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Preface

This text was prepared and used in a two-quarter course for graduate
electrical-engineering and materials-science students at Stanford University.
The aim of the course was to teach those parts of quantum mechanics which
an engineer might need or find useful in his profession. To my surprise this
made the course almost orthogonal to traditional physics quantum courses,
which provide those parts which most physicists feel every student should
go through. The analytical solution of the harmonic oscillator states is rarely
useful after the course is over. I believe that it is also rare that a solution of
Schroedinger's equation is what is needed in engineering activities. For most
questions concerning electronic structure of molecules or solids a tight-
binding formulation is much more to the point, along with a knowledge of
how to obtain the parameters which are needed, and how to calculate
properties in terms of them. We have not seen these in other quantum texts.
It is also important to have a feeling for when one can use a one-electron
approximation and how to include many-particle effects when they are
needed. One needs familiarity with perturbation theory and with the
variational method, and confidence in the use of Fermi's Golden Rule. One
needs the elements of quantum statistical mechanics and I believe also the
many other topics one may see from scanning the Table of Contents,
including even the elements of the shell model of the nucleus. It is not easy
for a student to absorb such a variety of material in a short period, but the
more modern approach of learning only that piece of a subject which one
needs at the moment is not a viable approach for the fundamental laws
which govern physics. Nearly fifty exercises, listed by chapter, are directed
at using quantum mechanics for every-day problems, rather than to illustrate
features of quantum theory. Solutions are available as a teachers’ guide from
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the publisher. I have found it rather easy to generate problems when the
material under discussion really has such wide use.

Graduate students in mechanical engineering, chemistry and chemical
engineering, in addition to the electrical engineers and materials scientists,
took this course. Most of these had taken no physics nor mathematics
courses beyond their sophomore year as undergraduates. For that reason it
was essential to include Lagrangian and Hamiltonian mechanics, Chapter 3,
and such mathematical techniques as Lagrange multipliers, which physics
majors learn only in their third or fourth years. I assumed that a third- or
fourth-year undergraduate engineer would also be qualified to take the
course, since their physics and mathematics background was the same, but
none survived to the end. It appears to me that the graduate engineers have
grown in sophistication, partly through other technical courses, to the point
that they can deal effectively with such an abstract subject. They of course
do it with varying success, but I believe it is so very essential for modern
engineers to have a systematic presentation of quantum theory that it was an
important experience for all of them. One wonders in particular how a
modern materials scientist can obtain a Ph. D. without ever studying the
fundamental rules which govern the behavior of materials. Similarly if any
engineer needs to work with very small systems, as is increasingly common,
he certainly should be able to recognize and deal with quantum effects.
Having a "Schroedinger-solving code" on his computer is beside the point.

Although the text is designed for engineers, and engineering
backgrounds, it has seemed to me that it might also be useful for physics
graduate students who have completed a traditional, more sophisticated,
course in quantum mechanics. If that course was light on the
approximations which have proven successful for applications, or in dealing
with systems which involve many electrons, this text might provide what is
needed for that physics student to use the knowledge of quantum theory he
has obtained.

We generally use equations which can be evaluated in MKS units, but in
the end the energies in atomic systems will be of the order of electron-volts
and atomic dimensions are of order Angstroms. Thus it is easiest in all
regards to use the composite constants h2/m = 7.62 eV-A2, with m the
electron mass, and e2 = 14.4 eV-A, with e the electronic charge, so that
results are obtained immediately in convenient terms. This is in keeping
with almost all treatments of quantum mechanics so that results here can be
matched with those in other texts. Then the interaction energy between two
electrons a distance r apart is written e2/r . The main place where the
customary units become problematical to one educated with MKS comes
with the use of magnetic fields, given here in gauss. Then the parameters
needed for evaluation are given explicitly at the beginning of Chapter 22.
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There is a central, and hopefully appealing, feature to the text which is
not essential to its real goal. That is the assertion that quantum theory
follows from a single absolute truth, the wave-particle duality, stated on the
first page. The full generality of the statement is only developed as we
proceed, and Planck's constant which makes the connection between the two
descriptions is obtained from experiment, but no further postulates are
required. We do not deduce all of the consequences with elegance and rigor,
but believe the basic derivations are all essentially correct. Then if a student
is puzzled by some question, such as Schroedinger's cat, he may recognize
that if he cannot understand something which follows from the wave-particle
duality, it is that duality which he does not understand. He should perhaps
address his concern at the source of problem and may not be likely to resolve
it by thinking about some remote consequence. Our focus is not on the deep
philosophical questions which quantum theory inevitably raises, but it may
provide a basis for dealing with them which is appealing to the mind of an
engineer.

This view of a single postulate is not apparent in more historical
developments where the Pauli Principle, or the Uncertainly Principle, can
appear to be independent postulates. This is partly because they initially
were, and partly because the teaching of quantum mechanics may be mixed
with teaching about the unfinished theory of fundamental particles, which
evolved simultaneously. In our view quantum mechanics does not tell us
what nature will provide, but does tell us the behavior of anything we can
define and specify, either as a particle or as a wave. Similarly the questions
of the "true" meaning of measurement and the collapse of wavefunctions do
not arise with the pragmatic approach of asking only questions which can be
tested experimentally. We see how to ask such questions, and how to
answer them. Quantum mechanics cannot do more, nor can any other
theory. This reliance on a single postulate can be a comfort to a student who
is taken rapidly through an extraordinary range of systems and phenomena
in a brief period. Hopefully the net effect is to allow him to recognize when
he needs quantum theory, and to know how to proceed when he does.

Walter A. Harrison
Professor of Applied Physics
Stanford University

May, 2000
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I. The Basic Approach

Our goal in this treatment of quantum theory is to provide those aspects
of the theory which are most needed for a modern understanding of the
world of our experience. Central to this are the many approximations which
have turned out to be successful for estimating the properties of matter and
predicting the events which occur on a microscopic scale. In that sense the
goal is entirely pragmatic, but any study of quantum theory cannot help but
raise deep philosophical questions. Perhaps the only real understanding of
the theory is through a familiarity with how it works out for many different
problems. It seems unlikely that understanding comes from thinking about
some complicated extreme case, such as Schroedinger's cat. The approach
we take here bypasses much of the question by starting with a single
premise of wave-particle duality, from which follows all of quantum theory
and its interpretation. Any remaining problems are made moot by the
quantum-mechanical view that questions are meaningful only if there is
some conceivable experimental way to test the answers.

In keeping with this pragmatic approach we will not emphasize
mathematical derivations, nor carry out the detailed analysis of harmonic-
oscillator states, hydrogen wavefunctions, or angular momentum, which are
part of almost all texts in quantum theory. We treat the simplest case in
detail, state the general results, and see that they are the plausible
generalizations. We leave the more detailed analysis to other texts. The one
we used for the course at Stanford was Kroemer's Quantum Mechanics for
Engineers and Materials Scientists , which served very well.



Chapter 1. Foundations

1.1 The Premise

For the purposes of this course, quantum mechanics is based upon a
single statement, called the wave-particle duality, or sometimes
complementarity, which is :

Everything 1is at the same time a particle and a wave.

Simply figuring out how this apparently self-contradictory statement can be
true will lead us to all of quantum theory. The meaning of "everything" will
be made more precise at the beginning of Chapter 3 when we discuss
Hamiltonian mechanics. We take the premise itself to be an absolute truth,
but we generate approximate ways to deal with it, such as Schroedinger's
Equation, or the more approximate tight-binding theory. Within these
contexts we can make predictions, and the essential predictions have never
been found to be wrong, though the approximations (such as the neglect of
relativity for Schroedinger's Equation) make the results approximate.

This premise as applied to light and to electrons is quite familiar.
Although light is certainly a wave described by Maxwell's Equations, it is
absorbed only in quantum packages, as if it struck photographic film like a
bullet. Although electrons are certainly point particles they are diffracted as
waves by the grid formed by a crystal lattice. It is also true of a real bullet,
and of the beads which make up a necklace. It is even true of the center of
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gravity of that necklace. It is also true of sound waves and even waves in
water. It is also true about a spinning object, such as a top, where the wave-
like behavior of the spin limits the states of rotation. The generality of the
wave-particle duality will be expressed mathematically, and certainly more
precisely, when we discuss Hamiltonian mechanics in Chapter 3.

This premise is a truly remarkable statement, remarkable first because it
is so general. It is remarkable second because it has so many consequences.
It is remarkable third because it is so difficult to imagine that it could be
true. It is remarkable fourth because it is absolutely true; it has never
failed an experimental test. It is remarkable finally because although it
seems not to be able to answer some questions we would like to ask, these
all involve answers for which there is no conceivable test. There is no
theory which goes further than quantum theory. Thus it may be as close as
we can get to the absolute truth.

At the same time we should point out that this is not the only way to
formulate quantum theory. Heisenberg's matrix formulation does not depend
upon postulating waves, appears to be totally different, but is in fact
mathematically equivalent. We shall see more clearly how this can be when
we treat the harmonic oscillator in Chapter 16 using only the fact the
operator which represents momentum (Eq. (1.11) in the next section) cannot
be interchanged with the position in an equation (in mathematical terms,
they do not commute). Then we will obtain results equivalent to what we
obtain in Section 2.5 using waves.

1.2 Schroedinger's Equation

We proceed from this premise, by asking how it could be true for a
particle, such as an electron with mass m and charge -e which we imagine
for simplicity can move along a line in space. We shall see how we can
define an average position for a wave, and then match the rate of change
with time of this average with the velocity of a particle. If we are to describe
a particle by a wave, there must be an amplitude which is a function of
position x and time ¢. In fact a single amplitude, such as sin(kx), is not
enough because it does not tell which way the wave is moving. Thus for a
water wave we need not only the height of the water surface, but the velocity
of the water motion; for a light wave we need both the electric field and the
magnetic field. We require two amplitudes to describe the electron and we
choose to make them the real and the imaginary part of a complex amplitude
y(x,1), as could also be done with a light wave or a water wave.

For a particle we must be able to discuss its position, and the best we can
do with that for a wave is to have the amplitude be nonzero only over a
limited region, a wave packet as shown schematically in Fig. 1.1a. We
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v J o
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a b. u U

Fig. 1.1. a. The wavefunction y(x) for a wave packet is nonzero only over
a limited range of position x. It will spread in time. b. A packet
multiplied by a plane wave ekoX will also move, with velocity dw/dk,
evaluated at k = kq.

cannot say exactly where the particle represented by such a packet is, but we
can specify an average position in terms of the squared amplitude (as we
would do for a light wave with an energy density proportional to the square
of the electric field plus the square of the magnetic field). In this case the
sum of the squares of the real and the imaginary parts of ¢ is y*y and we
would specify the average position by weighting each position in proportion
to y*y as

Jy=(x) x w(x) dx
<= vt dx (1.1)
This innocent-looking definition of what we will mean by averages, or
expectation values , will turn out to be very far-reaching and the basic
relation of the wavefunction to experiment. It is often interpreted to mean
that y*(x)y(x) is the probability of finding the particle at x but we really
only use the definition of an average from Eq. (1.1).

For discussing the motion of waves it is helpful to go to the familiar
plane waves

Y(x,f) = eikx- o)) | (1.2)

written in terms of a wavenumber & and the angular frequency w(k), which
depends upon the wavenumber. We can expand any y(x,f), such as the
packet shown in Fig. I.1a, in plane waves, a Fourier expansion of the
wavefunction. It may not be necessary to follow the details, but the most
familiar such expansion is of a Gaussian packet,

exp[-(AK)2x 2] o Jdk eikxe-/2AK (1.3)
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centered at the position x = 0, as in Fig. 1.1a. Ak is a constant representing
the range of wavenumbers included in the expansion. The contribution of
any small interval in the integration is a term proportional to Eq. (1.2), at ¢t =
0, so each term will evolve with time according to Eq. (1.2).

Of more use will be a packet which is centered around some nonzero
wavenumber, ko. This is accomplished by replacing the Gaussian in Eq.

(1.3) by e- [(k-kp)2Ak 1. The resulting packet is illustrated in Fig. 1.1b (in
this case also centered away from x = 0). We then introduce the time-
dependence factor e- 10 )t from Eq. (1.2) to obtain

wxs) = fdkei(kx- @)t )e- [(k - ko)/2AK 1%, (1.4)

Since the integrand is large only near k = kg , we may approximate (k") by
w(kg) + (0w / k)(k - ko) and multiply by ei(ko - kp)xt . [This "9" of course
means a partial derivative. It is no different from the usual derivative here
because ® depends only upon the one variable, £.] Then we find that the
packet is given by

W) = ef (ko x- ko)) gk eitx- B/ )(k - ke~ [(k-ko)/2AK 17, (1.5)

We may change to a dummy variable K = k - kp and we see that the integral
itself is exactly the integral in Eq. (1.3) except that x is replaced by x -
Jdw/dk t so the center of the packet is not atx = 0, but at x = d w/dk t. Thus
the packet is moving with velocity

v 2581(;1)_ o (1.6)
evaluated at k= ko as indicated. It is also multiplied by the plane wave
ei (ko x- 0kp)t).

This is a familiar result from any wave theory that the group velocity of
a wave is given by the derivative of the frequency (in radians per second)
with respect to wavenumber. This is the velocity we must associate with the
particle in a state with wavenumber ko . It is the rate that <x > =
fw(x,t)*x y(x, t)dx /] y(x,n* yx, Hdx changes with time. The factors
e ikg x- (ko)) and its complex conjugate cancel in the integral and do not
affect the result. The phase velocity, w/k , is of no physical significance and
in fact we shall see that simply changing our zero of energy (or adding an
unphysical constant potential) changes that phase velocity.
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We now return to the particle point of view in order to identify
properties of the wave with those of the particle. In classical
(nonrelativistic) mechanics the energy of a particle in free space is E =
I/amv 2 | so the velocity is given by (1/m) dE/dv or JE/dp  where the
momentum is given by p = mv . This becomes clear as the natural and
general choice when we review classical Hamiltonian mechanics in Chapter
3, where the Hamiltonian H is the energy written in terms of momentum
and position, here H = p2/2m . In any case, it must be true for a classical
particle in free space that the velocity is given by

v=%. (1.7)

Then we can only identify the wave description, Eq. (1.6), and the particle
description, Eq. (1.7), if the energy H is a constant times the frequency and
the momentum is the same constant (which we call Planck's constant h)
times the wavenumber,

H =ho,
’ (1.8)
p =hk.

The value of Planck’s constant must be determined from experiment, and
it will be universal for all waves since we shall find that when different
particles interact, or scatter from each other, the sum of wavenumbers
afterward equals that before. If momentum p =hk is to be conserved, h
must be the same for all waves. It is, in electron-volt seconds,

h= h/Q2n)= 6.6x10716 ¢V-sec. (1.9)

The bar on the ~ indicates the division of a Planck's constant 4 , defined
earlier, by 211 . Almost always our calculations will lead us to values which
depend upon combinations of constants which are more useful if given in
terms of electron-volts (eV) and Angstroms (A),

2
% =7.62 eV-A2, e2 = 144 eV-A, (1.10)

with m the mass of the electron and e the magnitude of its negative charge.
We developed the relations, Eq. (1.8), to relate the properties of a free

particle to a plane wave ei(kx - @k} but to do that we needed to consider

more general wavefunctions which were a combination of such plane waves,
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as in Eq. (1.4). As we continue with these more general wavefunctions, we
may represent the momentum by an operator,

h d
P=7 5 (1.11)
and the energy by an operator,
h o
H=- Y (1.12)

since these are the operators, operating on the wavefunction which contains
a sum of different plane waves, which will multiply each term by the value
of momentum or energy appropriate to that plane wave. Thus to obtain the
expectation value of the momentum of a particle with a wavefunction y(x,?)
we write in direct analogy with Eq. (1.1)

ho
() ;35 wnndx
Ty (e Dy (x, 1) dx

<p>= (1.13)

The expectation value of the momentum is the weighted average over that
for all of the plane waves making up the wavefunction. Similarly the
expectation value of the energy of the wave is

-ho
fys(on) S5, Wl nd
T (x, )y, 1) dx

<H>= (1.14)

These relations will turn out to have far-reaching consequences.

Once we are discussing wavefunctions which are not plane waves, we
can also discuss systems for which there is a potential energy for the particle,
V(x), which is nonzero. Clearly the expectation value of the potential energy
is

Jy(x) V(x) w(x)dx
Ty (o (x) dx

<V(x)>= (1.15)

We now have two operators which represent the energy of the electron,

= -(h /)d/0t and H = p 2/2m + V (x), with the momentum operator given

by Eq. (1.11). We may combine these to give an equation which will tell us
the evolution of the wavefunction with time,
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ho h2 02y (x,
o Y t) =H y(x,H= o —51;% + V{x Wk, (1.16)

which is called the Schroedinger Equation for a particle of mass m. It
guarantees that the time-dependence of the expectation value of any operator
is correctly given

We seem to have derived the equation, but really we have simply sought
to find what must be true if the electron is to behave both as a particle and as
a wave. That premise is exactly true, but we have made a number of
approximations or guesses on the way. For one thing, we assumed
nonrelativistic dynamics and if the electron energy is large enough we must
certainly use special relativity to describe the dynamics. For a second, we
needed at least two components (real and imaginary) for the wavefunction,
but it turns out that the electron has a spin, and to describe the electron fully
requires four components. These two features turn out to be intimately
related. When Dirac (1926) sought to invent an equation for relativistic
particles he found he needed four components, and the resulting particle
showed an intrinsic angular moment of /2 which is the electron spin. The
corresponding Dirac theory is a more complete theory of the electron, but we
will not need the extra complexity and will proceed with the simpler
Schroedinger representation with spin added as a separate feature.

While we accept these approximate features of the Schroedinger
representation of the particle, we should point out that it is extraordinarily
general. Though we invented it for an electron, it applies also to a proton
with a different m , or a neutron, or an atom, a molecule, or a solid. It will
apply not only to the translational motion of that solid but will generalize to
the rotational motion. It also generalizes to a light wave, with mass equal to
zero, to a sound wave, or to a water wave. It generalizes to everything.
Again the full significance of this generality will only be clear when we
present Hamiltonian mechanics in Chapter 3. There we will see for example
that it generalizes to the center of gravity of an object. If that object is a
doughnut, the center of gravity lies in a region of space where there is no
dough. Thus where the corresponding wavefunction is largest, there may be
no likelihood of finding any real material. Clearly, then, we have also
invented this wavefunction. It has no independent existence, cannot be
detected, and yet all of the predictions which we make using it will be
correct.
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1.3 Light Waves

Before going on with the consequences of our formulation, it may be
helpful to redo it for light waves, which will also behave as a particle, but
one without mass. It is again requiring the consistency of the wave and
particle picture, but in this case it is the wave whose properties we know
from classical physics.

To specify such a wave we will need to give the electric field, which
requires three components (x, y, and z components), given as a function of
position and time. That is not enough. Just as one function (the real part of
) was not enough to tell which direction the electron was moving, we must
also specify the magnetic field as a function of position and time. The two
are related through Maxwell's Equations.  Later in this text it will be
important to treat these fields in terms of a scalar potential ¢(r,#) and a
vector potential A(r,7), so it may be best to do that here for this very simple
analysis. With no charges present, the vector potential is enough and in
terms of it the electric field E and the magnetic field H are given by

_ 194
TTc ot
(1.17)
H = VxA.
Then for a plane wave propagating in an x- direction we shall write
A(r,H) = Agp [eikx -w(K)t) 4 - i(kx - oft) ], (1.18)

where the amplitude Ao might lie in a z-direction and the direction of
propagation is specified by the sign of ®. We have chosen to use complex
exponentials because that will be the most convenient way to proceed when
we treat light waves more completely later. The two terms are necessary
because the fields from Eq. (1.17) are real quantities. Using Eq. (1.17) we
see that the electric field in the z-direction is -(2wAg/c)sin(kx - ®(k)¢) and the
magnetic field lies in the y-direction and is 2gAgpsin(kx - @(k)?) .

