property is the highest-frequency longitudinal vibrational mode propagating along a [ 1001 
direction in a simple-cubic metal, the mode in which nearest-neighbor atoms along the 
direction of propagation move in opposite directions, 6x = +u coswt. Estimate the 
frequency for lithium, takmg the interatomic distance for the simple-cubic structure as 
2.75 A, chosen to give the observed volume per atom in the real structure. You can 
evaluate k~ which will give a Fermi-sphere volume equal to half that of the Brillouin 
Zone ( Z  = 1 for Li), and then the Fermi-Thomas screening parameter from Eq. (20.9). 
We estimated the core radius for lithium in Problem 4.3, but we use the standard value of 
0.92 A (Harrison (1999), p. 453). This gives all parameters in V(r),  from which you can 
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evaluate the net force from derivatives of V(r), or numerically if the magnitudes of the 
displacements is for example u = 0.01 A. Only two nearest neighbors contribute a force 
to first order in uo for displacements in a cube direction since the four nearest-neighbors 
in the lateral directions (fd in the y- and z-directions) move with the central atom. We 
neglect contributions from more distant neighbors. You can then use force equals mass 
times acceleration, with the mass given by 1 . 6 7 ~ 1 0 - ~ ~ g  times the atomic weight of 6.94. 
[The Debye frequency for lithium, for comparison, is OD = 4 . 5 ~ 1 0 ~ ~ / s e c .  (Kittel (1976), 
p. 126). Our estimate should be the same order of magnitude, but it is a different physical 
quantity and our estimate is approximate.] 

21.1 Localized electrons in molecules 

terms. 
The Hamiltonian for a diatomic molecule, such as Li2, can be approximated by three 

Ho = ~ ~ ( c i + t ~ l +  + cl.tcl-+ c2+7c2+ + c2.tc2.) 
H I  = Vsso(cl+tc2+ + cl.tc2.+ c2+7cl+ + ~2-7~1.) 
H2 = U(cl+tcl+ cl.tcl.+ ~2+7~2+~2-tc2.) 

with the subscript f indicating spin. H = Ho + H I  + H2 is the Hubbard Hamiltonian for a 
chain of two atoms. This can be solved exactly for two electrons present, but we look at 
approximate solutions. 

a) If H2 is negligible, it is the problem treated in Section 5.1, with ground state 
(Hartree-Fock) IGw> = 1/2(cl+t + c2+7)(cl-t + c2.7)10>. Evaluate the corresponding & = 
<GHFIHIGHF>, including the term H2 in the Hamiltonian proportional to U. [It would 
also be possible to calculate the 2nd-order shift in energy due to H2 using second-order 
perturbation theory, ~,<GHFIH~[~><J~H~IGHF>/(Eo - Ej), but it would be rather intricate. 
That shift is called the "correlation energy".] 

cl+tc2-tlO> (or any of three other states with the two electrons on different atoms). 
Evaluate Eo = <G=IqGm> for this state, including Hi. Aside from these four states 
there are only two other states, b> each having both electrons on the same atom. Evaluate 
their energies from <jlHo + HI +H+. 

c) Evaluate the 2nd-order shift in energy of IGHL> = cl+tc*.tlO> due to Hi, 
which is Cj<GHLIHl[j><j(lHIIGHL>/(EO -E,). This lowering in energy would not arise if 
the two electrons were chosen to have parallel spin (e. g., cl+tc2+tlO>) so it favors the 
spins of the ground state being antiferromagnetically aligned. 

b) If H i  is dropped, the ground state (called the Heitler-London state) is IG=> = 

22.1 Quantum Hall Effect 
The wavefunction for a free electron in a magnetic field, v(r) = @(x - XO) eikyY e ik~z ,  

which was introduced in Section 22.1 applies for a two-dimensional gas with the e lkg  
dropped. Let the system be a plane of dimensions Lx and Ly . Apply periodic boundary 
conditions on Ly and require the xo of @(x-xo) to lie in the region of length Lx. 

a) Obtain a formula for the number of states (of a given spin) in each level @n for a 
given field. 

b) For a density of electrons (number per area) of 1/Ao electrons of each spin, at what 
fields will the individual sets be exactly filled? 

c) Relate this area per electron A0 to an amplitude a0 for a ground-state @o(x) such 
that l/2Kao2 = l/4hwC (potential energy equal to half the zero-point energy), with K the 
effective spring constant for these orbits given in Section 22.1. 
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22.2 Zeeman splitting 
Find the splitting of the different orbitals for a d-state (I = 2) in a magnetic field. 
a) Allow also for the interaction of the two spin states with the field to sketch the 

b) Give the splitting in electron volts for H = 1 kilogauss. 
new level diagram. (No spin-orbit coupling is included.) 