If this wave is to be regarded as a particle, or a collection of particles,
these particle must have, according to Eq. (1.8), energy h® and momentum
hk . We shall see this more explicitly in Chapter 18 when we treat the light
wave as a harmonic oscillator. The relation between the frequency @ and
the wavenumber k is ® = ck which gives us the counterpart of our starting
description of the electron, H = p2/2m . Itis H =cp for the light particle,
or photon. Substituting Egs. (1.11) and (1.12) gives us the counterpart of
the Schroedinger Equation, which for our wave is
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4,04 , 0A
zl’la‘tz—zh ©3y - (1.19)

The i/ cancels so no # appears in the wave equation. A more familiar form
comes from writing H? = ¢2p2 , which gives

924 d2A
%2 " c2 %2 =0 (1.20)

This is exactly the result of writing one of Maxwell's Equations , VXH =
-(1/c) dE/0t (if there are no currents present), combined with Egs. (1.17).
4mcj, would appear in place of the zero on the right in Eq. (1.20) if there
were currents present, with j; the current density in the z-direction.

The treatment of light and of electrons is entirely parallel, as it must be
in accordance with the wave-particle duality. For classical physics it is the
wave description of light which is familiar and the particie picture of the
electron, but both descriptions are appropriate in both cases. Different kinds
of systems have different dynamical relations between momentum and
energy and correspondingly different wave equations. Given the equations
for light, we can introduce a refractive index which varies with position, and
therefore a c(r) and study the dynamics of the photons, or refraction of the
light.

1.4. New Meaning for Potentials

The vector potential A which we introduced in Section 1.3 is an
invention, just as the classical electrostatic potential ¢ , is an invention. In
classical physics the vector potential only has meaning through the defining
equations, Egs. (1.17), which relate the observable fields to it. If we add a
constant to the vector potential (or to the electrostatic potential) it does not
change the fields and we regard it as a simple definition, like the definition
of an origin to a coordinate system, x, y, z . It is playing for the photon the
role played by the wavefunction y which we also regarded as an invention.
It may not be surprising that in quantum mechanics these electrostatic and
vector potentials take on real new meaning.

This meaning is associated with the Aharanov-Bohm Effect (Aharanov
and Bohm (1959)). They proposed two experiments, which appeared to be
paradoxes. One is for an electron wave, illustrated in Fig. 1.2. We imagine
an electron packet moving from the left, and then being split into two
packets, which finally recombine on the right and produce a diffraction
pattern on a luminescent screen to the right, just as light - or light wave
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packets - will form a diffraction pattern with constructive and destructive
interference on a film in a two-slit experiment. Now we add two Faraday
cages, conducting cages shown by dashed lines, and while the packets are
entirely within the cages we apply a potential difference between them. No
electric field is seen by either packet; their relative potential is simply
shifted. However, according to the Schroedinger Equation, Eq. (1.16), this
constant shift will advance the phase of one wavepacket [i h dy/ot = Hy
means that the rate of change of the phase is equal to the energy divided by h
as we shall see more completely in Eq. 1.22).] relative to the other. If we
keep it on long enough to shift the relative phase by 7, and then again put the
potential difference to zero, the points on the screen at which constructive
and destructive interference occurs will be interchanged. The potential is
removed before the packets reach the cage surfaces but the interference
pattern is modified even though no field has ever been felt by the packets. In
this sense the potential, or potential difference, has taken on new physical
meaning with measurable consequences. The electrostatic potential which
was invented to describe electric fields obtains new meaning in quantum
mechanics. It is natural at first to try to dismiss the paradox by saying that
there will be small leakage fields within the cages, but that is not the point.
Effects such as that can be made as small as one likes and the physical
consequences of the phase shift remain large.

There is an important message from this exercise. Once one is sure that
the argument is correctly made, there is no real need to test it
experimentally, any more than one needs to test a proposed perpetual motion
machine once one sees that it violates the first law of thermodynamics. One
does better to adjust one's intuition. Our feeling that only the electric field
has consequences is generalized here to an electron which in some sense is
in two places, and then the potential difference between the two places has
consequences. Considerable experimental effort goes into displaying the

F==z-" —

Fig. 1-2. The Aharanov-Bohm Paradox. An electron packet from the left
is split into two packets, which pass through two Faraday cages. A
potential difference applied to the cages, while the packets are in them,
will advance the phase of one packet relative to the other and shift the
diffraction pattern, though no field ever exists where the wavefunction is
nonzero.
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surprising consequences of quantum theory, but it is clear that one is not
"testing" quantum mechanics, but testing one's understanding of quantum
mechanics. We can think of the starting postulate as an absolute truth,
certainly on the scale of the truth of conservation of energy.

The second Aharanov-Bohm Paradox split an electron packet so that the
packets went on opposite sides of a long coil containing a magnetic field.
The field in such a long coil is contained entirely within the coil so that
neither packet ever feels a magnetic field. However, the vector potential is
nonzero outside the coil and its presence will also shift the fringes. This
"fictitious" vector potential has physical consequences. Similarly our
fictitious wavefunctions will have important physical consequences which
we explore in this text.

1.5 Measurement

The discussions above have touched on the question of measurement,
which receives considerable attention from physicists. Our more pragmatic
view is based upon Eq. (1.1) which tells us how the average of many
measurements (in this case of position x ) is predicted using W (x)*y(x) .
Quantum mechanics can tell us what sets of circumstances are consistent
with each other. It tells us what we will see on the screen in the experiment
shown in Fig. 1-2. From a practical point of view, that is what is needed.
We should not speculate "which path the electron followed". We could set
up another experiment which would also detect which way it went, and we
would predict, and find, that the interference pattern would disappear, as we
shall see in detail in Section 23.4.

People have sought ways to avoid the problem, as in the consideration of
fringing fields discussed above for the Aharanov-Bohm experiment, by
thinking of many electrons interfering with each other. However, that
experiment can be done with so few electrons passing through per second
that there is almost no chance of two electrons being in the apparatus at
once, and the same result is obtained. It is again certainly better to adjust
our intuition to fit the truth, rather than the other way around.

We may make a classical analogy as to how quantum mechanics tells us
what is consistent, though it may or may not be helpful to follow such an
analogy. Imagine walking past the window of a pool hall and noting a tall
and a short man playing pool. The tall man is about to hit the cue ball aimed
at the five ball. You estimate that it is an easy shot and the five ball should
go in the corner pocket. From where the cue ball will then be he will
probably choose to put the three ball in the side pocket. After you pass the
window you recognize that maybe the five ball will not go in and an entirely
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new scenario arises. The short man will pick up his cue and will probably
seek to put the six ball in the other side pocket, etc. You could carry the first
scenario, and the second scenario, as far as you like (with decreasing
certainty of the details) and what you are really doing is determining sets of
circumstances which are consistent with each other, but inconsistent with the
circumstances of another scenario.

If you turn around and pass the window again, you may note that the five
ball is still on the table: scenario one has become irrelevant. Indeed the
short man is standing at the table, shooting at the six ball.

The scene is obviously chosen to indicate that the well-known "collapse
of the wavefunction”, which is supposed to occur when someone makes a
measurement, is not a quantum phenomenon, but one of everyday classical
experience. Schroedinger's cat should not to be of concern. More
importantly, this analogy sets the stage: all we can do in quantum mechanics
is to estimate sets of consistent circumstances, or scenarios, and the
likelihood of each occurring. When we do an experiment, we eliminate - or
make irrelevant - a large number of other scenarios. No other theory may
ever do more than that.

1.6 Eigenstates

We have found that the observables position, momentum, and energy,
are represented by operators on the wavefunction, and that a statistical
average of measurements of such an observables O for a given
wavefunction is given by <O> = [y*Oy d3r/ [y*y d3r asin Egs. (1.1) and
Egs. (1.13) through (1.15), but now written for wave functions in three-
dimensions, y(r,r). The d3r indicates a volume integral. We are thinking
of electrons, but this applies to the energy-density for light waves which can
produce diffraction patterns such as we observed for electrons on the screen
in Fig. 1.2. The mathematical consequences of this statement about
statistical averages are extraordinary, and we turn to them next.

We do not focus on the mathematical details until we need them, but
must mention that we always assume some set of boundary conditions on all
wavefunctions, such as the condition that the wavefunction be nonzero only
inside some surface, and therefore zero on the surface. It is also necessary
that the operators be Hermitian, which means that for any two
wavefunctions they satisfy fwl*(r)sz(r)d3r :{fwz*(r)0w1(r)d3r}*, which
will always be true here and is readily verified for the operators we have
introduced, using the boundary condition such as we just gave (partial
integrations are required to prove it for the momentum and energy
operators).
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We now state a mathematical fact that for any such operator O , with
appropriate boundary conditions, there exist eigenstates, functions which
satisfy Owj(r) = Ajyj(r). They are analogous to normal modes of a violin
string, and we shall follow that analogy rather than providing the detailed
proofs. The eigenvalues Aj will be real numbers. The most important such
operator for us is the Hamiltonian operator representing the energy, for
which the condition is

Hyj(r) = gjyj(r). (1.21)

We see that this looks like the Schroedinger Equation, Eq. (1.16), with
-h/i 910t replaced by the energy eigenvalue, €j. For this reason it is also
called the time-independent Schroedinger Equation. In fact, any
wavefunction which satisfies Eq. (1.21) can be seen from Eq. (1.16) to have
a very simple time dependence given by

Wi(r0 = yineigh . (1.22)

In this way also this is closely analogous to the normal modes of a violin
string, which are distortions which exactly retain their shape, but change in
phase, or amplitude, with time as cos(w¢ + 8) . The displacements in the
normal modes of a string of length L can be written up(#)sin(xn 7t/L) with n
any integer, x the distance along the string, and un(#) the amplitude for the
n'th mode, varying with time as un(#) = uncos(®pt + dp).

It is best always to normalize our wavefunctions,

[yeepywen d3r =1, (1.23)

This is called the normalization condition and sets the scale of the
wavefunction so that y*(r,)y(r,f) 1is the probability density. Then
yE(r,)y(r,f)d3r is the probability that the electron with that wavefunction
will be found in the small volume d3r at the position r at the time # . The
probability density may of course shift with time, but if the wavefunction is
normalized at one time, it will remain normalized. This is obvious for an
energy eigenstate from Eq. (1.22), and follows in general from substituting
the time dependence of each factor in Eq. (1.23) from the Schroedinger
Equation, Eq. (1.16), and using the Hermiticity condition on the
Hamiltonian. This normalization does not change any of the results we
obtained earlier but simplifies the formulae for the expectation values in Egs.
(1.1), (1.13), (1.14) and (1.15) by making the denominator unity.
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The set of all eigenstates for an operator (and the Hamiltonian operator
in particular) form a complete set; any function satisfying the same
boundary conditions can be expanded in this set. Further, these eigenstates
are orthogonal to each other, written in terms of a delta function as

[yiwicr) d3r =8ij, with 8;j = 1, 8 = 0. (1.24)

The i =j equation is the normalization condition. Again, this is just as for a
normal mode where any displacement of the string, 8z(x) , which is zero at
both ends, can be expanded as dz(x) =ZXZp up sin (xn m/L) . This is one of
the principal uses of the normal modes. If one determines the frequency @y
of each normal mode, one can expand the displacements at time ¢ = O in
normal modes and determine the future displacements directly. [ Actually,
one must expand both the displacements and the velocities in normal modes,
by writing dz(x,f) = Xy un sin (xn /L) cos (wnt + dp) and fitting Sy, and uy, to
the displacement and velocity at time f = 0. The same form then gives the
displacement and velocity at any later time. This is the counterpart of
expanding the real and imaginary part of the wavefunction in terms of
energy eigenstates. For the analogy we do not need this, but we return to
such an analysis when we treat lattice vibrations in solids in Chapter 15.
Also at that time we shall discuss normalization for the normal modes.]
Similarly we can expand electronic wavefunctions in energy eigenstates and
immediately obtain the expansion for future times.

If the wavefunction of an electron W(r) is an eigenstate of the
Hamiltonian, then we know that if we measure the energy we will, on the
average, obtain

<H> = ,[Wj*(r)Hqu(r) dr=¢j. (1.25)
But even more importantly, the mean-square deviation from that average,
<(H-€)2> = [yj*(r)(H-6)2yj(r) d3r=0, (1.26)

which we obtain by expanding the expression in parentheses and using Eq.
(1.21) to evaluate each term. This means that we would always measure
exactly that energy €. In just this way if we use a mode analyzer to
determine the frequency of a string vibrating in a single normal mode, we
obtain only the single mode frequency. For the electron we say that the
electron is in an energy level , or that it occupies an energy eigenstate.
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More generally, an electron can have any wavefunction, and if we
expand it in energy eigenstates, we may obtain the time dependence as

y(r,y) = Zj ajyi(r)eigith (1.27)
If we measure the energy at some time ¢ we obtain on average

<H>= I y(r,H)HY(r,0) d3r = Zi,jaj*aifwj*(r)HWi(r) d3r
(1.28)
= Zj aj*a; € .

In the last step we wrote HWi(r) as &Wi(r), took the €; out of the integral,
and used Eq. (1.24) to eliminate all terms with i differing from j.

That is, we can say that we obtain the average of the energy eigenvalues,
weighted by the probability aj*a; that the jth state is occupied. We can say
more than that. It is easy to show that we will always measure exactly one
of the eigenvalues, and so that aj*a; really is the probability of finding the
electron with exactly that energy €;. [A way to show this is to evaluate the
product <[Jij(H-€{)2> using a wavefunction 2j ajwj(r) to see that there is
one factor of zero for every term, but if we ever measured an energy H
different from all eigenvalues that product would be nonzero.] This is the
same again as for a violin string. For an arbitrary vibration, a mode analyzer
will detect vibrations at each of the normal-mode frequencies, but none
between. Electrons only appear in energy levels because they are like other
waves. \(r) can be anything, but if we make a measurement we only find
it in one of the eigenstates of the operator for the variable we are measuring.

1.7 Boundary Conditions

We return briefly to boundary conditions which we apply to the
wavefunctions. Up till now we have simply limited y to one region of space
by requiring the wavefunction to go to zero on the surrounding surface.
These are called vanishing boundary conditions . For one dimension they
are like those on the violin string, for which the displacements must vanish
at the two ends, at the stock and the bridge. Often a more useful set are
periodic boundary conditions , which in one dimension requires that both the
value and the slope be the same at the two ends, as illustrated in Fig. 1.3.
This corresponds to bending the line on which an electron moves into a ring
and requiring a continuous (or single-valued) wavefunction and no cusps
(which would correspond to infinite kinetic energy, -(h2/(2m))02y(x)/0x2 ,
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Fig. 1.3. Periodic boundary conditions on a wavefunction require that
W(L ) =y(0) and dy(x)/dx || = dw(x)/dx |g . It corresponds to bending the
system into a ring of circumference L .

locally). This is directly generalized to a three-dimensional box of
dimensions Ly, Ly, and Lz, by requiring these same conditions on opposite
faces of the box. Some video games have such boundary conditions such
that an object leaving one side of the screen appears on the other. It allows
us to use plane waves as in Section 1.2. It is important that boundary
conditions be placed on the outside of the system, but then most properties
are quite insensitive to which set are used. Periodic boundary conditions
eliminate the surface of the system; the boundary planes are no different
from other planes in the system. They are usually appropriate unless we
really are interested in the properties of a surface.

1.8 Sound Waves

Application of boundary conditions is familiar for sound waves, and
many other problems. In some ways sound waves, in gases and in solids, are
easier to think about than light waves, or wavefunctions, and we might
introduce them at the outset so that we can use them for illustration. They
are of course subject to the wave-particle duality as is everything else, and
we shall see how they are treated as particles, phonons, in Chapter 16.

In a compressional wave propagating along an x-axis we may write
displacements u (x, t) of the medium in the x-direction as

u (x, 1) = up(elgx - Wt ) + ¢- i(gx - Wt )) (1.29)

as for light in Eq. (1.18). This gives rise to a dilatation (a local fractional
volume change) equal to the first derivative of u (x, #) with respect to x and
a change in local pressure equal to the bulk modulus B times the negative of
that local dilatation. That change in pressure exerts a force per unit area on a
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slab of the medium of thickness dx equal to 8x times the negative of the
derivative of that pressure with respect to x , or -Bq2u (x, t) 8x. That force
per unit area is equal to the acceleration of that slab, 2u (x, 11012, times its
mass per unit area POx so

02%u(x,1)
o2

92%u(x,t)

6)(— 32

dx

(1.30)
-02pu (x, ) 8x = -Bq2u (x, f) Ox.

B
m:\/p q. (1.31)

This corresponds to a speed of sound equal to VB /p. For an ideal gas, the
adiabatic B =35/3 P, with P the pressure (e., g., Kittel and Kroemer (1980)
p- 433). Sound actually cannot propagate in an ideal collisionless gas, but if
we assume enough collisions to reduce the mean free path well below the
sound wavelength we might still use the ideal gas value for B . Then the
speed of sound is \/5/3 times the root-mean square thermal velocity of atoms
or molecules in this classical ideal gas.

If a gas is confined to a pipe with closed ends we could construct normal
modes using vanishing boundary conditions on the displacements u (x, f) at
the ends. If it was open at both ends we could use vanishing boundary
conditions on the pressure at both ends. These modes of frequency o will
have quantized energy in units of Ao and will be absorbed as discrete
phonons, in spite of our classical-mechanical, granular view of their nature,
emphasizing again the extraordinary generality of the wave-particle duality.

or



Chapter 2. Simple Cases

Having set up the general rules for quantum mechanics, we turn to the
simplest systems, the simplest of all being a free electron, as discussed in
Section 1.1.

2.1 Free Electrons in One Dimension
We begin with an electron moving along a line of length L, and find the

energy eigenstates. We take the potential V(x) = O so the energy-eigenvalue
equation, Eq. (1.21), becomes

B2 32
2%y _ @2.1)

The general solution is of the form W(x) = aeikX + beikx with energy

gk = h2k2/2m . If we apply vanishing boundary conditions at x = 0 and L,
the eigenstates become V2/L sinkx with kL an integral multiple of . The
amplitude V2/L gives a normalized state, satisfying Eq. (1.24). These
eigenstates illustrate all of the features which we discussed in Chapter 1.
The integer zero, corresponding to k= 0 is not allowed since it gives a
wavefunction equal to zero, and that is not a state.

We may alternatively apply periodic boundary conditions on the same
line. Then V1/L e*ikx  are eigenstates with kL equal to an integral
multiple of 27. It is an important point that any linear combination of eikx
and e-tkx (which can again be normalized) is also an eigenstate if its kL is

19
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an integral multiple of 2rt. In general if we have two eigenstates of the same
energy, any linear combination of them is also an eigenstate, which follows
immediately from the eigenvalue equation, Eq. (1.21). For periodic
boundary conditions, the state with k = 0 is y(x) =v1/L and is an allowed
state.

We have sketched the energy €x= /2k?/2m in Fig. 2.1 and indicated the
states satisfying periodic boundary conditions by diamond solid dots,
continuing to arbitrarily large positive and negative values of k. The states
satisfying vanishing boundary conditions are indicated by crosses. No states
are indicated with negative k for vanishing boundary conditions since such
states are the same as the corresponding states with positive k , though
perhaps with a different sign of the normalization constant. The two are not
orthogonal to each other and are not to be considered different states.
However these states with vanishing boundary conditions are spaced half as
far apart in energy so that over a sizable energy range there are
approximately the same number of states.