22.3 Magnetic susceptibility 
a) Obtain the Langevin shift in the energy, in eV, for a field of 1 kilogauss, of the 

two electrons in a helium atom (proportional to <rt2> = <I”> - <z2>, using the ls- 
wavefunctions obtained as in Problem 18.2, with E~ taken from Table 4.1. The shift is 
very tiny. 

b) There is no Van-Vleck term, Eq. (22.19), for the atom (since the s-states are 
eigenstates of Lz),  but if these were two electrons in a molecule, the matrix element of Lz 
between each occupied state and an empty state (with energy such as the 2s-energy) 
would be of order <llLz12> = h . Using this value and takmg the energy of the excited 
state to be of order 
Langevin term in the energy of the two electrons? 

for helium, what would be the ratio of the Van Vleck to the 

22.4 Spin-orbit coupling 

corresponding result for d-states, with energies in terms of h2, and give the number of 
states at each energy. 

Redo our analysis of the spin-orbit splitting of atomic p-states to obtain the 

23.1 Shake-off excitations 

Asin(nnr/R)lr, with A chosen so the states are normalized, illustrated below for the 
ground state, going to zero at r/R = 1. If an electron is in the ground state, and R is 
suddenly increased to R’ = 1.1R = R/v , 

a) what is the probability (numerical) for the electron going to the new ground state? 
[This could be done by numerical integration or as a special case of the integral in Part b.] 

b) Give a formula for the probability of its being excited to the new state of 
quantum-number n . (The needed integrals are quite simple.) Such an excited state in 
the expanded well is also shown below. 

The s-states for an electron in a spherical quantum well of radius R are 

3 

2 

1 

0 

0 0.5 1 1 5  
r/R 
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Molecules, 326pr 
Relativistic, 323pr 

Effective mass 
Anisotropic, 192 
Defined, 192 
Equation, 193 
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see also Pseudopotentials 

Energy 
Cohesive, ionic solids, 101 
Fields, electric, magnetic, 338pr 
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Excitation, see Atoms, Harmonic oscillator, Photons, 

Exciton, 194 
Exclusion Principle, 28 
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Fluctuation-dissipation theorem, 165 
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Operators, 13 
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Dynamics of, 194ff 
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Hubbard Hamiltonian, 275ff 
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Hunds Rule, 59, 298 
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Scattering by pseudopotentials, 1185ff 
Scattering in tight-binding, 109, 110, 331pr 
States, 193 

Incommensurate spin-density wave, 279 
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Inelastic tunneling, 312ff, 316ff 
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Hubbard Hamiltonian, 276 
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Three-level, 239ff 
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Solid-state, 244ff 
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Defined, 177 
Illustrated, 179 
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Laughlin wavefunction, 292 
LCAO, 69 
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Level crossing, 191, 192 
Light-emitting diode, 243 
Light holes, 194 
Light waves, see also Photons 

Coherent, 254ff 
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Interaction with electrons, 130 
Planck distribution, 146, 147 

Liquid-drop model, 65, 230 
Lindhard dielectric function, 267, 268 
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Linearization, 161 
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Electronic structure, 328pr 
Localization in, 270ff, 340pr 
Polarizability, 329pr 
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Local Density Approximation, 59 
Localization, 270ff, 34Gpr 

Lorentz force, 49 
Wigner crystal, 300 

Lowering operator, 214 
LUMO's, 84 

Madelung energy, 261 
Magnetic breakdown, 191 
Magnetic field 

Energy, 338pr 
Flux quantization, superconductivity, 286 
From vector potential, 9 
Motion of band electron, 191 
Motion of charged particle, 48ff, 287ff 
Nuclear Magnetic Resonance, 68, 294 