Each state can accommodate one or two electrons (of opposite spin if
two) when many electrons are present, as we shall see for atoms in Section
4.2 and prove in general in Section 10.5. For a finite length L and a finite
number of electrons, the total energy, obtained as the sum of the energies of
the occupied states, will depend upon which boundary conditions are

A

Fig. 2.1. The energy, as a function of wavenumber, for an electron (or
other particle) moving in one dimension. The states at wavenumbers
indicated by a diamond satisfy periodic boundary conditions. Those with
an x satisfy vanishing boundary conditions, and changing the sign of k&
does not yield a different state.
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utilized. This is illustrated by the 7-states in a benzene ring in Problem 2.1.
These states, which will be discussed in detail in Section 6.1 in the text, are
approximated as six free electrons in a ring 15.7 A in circumference. The
benzene ring is broken in Problem 2.1 so that it becomes a line of the same
length, with vanishing boundary conditions, and the change causes an
increase in energy which may be thought of as an estimate of the energy to
break a m-bond.

2.2 Free Electrons in Three Dimensions

The one-dimensional system just discussed generalizes directly to three
dimensions. The wavefunction is now of course a function of the
coordinates x, y, and z. With V(r) = 0 (or constant), the energy eigenvalue
equation, Hy(r) = gy(r), is

K2 ( 92 92 92
I 32 93 S, 22)

We may make an important general point about such an equation. When
we seek an eigenstate of many variables, w(xi, x2, ...), and the Hamiltonian
may be written as a sum of individual Hamiltonians, one for each variable,
H(xi, x3,...) = Hi(x1) + H2(x2) + ..., then we can obtain a product solution,

W(x1, x2, ) = Yi(xDy2(x2)... 2.3)
with each of the factors obtained from its own eigenvalue equation,

Hixpwyi(x1) = e1y1(x), ete., (2.4)

and the eigenvalue for the state W(xi, x2, ...) is the sum of the individual
eigenvalues,

E=€1+€E2+ ... (2.5)

This important result is readily verified by substituting the product form into
the multidimensional eigenvalue equation with the eigenvalue from Eq. (2.5)
on the right. Then for the term on the left with H1(x1) and the term with €;
on the right, all other factors y2, y3, etc., may be canceled. Thus if Egs.
(2.4) is satisfied, we have shown the equality term-by-term.

One very important consequence of such a factorization is that if we
consider a system of many electrons, each moving independently in a
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potential field, the many-electron wavefunction can be factored into one-
electron wavefunctions, and the energy eigenvalue for the system is equal to
the sum of the energies of the individual electrons. This can never really be
exactly true since the electrons interact with each other through terms in the
Hamiltonian such as e¢2/|r1 - r2| which are not separable as individual
Hamiltonians. However, this one-electron approximation of assuming a
separation is the fundamental approximation for almost all treatments of
many-electron systems and will be heavily used in this book. We in fact
already made it in discussing the benzene molecule of Problems 2.1 and 2.2,
where we took the energy of the m-electrons to the be sum of their individual
energies, and this approximation is basic to our understanding of electronic
structure.

We apply periodic boundary conditions on a box, as shown in Fig. 2.2,
and for the free-clectron gas in three dimensions this factorization allows us
to generalize the one-dimensional energy eigenstates immediately as

1 S 1 .
W(xy,2) = ————eikiXeikyyelkz = —— ik T | 2.6)
oL, ®

where Q is the total volume of the system. The energy eigenvalue of each
is ex = G2Q2m)(kx2 + ky2 + kz2) = h2k2/(2m). The periodic boundary
conditions restrict the wavenumbers, as in one dimension, to

kax = 2nnx’ kyLy = 27'“’1}/, kzljl = 27'th_ (27)
This makes a grid of allowed wavenumbers, with each grid cell size equal to

on 2 2m _ (2m)°

Skxgkyskz = Lx Ly LZ = Q

2.8)

For macroscopic systems the spacing of successive grid points is so
small that the allowed wavenumbers form an almost continuous set. Had we
similarly taken a much larger L for Fig. 2.1, the points representing allowed

L

Z

L, by

Fig. 2.2. Periodic boundary conditions are applied on a large box, so that
each component of the wavenumber must be an integral multiple of 2
divided by the corresponding dimension.
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states would have been very much closer to each other. When there is such
an almost continuous variation from state to state, a band of energies is
formed, and the € when it arises in a solid is called an energy band.

The number of states in a volume of wavenumber space d3k is then
obtained by dividing that volume by the cell volume, as

N= o Pk 2.9)

Thus if we had N free electrons confined to a box of volume Q, the lowest-
energy state would place two electrons (one of each of the two spin states, as
we shall prove in Chapter 10) in every state with wavenumber less than
some kg (the Fermi wavenumber) and

2Q 4mkp3
anp 3 =N or kF3—3n2§, (2.10)

with N/€2 the electron density. (As suggested by the form, this is
independent of size or shape of the box). The surface dividing the regions of
wavenumber space between occupied and empty states is called the Fermi
surface , and in this case is a sphere. In Problem 2.3, we obtain the radius,
kg, for that sphere, and the Fermi energy Ef =#2kp2/2m, for Na, Mg, and
Al, which have 1, 2, and 3, respectively, free electrons per atom. Itis a
central number determining the electronic properties of these simple metals.

Another important quantity is the density of states, n(€) or D(g), the
number of states per unit volume and per unit energy (including two spin
states for each wavenumber . We calculate it as twice the number of
allowed wavenumbers in a spherical shell of thickness 0k, or energy interval
d¢ = dk/(0ex/ok). It is SN = 2[Q/(2m)3|4nk2dk = 2[Q/(2m)314nk28¢/(H2k/m),
corresponding to a density of states,

2. (2.11)

ON 1 m
nE) =5 = 7(

This density of states, evaluated at the Fermi energy, will determine, for
example, the electronic specific heat of the metal. In Problem 2.4 we redo
this derivation for electrons in a plane to get the density of states (again
including spin) per unit energy and per unit area .

We can also of course obtain the total kinetic energy, per unit volume, of
the electron gas by integrating [ € n(¢) de from zero to the Fermi energy.
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The integrand there is proportional to the 3/2 power of energy while the
integrand to obtain the total number of electrons is proportional to the 1/
power of energy, so when we obtain the average energy per electron the
integrations give factors of 5/2 and 3/ and the average energy per electron is

Ewt 3
<E> = 7\'/0" = S EF. (2.12)

We have used periodic boundary conditions, as is usual, for discussing
the free-electron gas. It eliminates the effects of the surfaces and our
resulting parameters depend only upon volume. We can also apply
vanishing boundary conditions to the box shown in Fig. 2.2. As in the one-
dimensional case this decreases the spacing between allowed wavenumbers,
but only allows positive kx, ky, and kz so the Fermi energy, the density of
states, and total energy come out approximately the same when the system is
large. If we proceed more carefully we will obtain additional terms, as we
did in Problem 2.2 for the one-dimensional case, which are proportional to
the area of the box and can be interpreted as contributions to the surface
energy. We consider such terms next.

2.3 Quantum Slabs, Wires, and Dots

Periodic boundary conditions allowed us to eliminate the effects of
surfaces, but sometimes we are interested in the surfaces themselves or wish
for example to discuss very thin sheets of material. Then we might take L,
very small and take vanishing boundary conditions at z = 0 and L, but take
the other two dimensions large and use periodic boundary conditions on the
lateral surfaces enabling us to eliminate any effects of the lateral surfaces.
We then can construct free-electron states which are of the form

2 . .
W(x,y,2) = m eikxXeikyy sin(nmz /L;) . (2.13)

This is again normalized and we think of L, as quite small but the other
dimensions large. The energies of the states are given by

_ K22 ) };Z(kxz + ky2)
K=o 2™t o

(2.14)

With L small this is ordinarily described as a set of sub-bands, numbered by

n , each having a two-dimensional dispersion in the y- and z-directions. We
note that if L, is small, and there are not too many electrons, all of the
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occupied states will lie in the first sub-band. Such a system really becomes a
two-dimensional system as we treated in Problem 2.4. In quantum
mechanics often the motion in some of the dimensions is pushed to such
high energies that those dimensions become irrelevant and we have truly
lower-dimensional systems. In classical physics a gas of atoms will have the
same energy and specific heat even if it is confined to a very thin slab. We
see in Problem 2.4 that the density of states retains a constant value at low
energies, in contrast to Eq. (2.11). We shall see in Section 18.4 how this is
used in solid-state lasers to enhance the laser performance.

At intermediate thicknesses the total density of states for a free-electron
gas, defined for Eq. (2.11), is the sum of the density of states for each of the
subbands, each subsequent subband giving a constant density of states
beginning at successively higher energies, as illustrated in Fig. 2.3. Note the
sum of these matches the free-electron density of states of Eq. (2.11) just
after each rise. If we doubled the slab thickness a new step would arise
between each old one, all being half as high, and this would again be true.
In the limit of very thick slabs the slab curve approaches the free-electron
curve, as we would expect.

A bulk metal, corresponding to a very thick slab, as in Problem 2.3, has
a particular Fermi energy as calculated. We might mark that on the parabola
in Fig. 2.3. If this same metal were deformed into a thin slab, with the
density of states represented by the stepped function in Fig. 2.3, the electrons
could no longer be accommodated below that same Fermi energy because
the density of states is generally below the bulk value, so we would need to

Thick Slal 4th subband

3rd subband

n(e)

2nd subband

ist subband
| ! I 1
E

Fig. 2.3. The density of states for a slab is a sum of the densities of states
for each subband, giving a stepped density of states. As the slabs are
made thicker the steps are more frequent and not so high, approaching
closer to the parabolic density of states shown for a very thick slab, given
in Eq. (2.11).
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26 Chapter 2. Simple Cases

fill the states to a higher Fermi energy, and the energy of the electron gas
would be higher, just as it was when we cut the benzene ring in Problem 2.2.
A calculation of the energy for a free-electron gas in such a slab at
intermediate thicknesses, Lx , was made for example by Edwards and
Mathon (1991), Edwards, Mathon, Muniz, and Phan (1991), and more
recently by Harrison (1999). It is important in such a calculation to hold the
number of electrons fixed as we change the boundaries, which will mean
that the Fermi energy at which we stop filling will vary with thickness L,
but will always be higher than for the thickest slabs.

Holding the number of electrons per unit volume fixed, by increasing the
lateral area in proportion to 1/L,, we obtain the total energy as a function of
thickness L;. The term in the energy independent of [, is the <&> of Eq.
(2.12) times the number N of electrons. The term proportional to lateral
area (and thus to 1/L;) can be divided by two and each half associated with
a surface energy; it turns out to be given by given by kp2EF/(81) . When we
treat electronic states later in terms of tight-binding theory we shall see that
it is appropriate to set the vanishing boundary condition at a full interplanar
atomic distance s beyond the last plane of atoms, rather than at half that
distance which we tacitly assumed here by holding the lateral area times L,
fixed. Then there is a reduction in the energy from this relaxation of the
surface condition leading to a surface energy of (Harrison (1999), p. 721)

ke?E 8kps
B =2 (1-155) 2.15)

We may also subtract this surface energy, and the bulk energy of Eq.
(2.12), from the total energy, leaving only terms which drop off faster than
1/L, at large L, . We may associate this remainder with an interaction
between opposite surfaces. Such an interaction is shown in Fig. 2.4,
showing the oscillations which arise as successive sub-bands cross the Fermi
energy.

These turn out also to be important and were the reason why Edwards
and coworkers carefully calculated the surface energy. An oscillatory
coupling between the magnetization of two iron crystals, through a simple
metal such as copper, had been observed by Bennett, Schwarzacher, and
Egelhoff (1990) and by Parkin, Bhadra, and Roche (1991). We shall clarify
some of the concepts needed later, but the effect can be understood as arising
from a ferromagnetic metal such as iron having electrons only of one spin
moving in a [100] direction (parallel to a lattice cube edge) at the Fermi
energy. Then if the iron on both sides of a copper slab with (100) orientation
(perpendicular to a [100] direction) has parallel magnetization, the electrons
of the opposite spin are confined to the copper slab giving an energy varying
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as in Fig. 2-4. If the magnetization in the two iron crystals is antiparallel,
electrons of one spin spread out far to the right and of the other spin far to
the left and no such oscillatory interaction arises. Only integral numbers of
copper planes can occur so only the integral values of Np in Fig. 2.4 arise
and the oscillation is "aliased" with the lattice spacing to produce the long
period shown by the points in the figure and by the experiments.

Such an oscillatory coupling can be very useful technologically. If we
construct a system with thickness such that the energy in Fig. 2.4 is positive,
the magnetization of the iron crystals will tend to be antiparallel. Then the
resistance of the system parallel to the planes will be high because almost all
electrons spend time in both the highly conducting copper and poorly
conducting iron. If, however, a magnetic field is applied which aligns the
magnetization on both sides, electrons of one spin are confined to the highly-
conducting copper and provide an electrical short which greatly reduces the
resistance, an effect in this case called a Giant Magnetoresistance . Such a
magnetoresistance can be used, for example, in a device to read magnetic
data stored on disks.

Rather than constructing a slab, as above, we might construct a system
with vanishing boundary conditions on two small dimensions, Lx, and Ly,
and periodic boundary conditions on one very long dimension, L, as

p
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Fig. 2.4. A plot of the energy per unit area (in units of Epkg2/87) of an
electron gas, as a function of the thickness of the slab, with the value for
infinite spacing subtracted. Parameters were taken for copper and
thickness given as the number N, of (100) copper atomic planes. Only
integral values, shown by diamonds, are observable. (After Harrison
(1999))
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illustrated in Fig. 2.5. This would be called a quantum wire. ~The energy
eigenvalues are clearly given by

P B2n2 22
Bk = omL2 2mLy? N om (2.16)

with the integers nx and ny specifying the subband. The lowest sub-band has
nx = ny = 1 and is the lowest band shown to the right in Fig. 2.5. There are
two sub-bands, nx = 1, ny =2 and nx = 2, ny = 1, degenerate (meaning
states of the same energy) if Lx = Ly, also shown, and sub-bands of larger
energy. Electrons in each behave as electrons in one-dimension, with the
properties as we obtained in Section 2.1.

One property of a one-dimensional metal of current interest is its
"quantized conductance", discussed, for example, by Landauer (1989). It is
readily understandable in terms of the sub-bands of Fig. 2.5. We imagine a
quantum wire as to the left in Fig. 2.5 with large metal crystals (three-
dimensional electron gases) at each end. Then an electron reaching one end
of the quantum wire can escape into the metal crystal and we assume for the
moment that the transmission of the junction is one, so it will escape in all
cases. (We return in a moment, and in Problem 2.5, to the case of partial
transmission.) The lowest-energy state of this composite system, called the
ground state, will have all levels filled to a Fermi energy, some height in the
bands to the right in Fig. 2.5. The electrons in the wire at any energy below
the Fermi energy will be flowing into the metal crystals, but they are

[/ -
WA

k

N

Fig. 2.5. A quantum wire has vanishing boundary conditions on two small
dimensions and periodic boundary conditions on a large one, as on the left.
Each sub-band corresponds to fitting an integral number of half-
wavelengths to Lx and to Ly, and then the energy varies almost
continuously with k;, as shown to the right.



2.3 Quantum Slabs, Wires, and Dots

certainly flowing also into the wire at the same rate since there is no current
flow in this ground state.

We may immediately calculate these two identical rates of flow by a
scheme such as we will need to use many times in this text. We sum over
the electron states with positive k; in this energy range, with each
contributing a current equal to -¢ times the rate it strikes the end, equal to its
velocity [(1/h)dgy /0k; from either Eq. (1.6) or (1.7) using Eq. (1.8)] divided
by the length of the wire . We double this to include electrons of both spins.
This is current given by the first form in

1oe 1 L 19 1
87 = 220, (-e) & P L= Eftfdkz(-e)ﬁé—f 2.17)

2nh

The sum is just over the wavenumber in the desired energy range. We next
convert the sum to an integral over wavenumber, divided by the spacing
(from Eq. (2.7)), 2n/L; between subsequent states. If the spacing is small
enough (or L; large enough), this will equal the sum and the energy range
can be small enough that the variation of speed is negligible. However,
because of the factor dek/dkz, this becomes an integral over energy and there
are no remaining energy-dependent factors. It is customary to write the
denominator as & = 211 (Eq. (1.9)), one of the few times that the constant h
arises.

We now raise the energy of the electrons in the metal on the left very
slightly and lower the energy of the electrons in the metal on the right very
slightly. This corresponds to applying a voltage equal to the resulting
energy difference (divided by the electronic charge -e). With our
transmission of unity the metal to the left is supplying electrons moving to
the right in the wire at energies below its Fermi energy, but the metal to the
right is supplying electrons to the wire only below the Fermi energy on the
right (which is lower), if the Fermi energy lies in the quantum-wire subband
we are considering. The Fermi energy on the left is higher than that on the
right by the applied voltage ¢ times the electron charge -e so from Eq.
(2.17) there is a net current in the wire due to the applied voltage of

51:2n}i¢_ A (2.18)

which is to be added for every sub-band at the Fermi energy. This is a
conductance contribution 8C = 2e¢2/h for every sub-band at the Fermi
energy. For a thick wire there will be very many bands below the Fermi
energy determined from Eq. (2.10).
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If we shrink a wire by pulling on it so that it necks down as shown in the
insert in Fig. 2.6, the number of sub-bands below the fixed Fermi energy will
decrease. It is the number of ny, ny pairs leading to an energy from Eq.
(2.16) (with kz = 0) which lie below the Fermi energy. That number is seen
to be in proportion to the cross-sectional area using an argument parallel to
that which led to Eq. (2.10). Thus the conductance will decrease in
proportion to the cross-section, LxLy , as we would expect, due to the
decrease of the number of contributing sub-bands. However, it is decreasing
in discrete steps, which becomes observable when the cross-section is very
small, just before breaking. Thus the conductivity varies as shown in Fig.
2.6. Such steps of approximately 2¢2/h in the conductivity were indeed
observed by Costa-Kriamer, Gar¢ia, Garéia Mochales, and Serena (1995).

In this treatment we assumed 100% transmission at the ends of the
quantum wire. We may correct for this by noting that the current J entering
from the left would be reduced by a factor of the transmission, 7, but then
there would also be a reflection of that current from the right, giving a
current to the left of JT(1 - T) which subtracts from the initial current J7.
We should subtract that, but add the current which arises when the reflected
current strikes the left end, JT(1 - T)2, etc. We obtain an infinite series for
the current given by

JT

Joet=JM1-(1-D+A-D2-A-TP+.1=5 7. (2.19)
L T~
(——/_\ _—
8.4 \\1 L Au wires in UHV 6
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Fig. 2.6. A gold wire is slowly stretched, as shown above, necking down
to a small cross-section. The conductivity decreases in proportion to the
cross-sectional area, by steps of 2¢%/h as conducting sub-bands rise above
the Fermi energy. As it is about to break, the individual steps can be seen.
From Costa-Kriamer, Garéia, Gar¢ia Mochales, and Serena (1995).
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where in the last step we used 1/(14x) =1 - x+x2 - x3 + ...

Note that the result is independent of the length of the quantum wire.
The fact that the observed steps were close to 2¢2/h indicates that the
transmission is indeed near one, as one might expect if the taper is slow on
the scale of an electron wavelength. Such sums of infinite series are
frequently useful. Problem 2.5 is a redoing of this calculation when the
transmission is different on the right from on the left. In any case the fact
that the experimentally observed steps in Fig. 2.6 are so close to the
theoretical 2¢2/h indicates, as we indicated, that the transmission in the
experiments was very close to one.

Note that this analysis has predicted a minimum conductivity of 2e2/h ,
corresponding to a maximum resistance of

R = 27m%6.6x10-16 eV-sec
max. = 2¢2 7~ 2x1.6x10-19Coulombxe

(2.20)
sec.-Volt

= 3
= 12.9x10 Coulomb

= 12.9 kilo-ohms.

Above that, the resistance becomes infinite; it is insulating. This concept of
maximum resistance comes up in other circumstances, but we note that it is
predicted to be higher than this value when the transmission is less than one.
Quantized conductance is an important concept in mesoscopic devices.

We might go on to a quantum wire which was also very short, so that the
energy steps were large for all three directions of motion. This is called a
quantum dot, and has discrete states as does an atom. We consider these in
the context of a spherically symmetric well in the following section.

2.4 Circularly and Spherically-Symmetric Systems
Spherically-symmetric systems are of particular importance in quantum

mechanics, partly because they include atoms. The mathematics is simpler
for circularly-symmetric, two dimensional systems, so we consider those and

0

g >

o WXy — y(r,0)

X

Fig. 2.7 A radial and angular coordinate system appropriate to circularly-
symmetric systems in a plane.
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32 Chapter 2. Simple Cases

then write the direct generalization to three dimensions.

For such a circularly-symmetric system in a plane we take a polar
coordinate system, as shown in Fig. 2.7, with a radial distance r in the
direction £ (a unit vector in the radial direction), and an angle ¢ measured
from the x-axis. We write a unit vector (T) in the direction of increasing ¢.

Then we specify the wavefunction as a function of r and ¢ rather than x
and y . The gradient vector of any function can also be written in the new
coordinate system,

Loy . dw . 19y -
vw=%‘fx+%y—>§‘gr+;£¢. 2.21)

Similarly the Laplacian is given by

_ 10 oy 19d%
Vay = ror’” or T2 002 (2.22)

Even with a circularly-symmetric potential V(r) this does not separate
the Hamiltonian into terms depending only upon r and terms depending
only upon ¢, which we used to factor the wavefunction in Section 2.2.
However, it can be verified that we can obtain solutions of the form
Rm(r)Y™(¢), with YM() = eim0A2m  for m = 0, +1, +2, ..., and with the
corresponding radial function satisfying

h2 19 OJRm(r)  h2m2 Rm(r
o Ot ame ‘;‘2()+V(r)Rm(r)=sRm(r). (2.23)

We have written the electron mass as me , to distinguish it from the integer m
which traditionally describes the angular wavefunction. We have written the
angular part with a factor 1N27 so that me*(q))Ym(q)) d¢ = 1 and the
normalization of the full wavefunction is accomplished if [Rn(P*Rm(r) dr =
1.

We may see that these are also eigenstates of the angular-momentum
operator L , which may not be surprising in a circularly-symmetric system.
The angular moment is the radial distance » times the tangential momentum,
(K /(ir))d/0¢ as seen from Eq. (2.21). The angular momentum eigenvalue
equation becomes

hd K0 ;
Ly(r0) =156 V(0) = 7 54 W) =mh y(r.0), (2.24)
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where the Rm(r) factors cancel immediately so that the Y™(¢) become
eigenfunctions of the operator, with eigenvalue m#.

Thus we have simultaneously eigenstates of angular momentum and
energy. This turns out always to be possible if the two operators commute,
LH - HL=0 . For this case it is exactly the requirement that the Hamiltonian
be circularly symmetric, 0H/dp = 0. We number the eigenstates by their
angular momentum index m and then determine the energy from the radial
eigenvalue equation in two dimensions, Eq. (2.23). There will be many
solutions, subject to any given boundary conditions, and these would be
numbered by another index n. Note that the radial equation contains what is
called a centrifugal potential , the second term. It arises from the angular
kinetic energy and, by diverging at small r , forces the wavefunction to go to
zero if m # 0. It will also clearly lead to an additive term in the energy €
from that angular kinetic energy. All of these features will generalize to the
case of spherical symmetry. We may also note that we could generalize this
case to a case of cylindrical symmetry, with eigenstates of the form y(r,0,z)
= Rin(r)(etim$/N2m)Z(z) and if the potential does not vary in the z-direction,

Z(z) can be taken of the form eik.zA/L, .

Eq. (2.23), when V(r) is equal to zero, is the equation for free particles
written in cylindrical coordinates. It is a form of Bessel's equation (e. g.,
Mathews and Walker (1964), 171ff) and the solutions Ry(r) are Bessel
functions of integral order Jm(kr), with € = h2k2/(2m.). There is less
occasion to use them in quantum mechanics than the spherical Bessel
functions which are solutions of the similar Eq. (2.31) which we shall come
to. However, they are used here in Problem 2.6 in the discussion of quantum
wires with a circular cross-section. In such problems with cylindrical
symmetry one can utilize a mathematical text, such as Mathews and Walker
(1964), which gives their properties. We do this in Problem 2.6.

We go now to spherical coordinates, in close parallel with the circular
system and illustrated in Fig. 2.8. Relative to a Cartesian system (x, y, z), r
is the distance from the origin, the angle 0 is measured from the z-axis, and
¢ is the azimuthal angle of the plane of z and r relative to the x-axis. In
place of Eq. (2.22), the Laplacian is now given by

Fig. 2.8. Spherical coordinates relative to a Cartesian system.
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19 ,0 11 a( . .d) 1 92
V2= 297 r2-a~r +22 (sinG& smeaej + sin268¢2} (2.25)

As for the circular case if the potential is independent of angle we can factor
the wavefunction into a radial and an angular factor,

y(r,0,9) = R (Y (8,0), (2.26)

with the angular factor in this case called a spherical harmonic , normalized
as [dQym*ym = [sin® d6JddYm*(0,y)Y/"(0,9) = 1. These are given by

2041 [-m .
Yr(0.0) = +\/ S l—+||;1|L Pm(cost)eimd | (2.27)

specified by two integers, [ =0,1,2,... m=-[ -I+1,-[+2,.../. The leading
sign is plus unless m is an odd positive integer, then minus. The Pj™ are
associated Legendre functions, which we shall supply when needed. As for
the circular case, these are also angular-momentum eigenstates. The angular
momentum around the z-axis L; is given by m# as for the circular case. The
total angular-momentum squared, Lx2 + Ly2 + L,2, eigenvalues are I(I+1)A2,
and this limits the component which can appear along the z-axis; [(I+1)A2 is
always greater than m%2. Thus states in spherical systems can be chosen to
be eigenstates of energy, of total angular-momentum-squared, and of
component along some chosen z-axis. For a particular energy and [ there
will always be 2/ + 1 states of that same energy, with varying m
corresponding to 2/+1 different orientations of angular momentum. We
shall discuss these more completely in Section 16.3.

States of [ = 0 are called s-states ("sharp” from atomic spectra data).
They are spherically symmetric and we can associate the "s" with spherical.
Only one m-value is allowed and the spherical harmonic is

Y00(6,0) =V1/(4m), (2.28)

normalized as indicated above as [sin® d6Jd¢ Yo0*Yp0 = 1. We will
frequently have occasion to sketch composite states made of a number of
atomic orbitals, and then it is convenient to sketch s-states as a circle.

States of / = 1 are called p-states ("principal”). That for m = 0 is given
by Y19(6,0) =V3/(4m) cos® = V3/(4m) z/r. Those for m = £1 are given by
V3/(81) sin® etimé but for most applications it is more convenient to take



2.4 Circularly and Spherically-Symmetric Systems

combinations, (Y11 £ Y{-1)/\2 , which are also eigenstates so that the three
normalized "cubic harmonics” for the p-states are

A /i
41

~ =

) (2.29)

The first two are p-states with zero angular momentum around x- and y-
axes, respectively. They are analogous to three components of a polar vector
and we may think of the "p" as standing for “polar". They are zero in the
central plane perpendicular to their axes, positive on one side of the plane
and negative on the other.

The wavefunctions corresponding to energy eigenstates are spherical
functions Rj(r) times these angular functions. When we construct states
which are mixtures of these it will be useful to use Dirac notation for the
states. The |s> represents an s-state, a spherically symmetric function and
the circle we sketch for it corresponds to a contour of constant probability
density. For the p-states |px>, |[py>, and |[pz> a contour of constant
probability density will be a pair of closed surfaces, one where the
wavefunction is positive and one where it is negative. They are ordinarily
sketched as in Fig. 2.9, with the sign of the wavefunction indicated as
shown. The s-state is ordinarily taken to have positive wavefunction at large
distance.

States with [ = 2 are d-states ("diffuse") and the cubic harmonics can be
chosen to have symmetry (not normalized) of

Z
|s> |px> lpy> p=> ldy>
() 0o oe
; (A
s-state px-state py-state  pz-state a d-state

Fig. 2.9 The symbols which are used to represent the s-, p-, and d-states of
the atom. The Dirac notation, |s>, etc., is described in Section 5.1.
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z 2 x2-y?
2% o 351, and *—* (2.30)

The second of these is illustrated in Fig. 2.9 to the far right. These will be
of less interest to us here than the s- and p-states.

For each [ the radial time-independent Schroedinger Equation can be
written (returning to m = me for the electron mass)

2 R I(l+]
BL9 LD, A B DRir) + VORI = eRi) @31)

As for the circular case, the second term, A2I(I +1)/(2mr2) is called a
centrifugal potential and arises from angular kinetic energy. Note that it is
related to the angular momentum squared as L2/(2mr2), as one might have
guessed. The Ry(r) will ordinarily be real and are normalized as [dr 12 Ry(r)2
= 1, since then with [dQYm*¥;m = 1 we satisfy [d3r y(r,0,0)* y(r,6,0) = 1.

For solving this equation, it can be simplified by defining ¥ (r) = rRy(r),
normalized as fxzdr = 1. If we substitute for Ri(r) in Eq. (2.31) we obtain

2 92 72
- g—m %}22(‘ + hzl’(é;l) + V(= ¢y (2.32)
We will extensively use Eqgs. (2.31) and (2.32) in this text, but at this point
make only the simplest application, that to free electrons in a spherical well.
We take the potential V(r) =0 for r < R, V(r) = e for r > R, so that at
this outer radius ¥(R)=0. Also, since ¥ = rR; we also have %(0)=0. For
{ =0, we have simply

K2 92
e —gﬁ? = ex(r). (2.33)

The general solutions are X(r) = A sin(kr) + B cos(kr), with € =
K2k2/(2m). To satisfy the boundary conditions, B=0, kR = nm . The
resulting radial wavefunction (not normalized) is

Ro(r) =20 = KT o) 2.34)

It is called the spherical Bessel function of order [ =0 . (It is regular at r =
0. There are also ny(r) < 1/(kr)! +1 diverging as r —0; e. g., Schiff (1968),

84ff, but we will not need them.) For higher [ there is an additional term on
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the left in Eq. (2.33), A2l(I+1)x(")/(2mr2), and the solutions which are
regular at the origin, ji(kr) o< (kr)l /(1-3-5-...-(21+1)) at small r, are spherical
Bessel functions of higher order. At large distances they vary as sin(kr -
I/2)/(kr). It can be confirmed that these same formulae apply to the [ = 0
case. For [ =1 the spherical Bessel function is

| in kr cos k
00 ery = T 2.35)

j2(kr) will have three terms, etc. These are all analogous to the sinkx and
coskx solutions we found for free electrons moving in one dimension. We
obtain energy eigenstates by adjusting the coefficients to satisfy the
boundary conditions and normalization.

In particular, if we consider free electrons, confined to a spherical box of
radius R , we find solutions by requiring the jj(kR) = 0, which will give a set
of values of k for each I . The first three for [ = 0 and the third state for [ =
1 are illustrated in Fig. 2.10. As will always be the case for spherical
potentials, the lowest state of any [ will have no nodes, radii at which y =0
as for the nodes in a vibrating string, except possibly at r = 0 or at the upper
limit. Each successive n-value is a state with an additional node. The states
can be normalized by a scale factor A such that A2ldr r2jikr)2=1. In
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Fig. 2.10. The three lowest-energy states of zero angular momentum
Jotkr) in a spherical cavity of radius R. Energy increases with the number
of nodes. The heavy curve is the third-lowest ji(kr) satisfying the same
boundary condition.
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Problem 2.7 we consider the solutions and normalization when the radius R
is very large.

We should note also the behavior in quantum wells of finite depth,
where the potential beyond R does not rise to infinity. For simplicity we
consider s-states so the second term in Eq. (2.32) is zero. We let V(r) again
be zero for < R, but now some positive constant value Vg for » > R. Again
the solution for r < R is i = Asinkr and if the energy is less than Vg the

general solution of Eq. (2.32) for r > R is Ce™Mt + Dethr with A2u2/(2m) =
Vo - €. Only with D = 0 is the solution normalizable at large r so we have
the unknowns, A and C and the energy € to be fixed by matching the slope
and the wavefunction at R (since the wavefunction is to be single-valued
there and the kinetic energy would be locally infinite with a cusp in the
wavefunction). For this simple case, dividing the equations for the two
conditions gives

tankR = -ﬁ . (2.36)

This is readily solved numerically. We may for example solve h2u2/(2m) =
Vo -h2k2/(2m) for w in terms of k and plot the right-hand and left-hand
sides of Eq. (2.36) against £ as in Fig. 2.11. The intersections indicate the
solutions, with the energy determined by the resulting k. The wavefunction
corresponding to one such solution is also shown in Fig. 2.11. We see that
the electron tunnels into the barrier, thereby "relaxing the wavefunction” and
lowering the energy. If we were to increase the height of the barrier
(increase V() the heavy curve to the left in Fig. 2.11 would rise toward the
axis, and the wavenumbers at crossing increase slightly, as does the energy.

For a more complicated V(r) we would need to numerically integrate the
Eq. (2.32), which is not so difficult. At small » the behavior of the state is
determined by the centrifugal term. If we substitute the form ) = Artt into
Eq. (2.32) we obtain

K2 A2y h2l(l+1)
2m

-n(n-1) A2 + V(DA =gAmn . (2.37)

At small enough r all but the two first terms become negligible.
Canceling (h2/2m)Ar-2, we find n = [ + 1. This is consistent of course with
the forms of jj(r) = x/r shown in Fig. 2.10 and with the small-r form which
we gave for the ji(kr).

To do the numerical integration we select the [-value we wish to treat
and we may set up a grid of r-values with spacing Ar , perhaps 0.01A . At
the first grid point, r = Ar , we may use the small-r form , <ri+1 to take  to
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Fig. 2.11. On the left we have plotted the two sides of Eq. (2.36) against
k. The intersections of the tankR curves with the heavy curve are the
states in the well. To the right is shown the third state, indicated by the
circle on the left, as well a schematic representation of the potential.

be (Ar)l+1 (scaled by any constant we wish). Then at this first grid point
dy/or = (I + 1)Ar) and we guess a value of energy € so that we may obtain
02y/0r2 at that grid point directly from Eq. (2.32) using the known V(r = Ar).
We may then directly calculate the % , X' = dy/or , and " = 92x/dr? at the
next grid point from

x(r+Ar) = x(r) + X' (DAr + 1y "(r)Ar2,

X' (r+Ar) = x'(r) + X" (rAr, (2.38)

ey = 2 ( h2l(4+1)

52 | 2m(r+Ar)2 + V(r+Ar) - SJ x(r+Ar) .

The same procedure is repeated, step by step, to large r, giving the solution
for the energy € we guessed. We could instead integrate with some software
such as Mathematica.

We will ordinarily not have guessed the correct energy, so as we
integrate to large r we will find that x(r) is growing exponentially, either
positively or negatively, as illustrated in Fig. 2.12. If it is in the positive
direction, we should increase the energy slightly, which will bend the curve
down, and continue until it is diverging in the negative direction, when we
begin decreasing the energy until ¥ again goes positive. It is not difficult to
shift up and down until we have a solution. Usually we will know how
many nodes are in the solution we want (see Fig. 2.10 or 2.11) and we may
need to shift the energy considerably to have the right number of nodes and
then adjust up and down to get close to the correct energy. We will do two
problems of this type in the coming sections, one for the harmonic oscillator
and one for atomic states.
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40 Chapter 2. Simple Cases

When solving this equation for weak potentials, we may note that for
this three-dimensional case a certain strength of a local attractive potential is
required to obtain a bound state, a state decaying exponentially with r at
large r. If the potential is too weak, an integration even at zero energy
relative to the potential outside the well will not bend the wavefunction
within the well far enough to bring it to zero at large distances. At positive
energies relative to the potential outside the solution will always be
oscillatory at large enough distances so no localized state can be obtained.
This feature arises from our boundary condition at small ». In a one-
dimensional case, any net attractive local potential can produce a bound
state, if the particle can range in both directions. It will be very shallow
(energy near zero) if the potential is quite weak.

€ too low,

x(r)

\

€ too high'

Fig. 2.12. An integration of the radial equation, Eq. (2.32), at an energy &
equal to an eigenvalue, and at slightly higher and slightly lower energies.

2.5 The Harmonic Oscillator

The third important system, in addition to free particles and spherically
symrmetric systems, is the harmonic oscillator. This is partly because each
mode of sound vibrations, discussed in Section 1.8, can be treated as a
harmonic oscillator, as can each cavity mode of electromagnetic waves - or
light waves. The energy of a simple harmonic oscillator of mass M , with
displacement coordinate x, and spring constant K is 1/pMx 2 + 1/kx2, which
we write in terms of momentum p =Mx as the Hamiltonian (to be
generalized in the following chapter). Then the energy-eigenvalue equation
becomes

K2 92 1
M —a\% +5 KxZ y(x) = e y(x) . (2.39)
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It is also exactly Eq. (1.21) for one dimension and with a potential given by
lpkx2.

We may guess a form of the solution, and confirm that it is correct. The
correct guess is the form

y(x) = A exp(-x2/(2L2)) . (2.40)
Substituting this form in Eq. (2.39), and evaluating the derivative, gives

B2 (x2 1 1
g (ﬁﬁj W) + 5 02 () = € Y(x) - (241)

The factors y(x) cancel so this is indeed a solution if #2/(ML4) = k. Then ¢
= K2/(2ML2) . Tt is more convenient to write this in terms of the classical
vibrational frequency ® (in radians per second), with ®2 = x/M =
K2/(M2L#4). The first step in this equation is simply the classical expression,
the second gives w = //(ML?), and the energy is given by

Ho. (2.42)

N L

€=

This is the ground state (lowest-energy state) of the simple harmonic
oscillator and the energy is called the zero-point energy of the oscillator. We

obtain the normalization, A2[_co coexp(-x2/L2)dx = A2LAR = 1, so

A=1NINT. (2.43)

It is also interesting to obtain the mean-squared fluctuation, <x2> =
A2 oo coexp(-x2/L2) x2dx = L2/2. Thus L/ 2 is the root-mean-square
deviation, called the zero-point fluctuation, and sometimes written apl =
<x2>. The state arises from a compromise between kinetic energy, which is
lower if the state is spread out and therefore slowly varying, and potential
energy, which is lower if the wavefunction is strongly concentrated at the
bottom of the well near x = 0. In this ground state the expectation value of
the kinetic energy and the potential energy are the same, as they are
classically, at

h

12
=5K5 =575 (2.44)

, L2
2

B [—
D [

Mo

N {—

Higher-energy solutions are given in terms of Hermite polynomials, Hp,
in most quantum texts (e. g., Kroemer (1994), p. 85) as
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Ho(x/IN2L)exp(-x2/2L2). (2.45)

The only one of these excited states which we will actually use is the first,
and Hi(Q) = 2Q. The successively higher Hermite polynomials are
successively higher-order polynomials and alternate between even and odd
functions. The energies of these harmonic oscillator states are well known,

en:[n+%) ho, n=0,1,2, ... (2.46)

As for many discussions in this text we have solved the simplest
problem (the ground state) and quoted the more general results without the
mathematical details. In fact, once the solutions are obtained, the techniques
for solving the general problem are rarely used. In Problem 2.9 we take an
energy appropriate to n = 7 and integrate the Schroedinger Equation
numerically using Ax = 0.1A, adjusting the energy to an accuracy of about
1% . We see that there are seven nodes and that the x-value for the largest
peak is not so far from the maximum of the classical vibration, obtained
from € = 1/2 K)Cmax_"z

This ladder of equally spaced energy eigenvalues is characteristic of the
harmonic oscillator. It is often said that there are n vibrational quanta in the
state Y. One consequence of the equally-spaced levels is that if we
construct a wave packet of many harmonic-oscillator eigenstates,
corresponding to a fixed displacement of the oscillator at the center of the
packet, that packet will return to its identical shape every classical period
2n/w since each state will have changed phase by an integral number of
2m's, as seen from Eq. (1.22). [The relative phases of the terms need to be
chosen correctly to have the packet remain intact over the entire period; e. g.,
all in phase when the packet is at its extreme displacement. ]

When we describe sound vibrations in a pipe, as in Section 1.8, we can
regard the u =u(0,) of Eq. 1.29 as the displacement of a harmonic oscillator.
The total potential energy is proportional to u2 and the total kinetic energy

proportional to « 2. Thus each mode corresponds to a harmonic oscillator,
with a classical frequency given by the @ =\/F/6 q of Eq. (1.31). Itisseen
that the initial statement that everything is both a wave and a particle applies
here as does all of the succeeding analysis. The excitation is then quantized
with some number of phonons , which we think of as particles, in each
mode.