Magnetic moment 
Orbital, spin, 293 
Oxygen, 298 
Nucleons, 294 

Magnetic susceptibility 
Atoms and molecules, 296ff, 341pr 
De Haas-van Alphen fluctuations, 290 
Diamagnetic, of free-electrons, 290 
Ferromagnets, 298ff 
Oxygen molecules, 298 
Paramagnetic, of free electrons, 295 

Problem, 210, 259ff 
Interaction, 210 
Localization, 270ff, 340pr 
Superconductivity, 282ff 
Van-der-Wads interaction, 165ff, 212 

Normalization, 209 

Magnetoresistance, 27 
Many-body 

State, 56,207ff 

Mass of electron, 6, 287 
Matching wavefunctions 

At boundaries, 17, 117 
Effective-mass theory, 119, 120 
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Matrix elements 

Between atomic orbitals, 95, 330pr 
Defined. 71 
Electron4ight interaction, 132, 237, 339pr 
Interatomic, for light, 242 
Pseudopotential, 175ff 
Second-order, 125ff 
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Maxwell's Equations, 9, 10 
Measurement in quantum mechanics, 12ff 
Metals, 98 

Fermi energy, simple metals, 323pr 
Insulator transition, 277 
Screening in, 263ff 
Shake-off excitations, 3 16 
Sound speed in, 269 
Vibrational frequencies, 339pr 

Mirrors, Bragg, 245 
Molecular orbitals 

Bonding and antihonding, 70,76 
General , 75ff 
Liz, 328pr 

Molecules, 69ff 
Carbon dioxide, monoxide, 86, 330pr 
Electronic structure, 328pr 
Formation energy, 329pr 
Localization in, 270, 340pr 
Magnetic polarizability, 296ff 
Nitrogen, Slff, 329pr 
Orbitals, 77ff 
Tumbling, rotating, etc., 150.153, 326pr 
Van-der-Wads interaction between, 336pr 

Moment of inertia, 47, 326pr 
Momentum, 6 

Canonical, conjugate, 47 
Conservation, 136, 323pr 
Operator for, 7 

Mossbauer effect, 314 
Multicenter bonds, 86 

Neutrino, 135 
NMR, 68,294 
Nitrogen molecule, 81ff, 329pr 
Nodes 

Atomic states, 62 
Defined, 37 
Relation to energy, 37,42 

Concentration at a frequency, 170 
Johnson-Nyquist, 164ff 
lv, 171 
Partition, 171 
Quantum, 165ff 
Shot, 167ff 
Thermal, 164 
White, 165 

Molecular states, 70 

Noise 

Nonbonding states, 85, 101 

Nonlocal effects, conduction, 163 
Nonorthogonality of atomic states, 7 I 
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Coordinates, 201 
Modes, defined, 198 
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Many-electron states, 209 
Spherical states, 325pr 
Stepping operators, 214 
Using Lagrange multipliers, 285 

Nuclear Magnetic Resonance, 68,294 
Nucleus 

Normalization of states, 14 

Alpha decay, 123 

Beta-ray emission, 135ff 
Fission, 68 
Gamma-ray emission, 68, 314 
Magnetic resonance, 294 
Nucleon-nucleon interaction, 230ff 
Structure, 65ff 

Electrons, 209 
Harmonic oscillator, 214, 338pr 

Number operator 

Numerical solutions, 37ff, 325pr. 328pr, 329pr 
Nyquist theorem, 165 

Off-diagonal long-range order, 282 
One-electron approximation, 22,57 
Operators 
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Commutation of, 206ff 
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Field, 207ff 
For momentum and energy, 7 
Identity, 223 
Number operator 

Electrons, 209 
Oscillator, 214 

Raising and lowering, 214 
Scissor, 262 
Stepping, 212ff 
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Orthohydrogen, 152,153 
Orthogonality of states, 15, 71, 74, 208, 337pr 
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Repulsion, 77,78 
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Tumbling states, 150 
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p-states 34, 35 
Bands, 92,95 
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Partition noise, 17 1 
Pauli Exclusion Principle, 58 
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Periodic boundary conditions, 16 