This is a considerable conceptual leap, in talking of waves as a function
of amplitudes u , rather than as a function of position as we have before.
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This leap may have first been made by Debye (1912) in applying quantum
theory to sound waves in a solid, as we shall discuss in Section 10.2. We
began here with a classical sound wave, pressure as a function of position,
and described it with a quantum wavefunction, as a function of amplitude ,
which is a harmonic oscillator with quantized excitations. Finally, we
called these phonons. This extends to sound waves propagating in three-
dimensional space, and each phonon has an energy and momentum, H = Aw,
p = hk. These phonon particles are indistinguishable since it has no
meaning to "interchange them", a fact which we will make use of when we
discuss their statistics in Section 10.2. We can trace the origin of this new
particle back to the molecules which made up the air which was vibrating in
the pipe. We shall make this generality of the wave-particle-duality
statement explicit when we discuss Hamiltonian mechanics next.

The same analysis will apply to light waves, where we may write a
quanturn wavefunction as a function of the amplitude (vector potential A or
electric field E) and the energy in each mode is quantized, corresponding to
some number of photons in each mode. This is a much more familiar
particle than a phonon, but no more rigorous nor valid. The photon also is
modified by the dielectric properties of the air through which it moves.

Finally, we may easily extend the simple harmonic oscillator to three
dimensions, as for an object in a bowl, or an atom which can vibrate in any
direction in a well in which it is trapped. If the restoring forces are
spherically symmetric, V(r) = lipxr2 = 1/px(x2 + y2 + z2) the Hamiltonian
becomes separable in the three coordinates and, as in Section 2.2, we can
write a product wavefunction W(r) = y1(x)w20)w3(z). Each of the yj are
harmonic oscillator states. The energy can be written

€ = (nx + ny + nz + 3/)h0. (2.47)
The state yo(x)Wo(y)yn(z) is vibrating in the z-direction. Since the

system has spherically symmetry, it is also possible to write the states
y(r)Yyn(0,¢) if we choose. Thus the ground state can be written

WoWoWo()= 17N L3NT3 exp(-r2/2L2) . (2.48)

It is spherically symmetric, /= 0. Similarly we can construct p-states
[W1Wo)Woz) = WoWIMWo@IN2 o (x % iy)exp(-r2/2L2) =
rsin@etiPexp(-r2/2L2), etc..
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When we generalized the harmonic-oscillator states to sound waves in
the preceding section, we saw the extraordinary generality of the wave-
particle-duality statement of Section 1.1. The mathematics in which that
generality is expressed is Hamiltonian mechanics. We have used the word
"Hamiltonian " for the energy, expressed in terms of the coordinates and the
momenta. The coordinates could be x, y, and z, or they could be 7, 8, and ¢.
Hamiltonian mechanics allows us to write the equations of motion in either
set of coordinates, or many other sets. In Section 2.5 we saw that we could
even write equations of motion in terms of amplitudes, and these amplitudes
might even be electric fields. The real generality of the wave-particle
duality is that for any system for which we write the equations of motion in
terms of a Hamiltonian, with its coordinates and associated momenta, that
system may be represented by a wave as a function of the coordinates, and
the momentum may be represented by/# /i times the derivative with respect
to the coordinate, operating on that wavefunction. Then all of the quantum
effects we have discussed are present for that system. This is one rather
precise way to state the wave-particle-duality premise, though there are
certainly other ways.

Since this mechanics is so central to quantum theory, and since it is not
generally included in the early physics courses which are taken by engineers,
it is essential to outline the main features here. The history is also of interest
(e. g., Thornton (1995)). This dynamics was in some sense developed as
independent philosophically from Newtonian mechanics, by seeking a
minimum principle to describe dynamics. That had its own appeal, but of
course the results are mathematically equivalent to ordinary Newtonian
mechanics.  The first such principle was for optics, given by Hero of
Alexander, in the second century BC. He asserted that light followed the
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shortest distance between two points. This led to the equal angles of
incidence and reflection, but failed for diffraction. Fermat in the 17th
century postulated that it was the time of flight which was to be minimized,
giving the correct law of refraction as well as of reflection. Maupertius in
the 18th century first formulated dynamics this way, saying that particles
follow a path of minimum action. This then led to Lagrangian mechanics
later in the 18th century, and Hamiltonian mechanics in the 19th century.
Here we bypass that formulation and given the resulting dynamics, showing
that it duplicates ordinary mechanics.

3.1 The Lagrangian

As we indicated, Hamiltonian mechanics is based upon Lagrangian
mechanics, another method using generalized coordinates. It may be helpful
to think of a specific model system as we write quite general statements, as
illustration and to confirm that the correct results are obtained. For that
purpose we consider a classical problem of a bead strung on a wire as in Fig.
3.1. We also let the wire rotate on an axis vertical in a gravitational field,
and the bead may slide without friction along the wire. It would be awkward
to work out the dynamics of the bead using force equal to mass times
acceleration in Cartesian coordinates. However, it is possible to work it out
in terms of a general coordinate such as g giving the distance along the wire,
as shown, and Lagrangian or Hamiltonian mechanics. We will not work out
this model in detail, which would require specifying the exact shape of the
wire, but will illustrate the methods in terms of it.

The first step is to write the kinetic energy T in terms of generalized
coordinates, {gj}, and their time derivatives {g } , and time ¢, T({gj},{q }.?).
[It is conventional to use the brackets {} to denote a collection of values.]
For the system in Fig. 3.1 the kinetic energy includes the kinetic energy of
motion perpendicular to the wire, depending upon q , as well as 1/o2Mg 2. In
the simplest case, motion along a straight line, it is of course 1/oM x 2. If the

e F—

Fig. 3.1. A bead moves without friction along a wire, which rotates
around a vertical axis. Its motion could be described in terms of a general
coordinate g which is the distance along the wire, measured from the
bottom.
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forces Qj along the generalized coordinates are derivable from a potential,
Qj=-0V({qi},H/dq; then the Lagrangian is given by

L ({gj}.{9 }.0 =T ({gj}.{q }.0- V ({qj}, 0, (3.1

equal to 1/oMx 2 -V(x) in the simplest case. In the model of Fig. 3.1 the
potential is the gravitational potential, but needs to be reexpressed in terms
of g . It is also possible to construct a Lagrangian when there is a force
applied which is not derivable from a potential, such as the force -evxH on a
charged particle due to a magnetic field, and we shall do that in Section 3.3.
We will not make use of it, but Lagrange's Equations of motion are

d dL  dL
e} (3.2)
For the simplest case, dL/dg = Mx and Eq. (3.2) becomes M x~ +dV/dx = 0,

the usual equation of motion. A momentum, conjugate to each coordinate is
defined from the Lagrangian by

JL ({qi}.{q },
pi= ({ql}{q}t), 3.3)

0q

equal to Mx in the simplest case. pj is called the canonical momentum
conjugate to the coordinate gj. All is equivalent to traditional mechanics for
the simplest case, but the Lagrangian method could be used for waves in
water, or dislocations in crystals, and we shall see that it gives the correct
forces when we use it for motion of a charged particle in a magnetic field.

3.2 Hamilton's Equations

The Hamiltonian is given in terms of the Lagrangian by
H =2jpjgj -L (3.4)

written as a function of the generalized coordinates, their canonical
momenta, and time, H({pj},{g;}.?). We need to use Eq. (3.3) to write each gj
in terms of pj. In the simplest case it is H(p,x) = p2/(2M) +V(x), equal to
the energy as we have used it up to now in our discussions, and we always
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think of it as the energy. Note that gj does not necessarily have the units of
length, but gjpj will always have the units of energyxtime, as does 7 .
There are two Hamilton's Equations for each generalized coordinate,

. _OH
CIj=apj )
(3.5)
)
Pi =" 9q; -

For the simplest case they are x = p/M and p = Mx = -9dViox,
respectively. One again relates p tox and the other gives the equation of
motion. We can do classical mechanics by solving the boxed equations, just
as we can with Lagrange's Equations or with mass times acceleration
equaling force.

One important classical example may be helpful. To describe a rotating
body, we usually specify the rotation with an angular generalized coordinate
¢. In terms of it the kinetic energy is written 1/2I¢ 2, with I the moment of
inertia obtainable (see Fig. 2.8) from the mass density p(r) as
I =[d3r r2sin20 p(r). A generalized force along the angular coordinate is a
torque ¢ given by ¢ = -0V(9)/0¢. The Lagrangian is L = 1/21 $2- V(¢) and
the canonical momentum is the angular momentum, p = dL/0¢ =1¢ . Then
the Hamiltonian is H(p,p) = p2/(2I) + V(¢). The first of Hamilton's
Equations again relates ¢ and p, and the second says that the rate of change
of angular momentum is equal to the torque. All of this is traditional
classical mechanics. Note that the coordinate ¢ is dimensionless but the
angular momentum has the units of energyxtime.

When we go to quantum mechanics, we may proceed just as we did
when the coordinates were ordinary spatial position. We write the
momentum operator as

h 0
Pi=i 9 (3.6)

as in Eq. (1.11) and the energy operator as

K

l

H= 3.7

Yo

The classical Hamiltonian is written with the p;replaced by an operator

using Eq. (3.6) and we have the Schroedinger Equation in terms of the
generalized coordinates as
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, 0
Hy({gj}.n) = ih 5. w({qj}.0) . (3.8)

This is what we did for Cartesian coordinates. If we do the same for the
angular coordinates, for the case of free rotation, we seek a W(¢) and
Schroedinger's Equation becomes, as in Eq. (1.16),

T 72 2y(0,
SN =H 0= 5 THG 39)

If we seek energy eigenstates, they are given by W(¢) = €imd/\27 , and if
they are to be single-valued and continuous, m must be an integer. These
are also eigenstates of angular momentum (/i )d/d¢ , with eigenvalues #m .
We would have found this same quantization if we considered a particle of
mass M moving on a circle of radius R with no potential energy, equivalent
to our free electron in one-dimension with periodic boundary conditions
which we treated in Section 2.1, so this may not be surprising. However, we
note that we are now applying the wave-particle duality to the rotary motion
of a rigid object, which is again a major conceptual leap. We shall return to
this when we discuss spins of particles in Section 10.4 and 10.5.

3.3 Including the Vector Potential

When we include magnetic fields in the dynamics of charged particles,
it is convenient to use the vector potential, as we did when we wrote out the
fields associated with a light wave in Section 1.3. There we noted that the
magnetic fields H and electric fields E could be obtained from the vector
potential A by Eqgs. (1.17),

H=VxA(ry) , (3.10)
and
10A(r,»
E=- "5 " (3.11)

It may be inconvenient for an engineer to work in terms of these units which
are almost universally used in quantum physics. Even there one cannot
count on formulae being equivalent. Kroemer (1994), for example uses B
equal to H/c in vacuum, and a vector potential equal to our A divided by ¢
so that it is B which is equal to VXA and E is equal to -dA/dt. We give here
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the defining equations for our fields, and they can be used in each case to
define the properties we predict. A(r,f) is to satisfy Maxwell's Equations, as
in Eq. (1.20), and we will not need them further here. We shall need the
energy density (total energy for a volume Q divided by that volume)
associated with uniform fields in vacuum, and it is

Efield E?2 H?
0 “sntan (3.12)

Any effects of dielectric media are treated as additional terms rather than in
terms of displacement and induction fields. We write the interactions
between an electron of charge -e and the fields as a force F given by the
Lorentz force,

F= (-e)E+%><H (3.13)

These are enough to define our use of electromagnetic fields. When we
actually want to obtain values for forces and accelerations, and magnetic
fields are given in gauss, we will need to substitute e in electrostatic units, as
indicated at the beginning of Chapter 22 on magnetism.

To include the force, Eq. (3.13), in our dynamics, we need a Lagrangian
or a Hamiltonian which will reproduce the dynamics using Lagrange's or
Hamilton's Equations. We shall confirm that this is accomplished for a
particle of charge -¢ and mass m by replacing the momentum p in the
Hamiltonian without fields by p - (-e/c)A(r,t). There can be additional
forces, as arising from an electrostatic potential ¢(r,f) which are included in
any potential energy V(r,f) in the starting Hamiltonian. Thus the classical
Hamiltonian including the effects of the vector potential is

H(r,) = ﬁ (p ] f A(r,t)) vy (3.14)

Confirming this leads to some important intermediate results. We write
the first of Hamilton's Equations (Eq. (3.5)),

. oH 1 -
r=‘3—p= ‘n;[p—ceA(r,t)j : (3.15)

The meaning of OH/0p is 0H/dpxX + 0H/dpy§ +0H/dp;Z, with X, ¥, and
Z unit vectors in the three directions. This is a shortcut which could be
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confirmed by writing all vector equations out as three scalar equations. The
velocity I retains its usual meaning, but we note that the momentum is no
longer mr but has acquired an additional term. It is a complication, but we
may proceed. The second of Hamilton's Equations becomes

oH 9V A
H_ e [p A(n)j (3.16)

[Here the final dot product is with A, and py is obtained from the 0/0x.] We
want the acceleration, which we obtain by taking the derivative of Eq. (3.15)
with respect to time to obtain
P _-edA

T'=m “me dt

3.17)

[Here dA/dt = 0A/dr + JA/Or ¥ and the dot product is with d/dr. Then px

is obtained from Ay, etc..] We may multiply by m and substitute for p from
Eq. (3.16) to obtain

dV er OA

s IV et JA e
c or ¢

dA

dr - (3.18)

We may confirm, by separating the equations into components all the way
through, that this is equivalent to

oV er
r=-50- ?XH ek . (3.19)

[We use Egs. (3.10) and (3.11) and, for example, to have H in the z-direction
we can take Ay = Hx . Then anr in the y-direction gives an mT¥ in the x-
direction as it should according to Eq. (3.13).] The final term is the electric
field arising from the vector potential, according to Eq. (3.11), in addition to
any field arising from other charges, and their resulting potential, which
might be included in dV/dr.

We have confirmed that the Hamiltonian of Eq. (3.14) describes a
classical charged particle in an electromagnetic field. In quantum mechanics
we follow the procedure of Eqgs. (3.6) through (3.8) to obtain the
Schroedinger Equation,

2m

L ( €A, t)f w0 + V(r,)w(r,) = if M , (3.20)
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which we shall have many occasions to use, both for the interaction of
electrons with light and for the motion in the presence of a magnetic field.
In the case of magnetic fields, we may use units given at the beginning of
Chapter 22.

The use of Lagrangians and canonical momentum is illustrated in
Problem 3.1 where we consider the quantum mechanics of a ball, translating,
spinning, or rolling without slipping.
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II. Electronic Structure

Perhaps the greatest accomplishment of quantum theory was providing
an understanding of atoms, molecules, and solids in terms of the electrons,
which had only been discovered in 1897. Classical physics was not even
close to describing their behavior, whereas quantum theory did so
quantitatively. It provided an essentially exact description of the hydrogen
atom, which includes only a single electron, and which we discuss first.
Exact treatment when more than one electron is present is impossible, but
very quickly a one-electron approximation was introduced, which was
extraordinarily successful, and which provides the basis of our modern
understanding of the electronic structure and properties not only of atoms,
but of molecules and solids.
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The electronic states in atoms, which we think of as spherically
symmetric, correspond to the simplest electronic structure. The
factorization of the wavefunctions using spherical harmonics, angular-
momentum eigenstates which we introduced in Section 2.4, provides the
classification of the states and the organization of the subject. The hydrogen
atom, with a single electron, is the simplest such atom. We shall then see
that an approximate description of the states in other atoms is essentially as
simple.

4.1 The Hydrogen Atom

Having just completed a discussion of generalized coordinates and
Hamiltonians, we should proceed carefully. The hydrogen atom consists of
an electron and a proton so it is describable by the vector position of each
particle, six Cartesian coordinates. However, we may transform coordinates
to a center-of-mass position R and the relative coordinate r from the proton
to the electron. The Hamiltonian contains a kinetic energy for the center of
mass motion and for the relative motion (with a reduced mass equal to the
product of the two masses divided by their sum) and a potential energy of
interaction between them, V(r) = -e2/r . Since there are no terms depending
on both R and r, the wavefunctions for the eigenstates can be factored as
Y(R)y(r), as we saw in Section 2.2. The equation for the center-of-mass
wavefunction is just that for a free particle with a mass equal to the mass of
the atom moving in free space, and all of the solutions we have obtained for
free particles apply. This explains why we can ignore the internal structure
of atoms and molecules and apply quantum mechanics to the atom or

53
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molecule as a whole. Everything is at the same time a particle and a wave.
The energies of these states add to the internal energies of the atom, which is
the part in which we are interested. W (r) is really in terms of a relative
coordinate, but because the mass difference is so large, the reduced mass is
almost exactly equal to the electron mass, and the nucleus moves very little
in comparison to the electron. Thus it may be simplest to think of the
nucleus as a classical positive charge at a fixed R and the electron orbiting
in the potential -e2/r relative to that position. It is easier to think about it
that way and the only error we make is in using a mass slightly too large,
which we could correct if we chose. This treating of nuclei as classical
charges when doing electronic structure is sometimes called the Born-
Oppenheimer Approximation, and we make it here.

With spherical symmetry the wavefunction in the relative coordinate can
be written

y(r) = (X(r/r) Y™(8,0) “4.1)

with y(r) determined from a radial Schroedinger Equation for the function,
Eqg. (2.32), which becomes

B2 0%y KA1 2

“om o2 t omeZ X X=EK (4.2)

We shall, as with the harmonic oscillator, treat the simplest case, and
write the results for the rest. For [ = 0 we may try x(r) = reir
(corresponding to y(r) o< e “Mr). Eq. (4.2) becomes

BUlre-Ur  F2pe-ir
ST (T et = ere, 43)
m m

This will be a solution if the second and third terms cancel, A2u/m = €2 ,
which fixes [ as e2m#2 = 14.4/7.62 A-1 = 1/(0.529 A). Then the energy is
given by

I
€="om T 44

This is the Rydberg, 14.42/(2x7.62) = 13.6 €V, using Eq. (1.10). This is the
ground state, with normalized wavefunction given by

y(r)= \’115—3 e MI | 4.5)
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[Note that this is R(r) times Y0%©,0) = 1/4m .]

The higher-energy s-states, obtained from Eq. (4.2) with again [ = 0, are
successive polynomials in 7 times e ~MI, closely analogous to the higher
states of the harmonic oscillator. The energies are

-etm 1
2h2 n?

8]‘1 = (46)

for polynomials of order n -1 . They are obtained analytically in most
quantum texts, can be easily obtained as we did the n = 1 ground state for
small values of n, or can be obtained numerically by the method we use in
Problem 4.3.

The index n is the principal quantum number, n=1,2,.... Statesof [ #0
are obtained from Eq. (4.2), including the second (centrifugal) term. At
small r they approach r! , rather than the constant for s-states. Their
energies are found also to be given by Eq. (4.6), but for p-states there are
solutions with energy €, only for n = 2, 3, ... In general the lowest
eigenvalue corresponds to n =/ + 1, and there are 2/ + 1 eigenvalues for
each, corresponding to different orientations of the angular momentum The
corresponding eigenvalues are sketched in Fig. 4.1.

These results obtain only for a potential equal to V (r) = -Ze2/r, with an
increased charge Z scaling the wavefunction and the energy. However, we
shall see that all atoms can be approximately represented in terms of a more
complicated V(r) . Making that change shifts each of the energies shown in
Fig. 4.1, the extra attractive potential near the nucleus lowering the s-state
energies relative to the p-state energies of the same »n in particular. Each
level can be followed as the nuclear charge is increased from element to
element and successive levels are occupied, providing the organization of
the electronic structure of all of the atoms, as we shall see.

S S
1l
N W
'
1
l
l

n=1 -

Fig. 4.1. The atomic term values, or energy eigenvalues or levels, for the
hydrogen atom. Levels of the same n make up shells, sometimes
subdivided to s-shells and p-shells.
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4.2 Many-Electron Atoms

We may move on to the second atom in the Periodic Table, helium with
two electrons per atom. It is then necessary to describe the system with a
wavefunction depending upon the coordinates of the two electrons,
W(ri, rz) and the Hamiltonian operator becomes

F2V12 Kh2Vo2  Zne?  Zne? e2

2m 2m r1 rn + [r1-ro)°

4.7

with Zny = 2 the nuclear charge. It is the final term which causes the
problem. Without it the Hamiltonian would be of the form H(ry() + H(rp)
and the wavefunction could be factored as y(ry,r2) = yw(rpw(ry) , but with
that term the six-dimensional problem is only tractable numerically, and
becomes quite impossible as we go to heavier elements, more electrons, and
therefore more coordinates.

In the early days of quantum mechanics it was recognized that only such
separable problems can be solved, so it was asked how good an
approximation can it be to treat it as a separable problem. That question can
quite unambiguously be answered with a variational calculation, a general
and powerful method for quantum mechanics.

The general idea of the variational calculation is that any Hamiltonian H,
such as Eq. (4.7), has a set of eigenstates V'j with energies €;j, which we may
not know. However, any approximate state can be expanded in the complete
orthogonal set, {'¥j}, as ¥ = Zj uj ¥j. Then for the particular case of two
particles, for that approximate state W(rj,r2), the expectation value of the
energy is

Ja3r1d3 ¥ L) HE (L) _ Ziuituig

S O (4.8)
Ja3rd3rnPEL ) Pary) 24

The form on the right is obtained by noting that the terms with
,[d3r1d3r2‘Pi(r1,r2)*H‘Pj(r1,rz) = 8j,[d3r1d3r2‘l’i(r1,rz)*‘I’j(rl,r2)) for i and j
different give zero, by the orthogonality of different eigenstates. The result
will always be higher than the ground state energy, the lowest g;, since every
other contribution to the final form is higher. Thus the best possible
approximate solution of any given form for the ground state energy can be
obtained by minimizing the left side of Eq. (4.8) for the approximate form.
The result generalizes immediately to any number of electrons. We shall in
fact see that this variational calculation ordinarily gives not only an estimate
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of the ground-state energy, but the next-lowest state orthogonal to the
lowest, etc., giving approximate estimates of the entire range of states. Thus
the variational method provides a complete, though approximate, theory of
the electronic structure of many-electron systems. A simple variational
calculation for the hydrogen ground state is carried out in Problem 4.1.

For the two-electron problem, we make the one-electron approximation
for the state, W(ry,r2) = y(rp)y(rz), which would be correct if it were
possible to separate the Hamiltonian as H(r1) + H(rp). In some sense this
variational approximation for the wavefunction embodies the physical idea
which we expressed at the end of the last section, that the hydrogen-like one-
electron states retain meaning throughout the periodic table. When the
physical concept is sound, the variational calculation tends to be successful.
In this case, it provides the basis for our understanding of atoms, molecules,
and solids.

We are, then, to minimize

w2t eywrr ) HY e DW(r)d3rid3r
= Tware)w i)y e)war2)d3rid3r

4.9)

with respect to 1 and W2, using the Hamiltonian H from Eq. (4.7). This is
done by adding Sy 1*(ry) to Ww1*(ry) and asking that the result be stationary
with any arbitrary dy1*(r1). [This is simplest if we take y1*(r1) and yi(r1)
to be independent of each other, and it can be confirmed by writing out real
and imaginary parts that this yields the correct result.] This leads to the
Hartree Equations, which are much like the energy eigenvalue equation,

A2 Ze2
- ﬂvzm(r) -, W) + Vee(r) yi(r) = €1 yi(r) (4.10)

and the corresponding equation for y(r) is obtained the same way. Here

2
e
Veelr) = [wor ey watra)dry (.11

is an average potential from the other electron, which arises in the one-
electron approximation, but is not meaningful otherwise. A real electron
sees another point-like electron moving in the system. However, this
approximate description enables us to solve the one-electron equation, Eq.
(4.10). We may need to iterate the result, obtaining the probability density
y1(r)*y1(r) from a solution of Eq. (4.10), using it to obtain a new Vee(r)
from the counterpart of Eq. (4.11), which is used in the y2(r) counterpart of
Eq. (4.10) to obtain y2(r) and therefore y2(r)*y(r), etc..
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The wi(rj) obtained in this way would be used to evaluate the energy E

from Eq. (4.9). We might hope that we could obtain that total energy as the
sum, over occupied states, of the one-electron energies ¢€; as

E ~ ZJ. €, (4.12)

as was true when we factored the three-dimensional states in Eq. (2.5). This
we shall in fact assume, but there are a number of complications which we
discuss, though briefly, because they are so fundamental to our
understanding of real systems. However, for almost all of this text, the one-
electron eigenvalue equation, Eq. (4.10), and the interpretation, Eq. (4.12),
of the eigenvalues will be all that we need.

The first complication is that Eq. (4.10) includes in €1 the Coulomb
interaction between the two electrons, and that energy is included again in
the evaluation of €7. It is necessary really to subtract that interaction
counted twice, and that will also be true when we treat collections of atoms.
For these collections we must also add the Coulomb repulsion between the
nuclei. However, it turns out that as long as the atoms remain approximately
neutral, the change in energy as the atoms are moved is quite well given by
the change in the sum of eigenvalues, as given in Eq. (4.12). Thus we will
ordinarily be able to make this tremendously simplifying approximation, Eq.
(4.12). We will need to be careful and make corrections when the
approximation of neutral atoms is not good.

There is a second complication in that the real many-electron
wavefunction for electrons, ¥(ry,r7), is antisymmetric with respect to the
interchange of the two electrons,

Y(ra,ry) = - ¥(ry,rp), 4.13)

as we shall see in Section 10.5. We can incorporate this antisymmetry in our
variational calculation by using an approximate wavefunction

) yi(rpwa(r2) - y2(rpyi(r)

¥(ry,rp) 2

(4.14)

An immediate consequence of this form is the Pauli Exclusion Principle that
two electrons cannot occupy the same state, since then the wavefunction
becomes zero. We have used this before, but this is the origin. Eq. (4.14) is
called the Hartree-Fock Approximation, and it leads to an additional term in
the Vee(r) of Eq. (4.10) which is called the exchange interaction and adds an
exchange energy which we shall need to mention at various points. This
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exchange energy arises from the fact that the two-electron wavefunction, Eq.
(4.14), clearly approaches zero as rj is close to r and as a result the
expectation value of the Coulomb repulsion €2/|r] - rp| is reduced. We shall
see in Section 10.5 that this reduction applies only to electrons of the same
spin, since the states for electrons of opposite spin are already antisymmetric
due to the opposite spins, and the spatial wavefunction of Eq. (4.14) has the
minus replaced by a plus. We shall also in Section 10.5 extend these
antisymmetric wavefunctions to systems involving many electrons.

An important consequence of this exchange energy is Hund's Rule
which states that when only some orbitals of the same energy (as in Fig. 4.1)
are occupied by electrons, the energy will be lower if their spins are the
same as each other. Then the corresponding magnetic moments line up to
produce magnetic properties for the atom. The same effect in metals such as
iron produces ferromagnetism in those metals as we shall discuss in Chapter
22.

Another important feature of the exchange energy in Hartree-Fock
theory is the fact that we can add to the electron-electron interaction, Eq.
(4.11), the interaction of each electron with its own electric charge
distribution, if we also add the exchange interaction of each electron with
itself; the two self-interactions cancel exactly in Hartree-Fock theory and
have the advantage that then the Hamiltonian entering the Eqgs. (4.10) for
different electrons is exactly the same, while Egs. (4.10) and (4.11) in
general produce different potentials for different electron states. Working
with a single potential is a considerable simplification, partly because the
different one-electron states are then automatically orthogonal to each other.

Modern calculations for systems with many atoms seldom use Hartree-
Fock, but use what is called Density-Functional Theory and an
approximation to it called the Local-Density Approximation. In this
approximation the exchange interaction, as well as all the corrections to
making a one-electron approximation, W(ry,r2) = Yy (rp)w(ra), in the first
place, are incorporated in an effective potential Vee(r) which is assumed to
depend only upon the electron density p(r) at the point r. The largest
contribution to this potential is the exchange interaction, which is usually
evaluated for a free-electron gas at the same density. It is found to be

3e2kp
Eex = - “an ber electron, (4.15)

where kf is of course the Fermi wavenumber for a free-electron gas at that
density. It is a numerical constant times e2kF as one can see from the form
of the integral. [A discussion of Local-Density Theory, with references, is
given for example by Hafner (1987), 315ff.]
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As we indicated at the outset, for our purposes the result is that for
helium, and for all other heavier atoms, there exists an effective potential
which appears in the Schroedinger Equation and the eigenvalue equation,
Eq. (4.10), and using it we may proceed in a one-electron approximation,
treating the total energy as the sum of the one-electron eigenvalues.

This effective potential for the atoms is taken to be spherically
symmetric, so that the electronic states can by factored into radial functions
and spherical harmonics, and classified according to the angular-momentum
quantum numbers /, and m, and numbered by the principal quantum numbers
n according to the scheme given for hydrogen in Section 4.1. Such a
potential exists for each element, and the resulting eigenstates, or energy
levels, are filled with the appropriate number of electrons for that element.
We fill the 1s levels (with terminology given for spherical systems in
Section 2.4, 1s- meaning n = 1, [ = 0) first and then the s- and p-levels for n
= 2, then successively the n = 3,n =4, ... levels corresponding to successive
rows in the periodic table. For each row the levels of the particular n which
are being filled are called valence states, as distinct from those of lower n
which are called core states. In the midst of these series, we fill d-levels (/
= 2) through the transition-metal series, and f-levels ({ = 3) when they are
low enough in energy, but we shall do little with these systems in this text.
Extensive treatment is given in Harrison (1999) in much the same spirit as
we use here for s- and p-levels. The levels which determine the chemical
and physical properties of the elements are the valence levels, in the shells
which are partially occupied in the atom, the highest occupied and lowest
unoccupied energy levels. Core levels, much lower in energy, are of no
consequence since they are so closely tied to the nucleus that they do not
change as the atoms are rearranged; higher levels are empty and do not
affect the total energy, Eq. (4.12).

The corresponding valence electronic energy levels for the atoms,
obtained by Mann (1967) in the Hartree-Fock Approximation, are listed in
Table 4.1. They may be thought of as the removal energy for the
corresponding electron from the isolated atom, taking that electron to large
distances at rest, as would be anticipated from Eq. (4.12). This is only
approximate; the experimental removal energies for sodium through argon
are [ionization potentials from the CRC Handbook (Weast (1975)] in eV,
5.14, 7.64, (both corresponding to s-states), 5.98, 8.15, 10.48, 10.36, 13.01
and 15.75 (all for p-states). These give a fair assessment of the degree of
validity of these numbers. Removal of a second electron will require several
electron volts of additional energy since it comes from a positively-charged
atom. The needed correction is a consequence of the approximations in the
treatment of electron-electron interactions discussed above.

It is usual to represent the states occupied in the atom (the configuration
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Table 4.1. Hartree-Fock term values for valence levels (Mann (1967)).
The first entry is &g, the second is § (values in parentheses are highest
core level; values with * are extrapolated). All are in eV. Transition
metals would appear to the left of Cu, Ag, and Au; f-shell metals would
appear to the right of Ba and Ra.

1 o I v AY VI vl VIHI IA ITA
He Li

n=1 2498 534 n=2
Be B C N (¢] F Ne Na

n=2 -842 -1346 -1938 -26.22 -34.02 -4279 -5253 -496n=3
-5.81% -843 -11.07 -13.84 -16.77 -19.87 -23.14 (-41.31)

Mg Al Si P S Cl Ar K Ca
n=3 -6.89 -10.71 -1479 -19.22 -24.02 -2920 -3476 -401 -532
-3.79* 571 -759 -954 -11.60 -13.78 -16.08 (-25.97) (-36.48)

Cu Zn Ga Ge As Se Br Kr Rb Sr
-6.49 -796 -11.55 ~-15.16 -1892 -2286 -27.01 -31.37 -375 -4.86
3.31*% 3.98% 567 -733 898 -10.68 -12.44 -14.26 (-22.04) (-29.88)

Ag Cd In Sn Sb Te 1 Xe Cs Ba
-5.99 -7.21 -10.14 -13.04 -16.03 -19.12 -22.34 -2570 -337 429
-3.29% -3.89* 537 676 -8.14 -954 -1097 -12.44 (-18.60) (24.60)

Au Hg TI Pb Bi Po At Rn Fr Ra
-6.01 -7.10 -9.83 -1249 -15.19 -17.97 -20.83 -23.78 -321 -4.05
-3.31% -3.83* -524 -653 779 -9.05 -10.34 -11.65 (-17.10) (-22.31)

of the atom) by giving the quantum number n of the level, followed by its

orbital momentum, s, p, d, or f, and an exponent indicating the number of
electrons. Thus the ground state of boron is 1s22s22p. The cores are
sometimes written in parentheses (1s2)2s22p, or omitted.

The systematics of the values are quite simple and are worth noting. The
first element in the IA column is lithium and its 2s-state €5 value would be
that of the hydrogen 2s-state, e#m/(8h2) = -3.4 eV, except for the effects of
the extra attractive potential from the additional two protons in the nucleus
and the extra two core electrons close to the nucleus. These drop the energy
to -5.34 eV for Li, and the corresponding shift gets smaller as we move
down in the periodic table. -3.4 eV is roughly right for the IA series,



62 Chapter 4. Atoms

particularly if we remember that they are somewhat deeper at the top of the
table.

As we increase the nuclear charge in each row, going from Li to Be to B
to C, etc., it is customary to write the number of valence electrons (rather
than the total nuclear charge Zn)as Z =1, 2, 3, 4..., so Z is now the Roman
numeral at the top of the columns in Table 4.1. The additional attractive
potential continues to lower the s-state energy and we see that € increases
almost linearly with Z,

etm
es= o Z=-34Z eV, (4.16)

This is not a prediction, but a plausible empirical trend. This works
particularly well with the lower rows, such as Na, Mg, Al, etc. where Eq.
(4.16) gives -3.4, -6.8. -10.2, -13.6, -17.0, -20.4, -23.8, and -27.2 for
columns I through VIII. A final rule of thumb is that for the entire table,

£p = E5/2. (4.17)

We shall confirm that this is expected from pseudopotential calculations in
Problem 4.1b. The two rules are so simple that we can always remember
approximately the energy levels for all of these elements. They will prove
very useful when we begin studying molecules and solids.

4.3 Pseudopotentials

The similarity of the energy levels in successive rows, quantified by
these approximate rules for the atomic term values, is the ultimate basis of
the periodic table of the elements, which classifies the elements by the
valence 1 through VIII at the top of Table 4.1. In one way the similarity is
surprising since in each successive row there is additional structure,
corresponding to an additional node, in the wavefunctions. It is a fact that
this additional structure in the wavefunction, associated with the atomic
core, does not greatly affect the energy of the states, nor therefore most
chemical and physical properties of the atom. This fact is made explicit in
the concept of a pseudopotential which replaces the true intricate
wavefunction by a simple pseudowavefunction.

There are many ways to formulate such pseudopotentials (for discussion
see Harrison (1966)), but one of the simplest, and the one we use here, is the
Ashcroft (1966) empty-core pseudopotential. In this approximation the
potential for the free atom is replaced by the true potential outside some
"core radius” and zero inside, with the core radius adjusted so that the
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lowest-energy s-state for that modified potential has energy equal to the
valence s-state. We may illustrate this using the hydrogen 2s-state, shown in
Fig. 4.2, along with the hydrogen potential. A pseudopotential w(r), also
shown, may be constructed such that the 1s-state is raised in energy up the
original 2s-state energy, -1/gme#h2. This nodeless pseudowavefunction is
also shown in Fig. 4.2. In the same way, the core radius could be adjusted
such that the pseudowavefunction had energy equal to any of the valence s-
state energies for the alkali metals Li, Na, K, etc., listed in Table 4.1.

The resulting pseudopotential can be used to describe the valence states
of the corresponding metal, but has eliminated the core states. The
pseudopotential will be much the same for all elements in one column of the
periodic table, since they have similar valence s-state energies, though the
real wavefunctions are quite different in the core region. In that way it
makes explicit the periodicity of the elements. More importantly, this
pseudopotential is sufficiently weak that it becomes understandable that the
electrons in metals are so much like free-electrons, as discussed in Section
2.2, in spite of the fact that the potentials are so large that they introduce
several nodes in the true wavefunction near each nucleus.

More generally a pseudopotential can be constructed for elements from
the Z 'th column in the periodic table as

v(r)

! / | k !
4

2r(A) 3

Fig. 4.2. v(r) is the potential -e2/r for hydrogen, and y is the
corresponding 2s-state, with one node. The empty-core pseudopotential
w(r) has the core radius r; adjusted such that its ls-state, the
pseudowavefunction ¢, has the same energy as the hydrogen 2s-state.

0 5
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( 0 for r<rc
w(r) = 4 (4.18)
[ -Ze2lr for r>r,

with generally an additional potential for r > r¢ to approximate the potential
arising from the charge of the other valence electrons (perhaps even
approximated by a uniform charge density). Since the core radius turns out
to lie generally outside the region where the electron density of the cores is
appreciable, they do not affect the potential. In Problem 4.3 we obtain the
core radii for lithium and sodium, using the s-state energies from Table 4.1.
This can be done with a numerical integration of the radial Schroedinger
Equation just as we obtained the harmonic-oscillator function in Problem
2.9. We also use this same pseudopotential for sodium to calculate the
lowest p-state energy, to be compared with the €p = €¢/2 of Eq. (4.17). We
find that generally the empty-core pseudopotentials obtained in this way give
the valence p-states in accord with Table 4.1 roughly on the scale of
accuracy of the agreement between that table and the experimental
ionization potentials.

When we put these atoms together to form solids, the representation of
the atomic potentials by weak pseudopotentials will turn out to be an

2
1
0T Wir) 1
N 7
2 | | | |
0 2 4 r(A) 6 8 10

Fig. 4.3. The pseudopotentials for sodium atoms, obtained in Problem 4.3
and similar to that shown in Fig. 4.2, are added for atoms at the sodium
spacing of 3.66 A to give the W(r) shown. The lowest electronic
pseudowavefunction in the metal is given approximately by a sum of the
corresponding atomic pseudowavefunctions, shown as ¢(r).
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extraordinary simplification. We shall see in Chapter 13 that it is a good
approximation to simply add the pseudopotentials for all of the atoms, as
illustrated in Fig. 4.3. Then the pseudowavefunction for the electronic state
in the metal is approximately given by the sum of atomic
pseudowavefunctions, just as the full wavefunction is written as a sum of
full atomic states in Chapter 6. This pseudowavefunction is shown also in
Fig. 4.3. We may note in passing that the net effect of the pseudopotential is
a repulsion, reducing the pseudowavefunction near the atomic site. The sum
of pseudowavefunctions in a metal is nearly enough constant (in strong
contrast to a sum of full atomic states) that we can approximate it as a
constant, and correct for the effect of the weak pseudopotential, making
many calculations for the solid elementary. For treating molecules in
Chapter 5, we return to a description in terms of full atomic states.