Tight-binding chain, 88 
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Persistent current, superconductors, 286 
Perturbation theory, 79ff, , 329pr, 330pr 

Degenerate, 80, 183 
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Time-dependent, 108, 128ff, 251, 331pr 
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Phase coherence, 248,3 lsff, 
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Annihilation and creation operators, 220 
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Electron-electron interaction from, 228ff 
Electron-phonon interaction, 203ff 
Emission by electrons, 338pr 
Frequencies, 197ff, 337pr. 339pr 
Normal coordinates, 201 
Optical modes, 226, 339pr 
Spectrum, 197ff. 337pr, 339pr 
Thermal excitations, 145ff 
Transitions assisted by, 314 
Virtual, 228 

Photons, 9,232ff 
Absorption and emission, 13Off. 235ff, 

Annihilation and creation operators, 234 
Coherence, 254ff 
Field energy, 338pr 
Flux, 133,134 
Interaction with electrons, 130,235,236 
Planck distribution, 146, 147 
Spin angular momentum, 131 
Thermal excitation, 145ff 
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Photothreshold, molecule, 329pr 
Physical constants, 6, 287 
Pi-bands, 21,90,91 

Pi-bonds, 21. 82,323pr, 330pr 
Pi-mesons, pions, 231 
Planck Distribution, 146, 147 
Planck's constant, 6,287 
Plane waves and spherical Bessel functions, 132 
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Polar energy, 76, 101 
Polarity, 76 
Polarizability 

Benzene, 323pr, 330pr 

Atoms, 336pr 
Molecules, 329pr 

Polarons, 225ff 
Small, 313 
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Lattice wavenumbers. 181 
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Conditional, 31 1 
Density, 14 
Occupation of states, 16, 140, 334pr 

Band-gap from, 183 
Calculation of core radius, 328pr 
Scattering by, 337pr 
Screening, 176,266 

Pseudowavefunction, 62ff, 178 

Qubit, 321 
Quantized conductance, 28,324pr 
Quantum 

Pseudopotentials, 62ff, 174ff 

Computing, 321, 322 
Cryptography, 322 
Flux, 286 
Hall Effect, 291, 340pr 
Noise, 165ff 
Numbers 

Angular momentum, 33, 34 
Atoms, 55,60 
Harmonic oscillator, 42 
Hydrogen atom, 55 
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Well, 37ff, 245 

Excitation from, 333pr 
Stark shift in, 339pr 

Quarks, 68 
Quasi-Fermi level, 244 

Rabi frequency, 258 
Radial function and equation 

Circular systems, 32 
Spherical systems 34 

Raising operators, 214 
Randomizing phases, 319ff 
Rare earths, 98 
Reciprocal lattice vectors, 

Recoil, gamma-ray emission, 3 14 
Reduced mass, 53 
Relativity 

see Lattice wavenumbers 

In the wave equation, 8 
Magnetism, 291 
Particle energy, 323pr 
Spin-orbit coupling, 301ff, 341pr 

Approximation 161 
Momentum, 186 

Levels, 80 
Overlap, 77,78 

Resistance, maximum, 31 
Resonant 

Relaxation time 

Repulsion 

Bond, 323pr 
Tunneling and state, 122, 123ff, 331pr 
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Rotational stat&see also Angular momentum 
Liz, 326pr 
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Rydberg, 54 

s-states, 34 
Bands, 91ff 
Coupling 88ff 
sp-hybrids, 85,99ff 

Saturating a transition, 239 
Scanning Tunneling Microscope, 121 
Scattering 
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Compton, light-electron, 323pr 
Electron-electron, 212 
Forward, 110 
Impurity 

Using pseudopotentials, 185ff, 337pr 
Using tight-binding, 109-11 1, 331pr 

Resonance, 123 
Schroedinger's cat, 1, 13 
Schroedinger Equation, 3ff, 8 

In generalized coordinates, 48 
Radial, 36 
Time-independent, 14 
With the vector potential, 50, 287ff 

Scissor operator, 262 
Screening, 263ff 

Coulomb potential, 266,267 
Fermi-Thomas, 263ff 
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Stark effect, 255, 256, 339pr 
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Steady state 

Light absorption and emission, 339pr 
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Stepping operators, 212ff, see Annihilation 
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