4.4 Nuclear Structure

For most purposes in this text, the only properties of the nucleus which
will be needed are its mass and its charge. However, the nucleus does have
structure on its own, which is heavily influenced by the quantum-mechanical
effects we have discussed. Further, we shall see in Section 10.4 that the
nuclear structure will actually determine how molecules can tumble, and the
zero spin we shall find for helium is responsible for its superfluidity which
we discuss in Section 10.3. Here we give only the most basic aspects of the
application of quantum theory to nuclear structure. More details are
available from many sources, such as Nuclear Structure Theory by Irvine
(1972).

The nucleus is composed of nucleons, the positively charged prorons and
the neutrons, without charge. Both have a spin angular momentum of 1/5h,
as do electrons, and very nearly the same mass as each other, about 2000
times that of the electron. The small difference is important because the
neutron, being slightly heavier and having therefore greater rest energy, can
beta-decay (with a half-life of several minutes) into a proton by emitting an
electron (beta-ray, or B-ray) and a neutrino, as we shall discuss in Section
9.5. This need not occur in the nucleus where the Coulomb energy from the
other protons raises the energy of the proton. They both have magnetic
moments but, not surprisingly, they are different. They are held together in
the nucleus by strong, short-range forces, which are very much the same
between any pair, protons with protons, protons with neutrons, and neutrons
with neutrons. We shall describe the origin of these forces, m-mesons, in
Section 17.4.



66 Chapter 4. Atoms

The experimental properties of the ground state of the nucleus are very
reminiscent of that of a drop of ordinary liquid, on a very much smaller
scale; the diameter of the nucleus as determined by scattering experiments is
several times 10-13 cm. The corresponding view is called the liguid-drop
model, discussed in the earliest days by Bohr. These drop-like properties
are that the nuclei are approximately spherical and the volume, as measured
by scattering experiments, is approximately proportional to the number of
nucleons making up the nucleus. Further, the binding energy of the nucleus
- the energy required to separate it into individual nucleons - is also
approximately proportional to the number of nucleons. Since the diameter
of the nucleons is small on the scale of the nucleus, the nucleus might best
be thought of as a drop of liquid metal, in which the distance between
nucleons, thought of as ion cores, is large compared to the core diameter.

Much more detailed properties of the nucleus can be obtained by taking
the same one-particle view which we developed for electrons in Section 4.2,
called the shell model for the nucleus. This approximation can be justified
by the same variational calculation which we used for electrons. Then we
say that each nucleon moves in the average potential arising from the
interaction with all of the other nucleons. This potential should be
spherically symmetric for the spherical nucleus and the liquid-drop model
would suggest a square-well potential such as we discussed in Section 2.4.
Then the one-particle states for a proton will again have the angular
dependence of the spherical harmonics and the radial wavefunctions, ji(kr),
and energies can be calculated just as we calculated the states for electrons.
Further, the protons have half-integral spin and will obey the Pauli Principle,
filling the lowest-energy states just as they were filled with electrons in
atoms and metals. Since the neutrons have almost the same strong
internuclear interaction, the neutron states will have very similar energies,
with the shifts due to lack of charge being quite small. The neutrons also

E'E%E Oxygen

-0@—CO0— Helium
P N

Fig. 4.4. The one-nucleon potential in the shell model is a spherical well
of approximately constant depth. The ls-state is lowest, and can be
occupied by two protons and two neutrons, giving the helium nucleus.
The next level is a p-state, which can accommodate up to six additional
protons and six additional neutrons. For successive additional protons
this gives Li, Be, B, C, N, and O. The full shell is 016, oxygen-16.
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obey the Pauli principle, and fill the neutron states independently of the
filling of the states by protons since the neutrons and protons are not
identical to each other and can both occupy the same states. This is just as
electrons - or protons - of different spin can occupy the same orbital.

This shell model immediately suggests some of the most important
properties of nuclei. First, as in atoms, there will be shells of levels of
increasing energy. If there are two protons in the nucleus, helium, they will
occupy the lowest s-state, as in Fig. 4.4. We see in Problem 4.2 that the
next highest state in the spherical cavity is a p-state, so in lithium, with three
protons, the third will go into that p-state at considerably higher energy.
This gives a correction to the liquid-drop model, indicating that the total
binding of the nucleons is not exactly proportional to the number of
nucleons, but those with a newly filled closed shell will be extra stable. This
happens again with a total of eight protons (oxygen) where the p-shell is
filled (Fig. 4.4) and in the fluorine nucleus the additional proton must go into
the 2s-state.

At the same time that we are filling the proton states, it will be favorable
to fill the neutron states, of very nearly the same energy. If in lithium (three
protons) we had not put two neutrons into the neutron 1s-state, this third
proton would decay by emitting a positron (the antiparticle version of beta-
decay) to transmute the nucleus to helium with an additional neutron. There
must always be approximately the same number of protons and neutrons for
these light nuclei. In particular, the helium nucleus with two protons and
two neutrons filling the 1s-nuclear states is especially stable, as is the
oxygen nucleus with eight protons and eight neutrons, both shown in Fig.
4.4. When a nuclear shell of protons is partly filled, the same shell of
neutrons can be partly filled with a different number of neutrons without
producing the instability mentioned for lithium, allowing different isofopes
of the same element, nuclei with the same number of protons, but different
numbers of neutrons.

As we move to increasingly large numbers of protons and neutrons in
the nucleus, the depth of the square well binding the nucleons remains
approximately constant because the nucleon-nucleon interaction is of so
short a range that each nucleon sees only a few neighbors at one time. Thus
the well expands in volume and the one-particle states become closer
together. As in adding atoms to a metal the Fermi energy remains about the
same, as does the cohesive energy per nucleon, and the volume increases,
all as suggested by the liquid-drop model. However, as there are more and
more protons, the Coulomb interaction between them raises the proton
energy more and more above the neutron energy and it becomes favorable to
have more neutrons than protons, up to 50% more for the heavier elements.
Otherwise the protons would emit positrons to produce more neutrons.
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This simplest shell model also describes excited states of nuclei,
analogous to excited electronic states of atoms. Also as in atoms a nucleus
in an excited state can emit photons and drop to the ground state. These
processes can be calculated just as we calculate them for electrons in atoms,
molecules, and solids. In the case of nuclei, which are so strongly bound,
the energy differences are huge and the photons have energies of the order of
millions of electron volts, gamma rays, rather than a few electron volts for
electronic transitions in atoms.

The shell model provides an understanding of the magnetic moments of
nuclei. In particular, in the helium nucleus with the proton 1s-state filled
with both spins, and of the neutron 1s-state filled, the nucleus has no net spin
and no magnetic moment. The same is true of the nucleus of oxygen with its
2p-shells completely filled. We shall discuss some of the consequences of
these zero spins in Chapter 10. The magnetic moments of other nuclei allow
nuclear magnetic resonance (NMR) when magnetic fields are applied and
microwave radiation is used to cause transitions between different
orientations of the nuclear magnetic moment.

The shell model also provides the basis for the theory of fission and
fusion of nuclei. It is of course an approximate theory as is our theory of
electronic states in atoms, but again a very successful one. For the case of
fission of a heavy nucleus, such as uranium with a ratio of neutrons to
protons of 1.6, into two lighter nuclei, with smaller ratios for the stable
isotopes, it is not surprising that extra neutrons are emitted. These neutrons
causing fission of other uranium nuclei is of course the origin of the chain
reactions in nuclear reactors and bombs. Much more detailed theory is
necessary to describe such processes well. One of the most important
refinements of the theory is the addition of spin-orbit coupling, which we
shall describe for electronic systems in Section 22.5.

There is also structure to the nucleons, each being constructed of three
quarks, held together by gluons. Indeed the quarks may be without mass, so
the nucleon mass arises from the binding of the quarks together. The
corresponding Standard Model of fundamental particles is beyond the scope
of this text, and of this author. Isolated quarks have not been observed, and
indeed they may be unobservable in principle. Just as the ends of a string
cannot be isolated, pulling quarks apart may require enough energy to
produce the new quarks needed to form new nucleons. This may be the
most suitable point to stop the discussion at the fundamental-particle end. In
this realm nature has given us an extraordinary variety of systems, but again
quantum mechanics governs the behavior of those systems.
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When we bring atoms together to form molecules, we may use the same
one-electron approximation which we used for atoms, and the potential, or
pseudopotential, is approximately a superposition of atomic potentials, V(r)
= Zj v(r - 1j), summed over the positions rj of the nuclei. However, we have
lost the spherical symmetry, the corresponding factorization of the
wavefunction, and reduction to a simple radial Schroedinger Equation. An
alternative approximation has proven very successful, the representation of
the states as Linear Combinations of Atomic Orbitals, the LCAO method. It
allows meaningful molecular states even including only the valence atomic
states, those listed in Table 4.1, in that representation. Further, it is
applicable to solids as well as to molecules. Strictly speaking, we shall not
use the LCAO method here, but the concept of the LCAO method, and
obtain some of the parameters needed for the calculation from other sources.
Such an approach is generally called Tight-Binding Theory. We apply this
theory first to a molecule composed of two lithium atoms, which is a simple
prototype of molecules in general, and then move on to other molecules with
new features. The hydrogen molecule, H2, might be simpler, but with no
cores it is scarcely any kind of prototype.

5.1 The Li» Molecule

For the lithium atom the valence s-state was obtained from

"2
-2 VAW - X)) + ¥(r - YT - 1)) = B0y (r - 1) (5.1)
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For the molecule we add the potentials centered at two positions, ry and rp,
giving again a one-electron equation, Eq. (5.1), but with v(r - rj) replaced
by V(r) = v(r - r1) + v(r - r2), shown at the bottom in Fig. 5.1. This
Hamiltonian is symmetric around the nuclear midpoint (r — -r relative to
this center) and it follows that the eigenstates can be taken as symmetric or
antisymmetric relative to this point. [ This follows because if y(r) is an
eigenstate of H , then W(-r) is an eigenstate of the same energy, as are y(r)
v(-r) each of which is either even or odd or zero.] Thus if we are to
approximate the eigenstates of the molecule as linear combinations of the
atomic s-states, we shall approximate them by

w(r) = WYos(r - rl)\f—; Yos(r - 12) . (5.2)

The combination with the plus has lower energy, is the bonding state,
and is plotted in Fig. 5.1. The combination with the minus is the
antibonding state, has one more node and therefore has higher energy. We
might expect these tight-binding states to be more accurate when the two
atoms are further apart, but they turn out to be meaningful at the observed
spacing of the molecule, 2.67A.

We may estimate the energy of either state as the expectation value of

J\UN/\U/\ =
V(z) A

RO

Fig. 5.1. Below is a plot of the potential for a Lip molecule, plotted along
the z-axis through both nuclei, and measured from the midpoint. Above is
the even (bonding) combination of lithium 2s-states.
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the Hamiltonian with respect to this approximate state, <H> = f\u*(r)l—]w(r)
d3r/f\u*(r)\u(r) d3r as in Egs. (1.13) and (1.14). This is a good point to
introduce the Dirac notation for the states and expectation values which we
showed in Fig. 2.9 and which we shall use throughout the text. Each state
y(r) is represented by a ker , written |y>, usually with the symbol y
replaced by a symbol distinguishing the state. We used such symbols for
states in spherical potentials for Fig. 2.8. Here the atomic state yog(r - r1)
might be written |1>. The complex conjugate of this state is written as a bra,
<1|. When the bra and the ket face each other (a bracket), we are to integrate
over all coordinates involving these states,

L?2H|1>= _[luzs(r - r)*Hyog(r - 11) d3r. (5.3)

The numbers Hjj = <i|H|j> are called matrix elements, making up a matrix,
with as many rows and columns as we have states.

In terms of this notation, we have written our bonding state as (|1> +
|2>)2 . Note that if the states |I> and |2> are normalized, <1|1> = <2[2> =
1, the bonding state is approximately normalized, (<1|1> + <1|2> + <2|1> +
<2[2>)2 =1 if the overlap <1|2> = <2|1> is small. In tight-binding theory
we will take these overlaps, representing the nonorthogonality of the two
atomic states, to be zero. We shall partly correct for this approximation by
adjusting other parameters which enter our calculations, and partly by
introducing shortly their real effect in holding the atoms apart. If we do
neglect these overlaps, the energy of the bonding state of Eq. (5.2) becomes

Jy(r)Hy(r) d3r <1|H|1> + <2|H]2> + 2<1|H]2>
ER = <H =

> = > . (5.4)
Sy a3r

We have taken <2|H|1> = <1|H|2> , which is true if the two states are
real functions. This is obvious for the integration over the potential, and
proven by two partial integrations for the kinetic energy operator. The
mathematical statement is that <2{H|1>* = <1|H|2> , being called the
Hermitian property of the Hamiltonian matrix, and it will apply to all
operators we consider. We further note that <1|H|1> is the energy of the first
atomic state, which we write €5 , though it could be shifted from the free-
atom value by the potential from the neighboring atom. Finally, we write
the matrix element <1|H|2> between two neighboring atomic s-states as
Vsso, a notation we shall use in the remainder of the text. The ¢ subscript is
redundant in this case, in representing the component of angular momentum
around the internuclear axis as m = 0, always zero for s-states. When there
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is one unit of angular momentum around this axis we shall use the subscript

7, analogous to the "p" in p-states, etc. This set of standard approximations,
which has proven very useful, leads us from Eq. (5.4) to

€B = & + Vsso- (5.5)

The same approximations for the antibonding state, the minus in Eq. (5.2),
leads to €a = €5 - Vgso.

We shall find in Section 6.2 that in solids there is a simple approximate
formula for this Vs for two atoms separated by the distance d , which

should also apply approximately in molecules. It is

2 R2
Vsso = “% md? (5.6)

It is negative as we might expect since <1|H|2> is
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2
<1J( -hZTVw(r-rl) +(r-r2))[2> = <1| €& + v(r-r)2> = <1|v(r-r1)|2>.(5.7)

In the first step we noted that |2> is an eigenstate of the Hamiltonian with
only the potential v(r-r), and in the final step we again neglected <1[2>. In
the final form, we note that |1> and [2> are of the same sign where they
overlap and the potential is negative, leading to a negative <1|H|2>. Further,
Vsso decreases at large spacing, as we should expect.

If we are willing to use this approximate expression, Eq. (5.6), and the
approximations which led us to Eq. (5.5), we obtain the electronic structure
of this Li» molecule, in the same sense we obtained the electronic structure
for the isolated atoms, but the predictions for the molecule are much richer.
We saw in Eq. (4.12) that the total energy may be thought of as the sum of
the energies of occupied states in the system. At least any change in energy
of the system as the atoms are rearranged can be estimated as the change in
that energy. Each lithium atom began with one electron in a state with
energy €, and with two electrons in core states with energies which have
negligible change as the atoms are rearranged. Thus we now have the ability
to calculate the total energy of the molecule, which allows us to calculate the
molecular binding energy and the vibrational frequency, as well as the
electric polarizability and the optical spectra. Some of these are carried out
in Problems 5.1 and 5.2
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5.2 The Variational Method

For Liz we could use the symmetry of the molecule to write down the
molecular electronic states directly, but when that symmetry is not present,
we use the variational method, which we introduced in Section 4.2. We
again wish to write the molecular state as a linear combination of atomic
orbitals |j>,

> =25 45 |j>, (5.8)

but now we do not know the coefficients. If we did, we would evaluate the
energy as in Eq. (5.4) as

<y|H|y> Zijiui*ui<i| H)i>
e = S = . (5.9)
vy Ziiurui<jli>

The idea of the variational method is that the energy obtained from Eq.
(5.9) will always be higher than the real ground-state (lowest) energy
eigenvalue, as we showed in Section 4.2. The best estimate of the ground
state which we can make is the lowest expectation value we can obtain using
that form. This was illustrated in Problem 4.1 by approximating the
hydrogen atomic state by a form A e -%? and adjusting o to obtain the lowest
energy state. The form is not very close to the real hydrogen state which we
described in Section 4.1, but by doing the variation we obtain a reasonable
estimate of the ground state.

Returning to the approximate expansion in atomic states, the best
estimate we can obtain for the ground state is the lowest possible energy
from Eq. (5.9). Thus we should vary the u; in Eq. (5.9) to obtain the Iowest
energy to get the best estimate of the ground state energy. When we do this,
we will find not only our best estimate of the ground state, but the lowest
possible energy of a state orthogonal to our ground-state estimate, which is
our best estimate of the second-lowest state. Similarly, we obtain estimates
for as many eigenstates as we have terms in our expansion, Eq. (5.8).

We can easily obtain the minimum by setting the derivative of Eq. (5.9)
with respect to each u; equal to zero, but we shall obtain the same result
using Lagrange multipliers (e. g., Mathews and Walker (1964), p. 313), a
method which will be very useful at other points in the book, particularly for
statistical physics in Chapter 10. We develop it first for a case with only two
terms in the expansion, Eq. (5.8), and take the coefficients uj to be real,
which is not an important limitation. In tight-binding theory we neglect the
nonorthogonality <1|2> as we did for Lip, and normalize the states, g(u1,u2)
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=u12 +u22 - 1 = 0. Then the denominator in Eq. (5.9) is one, and we must
vary the u] and up (the variations are written duj and dup) subject to
retaining the normalization condition dg/duiduy + dg/duz duz = 0. The
condition for a minimum € from Eq. (5.9) is then 0d€/du1du] + d€/duz dugp =
0. We take the two terms to opposite sides of both equations and divide, to
see that

og/duy deldun
dglouy ~ dg/dun

A (5.10)

with the common ratio A called the Lagrange multiplier. These two
equations with A are,

de/duy - Adgldu1 =0,
(5.11)
0e/duz - Adglour =0,

exactly the conditions we obtain if we minimize the energy <y |H|y> -
M<w|u> - 1) as if u) and up were independent variables without any
condition. The two equations are solved together to obtain the state. For

this case, the two equations, using <y|H[y> = Zjiuj*ui<j[H|i>, are

<1|H|1>u| + <1|H|2>u2 = Aui,
(5.12)
<2|H|1>u| + <2|H]2>up = Aup.

(We have divided out a factor of two and noted that <1|H|2> = <2|H|1> for
this case and written the form which is the proper generalization to other
systems.) If we multiply the first equation by #] and the second by u2 and
add the two equations, we see that A is our estimate of the energy, € in Eq.
(5.9), and so we may replace A by € in Eq. (5.12).

For the more general case where we expand the state in a large number N
of terms, as in Eq. (5.8), we write <j|H|&> = Hji and these variational
equations generalize to the matrix equation

2 Hju; = euj, (5.13)

with N equations, numbered by j . Solving these N linear algebraic
equations yields N eigenvalues € with their N orthogonal eigenstates {u;}.

The lowest eigenvalue € is our estimate of the ground state, the next is our
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estimate of the first excited state (the lowest energy state of the form of Eq.
(5.8) and orthogonal to the approximate ground state), etc.

This is an extraordinarily useful and powerful method. No matter how
difficult the problem, if our physical intuition suggests the nature of the
states we may write an approximate state Eq. (5.8) corresponding to that
intuition and obtain algebraically the best solutions consistent with that
intuition. One reason it is as accurate as it is, is that because of the
variational condition, if we have made some small error 8V in the state, the
error in the energy eigenvalue will only be of order 3y?2, and even smaller.

We used a variational method to obtain the Hartree Equations for many-
electron systems, which should give the best product wavefunction, and the
Hartree-Fock Equations which give the best one-electron approximation
with antisymmetric states. Similarly, the Bardeen-Cooper-Schrieffer (1957)
ground-state wavefunction gives the best "paired” electron state (allowing
for uncertain electron numbers, as we shall see). Here we use the variational
calculation to obtain the best approximate one-electron states based upon
linear combinations of atomic orbitals.

5.3 Molecular Orbitals

The first generalization we make is for an expansion again in only two
states, but with different energies. In a molecule Nal.i it is based on the s-
states from each atom, having energies from Table 4.1 of €1 = -4.96 eV for
sodium and €7 = -5.34 eV for lithium. Making the same approximations as
for Liy, the two variational Egs. (5.12) become

€1u] + Vssou2 =€ut,

(5.14)
Vsso'ul + €2up =€ uj.

They may be solved together by eliminating the «] and u? to obtain

€1 +& €1 -¢
=" 21\/[%)2+v5302. (5.15)

We see that this leads to the correct result, € = €5 + Vg3g, for the case in
which €1 = €2 = &, and substituting either of these values into Eqgs. (5.14)
yields up = Fuy , with magnitude equal to 1/\2 for normalization. Eq. (5.14)
also gives the correct results when Vgso= 0; they are € = €1 and €).

This problem of two coupled levels arises so frequently that it is
convenient to write it in general form. For two levels, coupled by a covalent
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energy of magnitude V7, and differing in energy by twice a polar energy Vs
= (€2 - €1)/2, the resulting state energies are as in Eq. (5.15),

€= € £\ V2 + V32 | (5.16)

with of course € = (€2 + €1)/2. The energy may be substituted back into the
variational equations to obtain the coefficients »j. It may be readily verified
that the results may be written in terms of the polarity

V3
Op = F—— 5.17
P V V22 + V32 C-17)

/1+a h-a
up = —2—‘9 , up = *2‘9 (5.18)

for the lower, or bonding, state and

1-o 1+
uj = \’-2—9, u2=-\,—72 (5.19)

for the upper, or antibonding, state. We may easily confirm that these lead to
the correct results for the case V3 = 0 and for the case Vo = 0, and that the
bonding and antibonding states are orthogonal to each other and normalized.

An interesting application of such equations is the calculation of the
polarizability of the Liz molecule, carried out in Problem 5.2. V3 is zero, but
if we apply an electric field E along the internuclear axis d , an energy
difference for the two states arises equal to €2 - €] = -(-¢)E-d. This then
gives rise to a dipole p = -ed(u22 - u12)/2 for each of two electrons. In
Problem 5.2 we obtain the polarizability o defined by p = aE , neglecting
higher-order terms in E.

It is instructive to look briefly at the effects of the nonorthogonality
<ilj> of the two atomic states, which we have thus far neglected. We can in
fact include them in the variational energy of Eq. (5.9), which we do for the
case of two coupled states with V3 = 0. We write €] = <l|H|1> = <2|H|2>
and note <2|1> = <1|2> if both are real and correspondingly <2|H|1> =

as




5.4 Perturbation Theory 77

<1]H|2>. Then for this case, we have seen that because of the symmetry
states can be written with up = uj . Eq. (5.9) becomes

_ <y|Hly> &1 £ <1|H|2>
T o<yly> T 1x<12>

(5.20)

Half the energy difference between the antibonding state (u2 = - uj if the
atomic wavefunctions are the same on the two sites) and the bonding state,
which we identify with the covalent energy, is

g1 +<lH]2> g1 -<lH]2>

V2= a<iz>) T 20 -<12>)
(5.21)
e1<12> - <1|H|2> <1lv(r-r1)[2>
1-<1)2>2 =T 1-<1>2

In the final step we used the first equality in Eq. (5.7).

We may also obtain the average of the bonding and antibonding states
from Eq. (5.20), substituting the V2 from the second form in Eq. (5.21), to
find that it is given by exactly €] + <1|2>V> . This is illustrated in Fig. 5.2
where we confirm that if we neglect the nonorthogonality <1|2>, the
antibonding and bonding states are split equally up and down, and that the
effect of the nonorthogonality is simply to shift both levels upward. In Li>,
with two electrons in the bonding state this nonorthogonality adds an
overlap repulsion to the system, an increase in energy as the atoms are
brought together, of

Vo(d) = 2<12>Va(d) o % . (5.22)

To obtain the final form we note that Hoffmann (1963) speculated that
<1|H|2> could be related approximately to <1|2> by keeping the first term
in the middle form in Eq. (5.7) , rather than the second term as we did.

¥
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<12>%

Fig. 5.2. When two levels at energy €) are coupled, they split to a bonding
energy level at €, and an antibonding level at g,, differing in energy by
twice the covalent energy V, . The average energy shifts up by the
product of this covalent energy and the nonorthogonality <1|2>.
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Making it symmetric and inserting a scale factor K , he wrote the central
assumption of Extended Hiickel Theory ,

€1 +€
<, (5.23)

<l|H]2>=K

This has turned out to be sufficiently successful that we might use it to
suggest that both terms in the numerator of the middle form in Eq. (5.21) are
proportional to <1|2> so that if <1|2> is not too large in the denominator,
both factors in Eq. (5.22) may have similar dependence upon d as in Eq.
(5.6). It then follows that the repulsion Vp(d) is approximately proportional
to 1/d* as we wrote in Eq. (5.22).

This overlap repulsion is essential to the understanding of the molecule.
Without it the energy from the two electrons in the bond (with energy given
by Eq. (5.16) with in this case V3 = 0 and with the minus sign) would
continue to drop as d decreases and V2 increases as 1/d2. However, the
overlap repulsion, varying as A/d4 will always win at low enough d , and we
may adjust the coefficient A so that the minimum comes at the observed
spacing. This is all we shall need to calculate the energy gained in the
formation of the molecule, given the spacing of that molecule, as we see in
Problem 5.1, where the repulsion cancels half the gain from bond formation.

When the two atomic levels have different energy, so V3 is not zero, a
similar analysis (Harrison (1980) Appendix B) shows that we must modify
V3 to /a(e2 - €1)/V1 - <1|2>2 and then the splitting is again correctly given
by Eq. (5.16) and again the overlap repulsion is given by Eq. (5.22) and the
V2 of Eq. (5.21).

The extension of this approach to the effects of nonorthogonality when
there are more than two coupled levels is considerably more complicated
(Van Schilfgaarde and Harrison (1986)). It will be adequate here to continue
treating the atomic states as orthogonal, and to approximate the effects of
nonorthogonality by an overlap repulsion as given in Eq. (5.22). Then the
problem is reduced to the solution of a set of algebraic equations, Egs.
(5.13), one for each orbital included in the expansion. The energy
eigenvalues are obtained by solving the secular equation, setting the secular
determinant equal to zero.

Det(Hjj - £6ij) = 0. (5.24)

We obtain N solutions ¢€x if there are N rows, and N columns, of the
Hamiltonian matrix. For each eigenvalue g we substitute back in Eq. (5.13)
to obtain the corresponding eigenvector |k>= (u1, u2, ...)k . We note here a
generality of the definition of states [k> in Dirac notation. We have thought
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of such states as functions of position yk(r), but now can equivalently think
of them as vectors in N-dimensional space with components u1, u3....

5.4 Perturbation Theory

We imagine a starting Hamiltonian HO which is sufficiently simple that
we can calculate its energy eigenstates |/> and their energies ejo . This
might be the Hamiltonian for an isolated atom. Then we add a small
correction, a perturbation, H! which might be a small change in potential. If
the perturbation is small enough that we may neglect any change in the
eigenstates themselves, there may still be a change in the energy. We
evaluate that energy as <j|HO + H!|j> = £;0 + <j|H!|j> , and the second term
is called the first-order term in perturbation theory for the energy of the
state. Any other correction to the energy must come from changes in the
state itself.

We may actually obtain those corrections directly for the case of two
coupled levels, for which we obtained the exact energy in Eq. (5.15), by
regarding the coupling Vg as the perturbation and expanding Eq. (5.15) in
Vsso- This yields

€1 +€ €1 -¢€
gz__lz_:zi\/(lz 2)2+szz

_Eiter ei-ef, Vsso? _ Vsso?
=72 T toler-e22t ) TE te i ey

(5.25)

+ ...

for the plus sign, and the same final form for the minus sign with 1 and 2
interchanged. The shift given by Vgs2/(€] - €2) is called the second-order
term in perturbation theory for the energy of the state. There are higher-
order terms, but if the perturbation is small compared to the difference in the
energies of the coupled states they will be smaller, and they are usually not
incladed. This correction has arisen entirely from the changes in the state.
We may also obtain the change in the state itself by making a similar

expansion of the state by expanding the coefficients given in Eq. (5.18) for
small Vssg . We then find that the state |1> is modified as

Vsso
€1 -€2

[1>— 1>+ 2>+ .. (5.26)

The second term is called the first-order correction to the state.
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These results may be directly generalized to many coupled states by
systematically expanding the Egs. (5.13) in a perturbation H! which is
small. It leads to an energy

<jlHi><iH1|j>
g = &0+ <HL|j> + % i Jlf)_e’lo > (5.27)

and a state given by

> |+ S 2 S (5.28)

g0 - &0

These are useful only if the matrix elements <i|Hl|j> are small
compared to the energy differences €0 - ;0 so that the expansions converge
and the discarded terms are smaller. If the energy differences are not small,
we must return to the square-root form in Eq. (5.25) for those two levels,
sometimes called "degenerate perturbation theory". Frequently then the
coupling with the remaining states can be included using the perturbation
theory of (5.27).

We note from the final term in Eq. (5.27) that if the state |j> is lower in
energy than the state |i> the denominator will be negative and then since the
numerator <jlH|i><ilH1|j> = |<j|H!|i>|? is always positive the energy of the
state |j> will be further lowered. Similarly the energy of the higher state will
be raised further. This repulsion of the levels is illustrated in Fig. 5.3. This
same effect occurs in classical physics. If two harmonic oscillators of
different frequency are coupled by a term bilinear in the two displacements,
Kujuz , the lower-frequency mode will be lowered further in frequency and
the frequency of the higher-frequency mode will be raised.

We may similarly interpret the perturbation theory correction to the
state. We see from Eq. (5.28) that if the state |j> is lower in energy than the
state |i>, the denominator will again be negative. If the coupling is negative,
as is Vggg, then the second state will be added in a bonding relationship, with

S S— .
J
g\
Fig. 5.3. Two coupled levels shift their energies away from each other,
according to Eq. (5.27), an effect called the repulsion between levels.
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no node between the atoms, consistent with a lowering in the energy. If the
second state is of lower energy, it will be added in an antibonding
relationship, consistent with a raising of the energy.

The perturbation theory corresponding to Egs. (5.27) and (5.28) has
proven to be extremely fruitful and will be used extensively here. In Chapter
7 we shall generalize it to include perturbations which depend upon time. In
Problem 5.3 we apply it to calculate the polarizability of the Liz molecule by
noting that an electric field couples the occupied bonding levels to the
antibonding levels, thereby lowering their energy in proportion to the square
of the electric field according to Eq. (5.27). The corresponding change in
energy of the molecule is equated to the change of energy -1/20E2 of a
system of polarizability o to obtain that polarizability, an alternative method
to that used in Problem 5.2. This same approach is also used in Problem 5.3
to find the polarizability of a quantum-well state in a semiconductor.

5.5 N2, CO, and CO»

We turn next to molecular orbitals in a series of other molecules, each of
which introduces important new features. The nitrogen atom has a
configuration (defined in Section 4.2) of (1s2)2s23p3 so that clearly p-states
will be involved in the molecular orbitals. We are still making the
approximation that the orbitals can be written as a linear combination of
atomic orbitals, [MO>= Z; u; |j>, but now the sum can contain eight terms,
the 2s-orbital and the three 2p-orbitals on each atom. We again neglect any
effect of the molecular formation on the ls-core electronic states. In
principle, this requires the solution of eight simultaneous equations, Egs.
(5.13), but the high symmetry of the molecule greatly simplifies the

d=1.09 A
1 /l T

s> 7\/\ Oy
Ipx> / 1 2 )//
|py> S~—T—
Ipz> Gx

l/

O.

z

Fig. 5.4. The N, molecule shown to the right has reflection symmetry oy
and oy in two perpendicular planes through the two nuclei and 67 in the
plane bisecting the internuclear vector. All p-states on both atoms are
taken to be odd under either the oy, the oy, or the o, reflection in a plane
containing the atomic nucleus.
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calculation. The molecule, and therefore the Hamiltonian, has three
independent reflection planes, illustrated in Fig. 5.4, and every molecular
orbital can be chosen to be even or odd under each of the reflections.

We consider first states which are odd under the reflection oy shown. In
fact only the two |py> states are odd under that reflection so any molecular
orbital odd under that reflection must contain only those two atomic states,
as illustrated in Fig. 5.5. The molecular orbitals will be even under the
reflection Ox; there are no states based upon these atomic orbitals which are
odd under both 6x and oy, though atomic d-states would allow such
symmetry. This becomes just like the Lip molecule, with bonding and
antibonding states (even and odd, respectively, under 6z) of energies equal
to the atomic-state energy plus or minus the matrix element between them,
which in this case is called Vppr. The two subscripts "p" are because it is a
coupling between p-states, and the 7 represents one unit of angular
momentum, m = *1, around the z-axis.(Section 2.4) If we construct such
atomic states with one unit of angular momentum around the molecular axis,
(px> £ i|py>)/\/2, their matrix element is called Vppr and it is equal to the
matrix element between two states |py>. We shall see in Section 6.2 that its
magnitude is approximately the same as Vgss, given in Eq. (5.6). Thus the

energy of the resulting two "7m-states” is
En = i—:p * Vppn (529)

Obviously the energy of the 7-states based upon atomic orbitals |px> is the
same. We have used symmetry to obtain four of the eight states
immediately.

We proceed to the remaining four, which are even under ox and Oy.
They will be linear combinations of the states |pz> and |s>. We may in fact
take even and odd combinations of the s-states which, exactly as for Lip,
have energy <y|H|y> = €5 £ V50, though we shall see that they are coupled
to the corresponding states (|pz1> * |pZ2>)/\/2, which have energy €p t Vppo
with Vppo given by the same form as in Eq. (5.6) but, as we shall see in
Section 6.2, -2/8 replaced by +312/8. The subscript G again refers to zero

Ipy1>% Ipyo>
V2

Fig. 5.5. Only the |py> states are odd under oy and can therefore enter a
molecular orbital which is odd under that ref%ection. These molecular
orbitals will be even under ox and can be even or odd under G;.
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angular momentum around the internuclear axis, and in this case it is chosen
by convention to correspond to both orbitals having the same orientation,
which we represent graphically as O® O®. Where the two orbitals overlap
they are of opposite sign so, with a negative potential, we have a positive
matrix element Vppo by the same argument which gave a negative Vssg and
anegative Vppr,

Now, if we seek a molecular orbital which is even under the reflection
Oz , it must be a combination of the bonding s-state, and the symmetric
combination of p-states,O® ©0O, as illustrated in Fig. 5.6. This is called the
bonding ps-state, and the matrix element between the two p-orbitals is the
negative -Vpps. We may easily evaluate the coupling between these two
bonding states, (1/\/2)(<s1[ + <s2\)|H|(pz1> - Ipz2>)N2 = -Vspo» where Vipo
is a coupling between an s-state and a p-state, with orientation ® O®. Vspo
will be taken in Section 6.2 to be given by Eq. (5.6) with -n2/8 replaced by
+m/2. It is positive since the wavefunction of the s-state is taken positive in
the region of overlap while the p-state is negative. The coupling between
orbitals with the opposite orientation, O® @), is negative. The energy of
these two coupled bonding states is obtained as in Eq.(5.15) as

€ +Vsso + €p - V] €s +Vsso - €p + Vppo)2
. = s +Vsso 2p ppo iV( s tVsso 2P PPU) +Vsp0'2 . (5.30)

We may construct a state from the antibonding combination of s-states and
of p-states in the same way, and obtain exactly the same expression but with
the sign changed in front of Vgsg and Vpps. This gives the other four states,
called o-states, in addition to the 7-states.

It can be helpful to illustrate this calculation with an energy diagram, as
in Fig. 5.7. On the left are the starting levels, with the introduction of
couplings as we move to the right. The 1s-levels lie far below. We have

% GD €5~ Vppo
Ve <
@ 8S + VSSG

Fig. 5.6. Construction of the bonding o-states in Ny from s-states and o-
oriented p-states (no angular momentum around the internuclear axis).
The bonding state is even under all three reflections of Fig. 5.4.
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Shift ffom V,

spo

Occupied

Fig. 5.7. A schematic energy-level diagram illustrating the formation of
molecular levels in nitrogen. First the n-bonds and antibonds are formed,
then the o-bonding and c-antibonding s- and p-levels, which are then
coupled to form the final set. The ten valence electrons per molecule fill
the lowest five levels.

five valence electrons from each nitrogen atom which fill the lowest five
levels, each with a spin-up and a spin-down electron, as indicated.

We may evaluate each of these energies, using the s- and p-state energies
from Table 4.1 and evaluating the couplings for the formulae given with d =
1.09A. These are listed in Table 5.1, along with values obtained from a
much earlier, but much more complete calculation. They are listed with
standard notation as ¢ or 7, and indicating g for even (gerade in German) if
the state is even under inversion through the midpoint between the atorms,
and u (ungerade) for odd. (This is different from reflection symmetry for the
T-states).

The comparison is informative. The values for the deeper levels are of
the correct general order although the calculation done here was almost
trivial. It is usual that the higher-energy states, which in fact are in the range
of other atomic states which were not included in the calculation, are very
poorly given. It is often not important since the highest occupied levels
(called HOMO's, Highest Occupied Molecular Orbitals, by chemists), and
the lowest empty levels (called LUMO's, Lowest Unoccupied Molecular
Orbitals), are most important. The effects of nonorthogonality, which we
include only as a separate overlap repulsion, are not included and our values,
deeper than the full calculation, are partly explained by that. All of these
discrepancies seem usually to be much worse in the first row of the periodic
table, and would be less for the heavier elements. In Problem 5.4 we
calculate the change in the sum of one-electron energies in forming the
molecule, and divide by two (approximate correction for overlap repulsion)
to estimate the cohesion. Usually we overestimate couplings Vg, etc.,
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Table 5.1. Energies, in eV, of the molecular orbitals for N calculated in
the text, compared with values from Ransil (1960).

Simple Theory Ransil
3oy 13.1 30.0
Img -5.9 8.2
20y -21.5 -19.4
Imy, -21.8 -14.8
3oy -25.6 -15.1
20, -46.1 -38.6

and bond energies by a factor of two for first-row systems, but here it is a
considerably greater over-estimate in comparison to the observed 9.7 eV per
molecule, and we may expect to do better on other systems than N2 and the
CO treated in Problems 5.4 and 5.5.

There is a short cut, which is of no importance here but becomes
essential in other systems. It is the use of hybrid orbitals, combinations of
two orbitals of different energy on the same atom. We are assuming that the
c-molecular orbital can be expanded in terms of the four nitrogen orbitals,
and we could equally as well use sp-hybrids,

+ipz>
> = %‘2227, (5.31)

on each atom. These four hybrids, each with energy expectation value of (&g
+ €p)/2, are equivalent for expansion, but they allow an approximation. We
note that the s-state and the p-state wavefunctions are both positive to the
right of the atom (©® + O®) and add, while they cancel on the left. In that
sense the orbital with the plus in * "leans” to the right and that with the
minus leans to the left. We might expect the coupling between the inward-
pointing hybrids (Vsse - 2Vspo - Vppo)/2 = -4.04h2/(md?2) to be much larger
than that between outward-point hybrids (Vsso + 2Vspo - Vppo)/2 = -0.90
h2/(md?) , and it clearly is. We may in fact neglect any coupling with an
outward-pointing hybrid, leaving them at their hybrid energy and include
only the coupling, with magnitude which we called the covalent energy V>,
between hybrids directed into the bond. If we do that, we obtain two hybrid
energies (nonbonding states) at (€5 + €p)/2 = -20.0 eV and a bond and
antibond at -45.9 eV and +5.9 eV. This is not so far from the corresponding
-21.5, -25.6, -46.1, and +13.1 which we obtained for the first column in
Table 5.1. We see in Problem 5.4 that it of course also predicts a very
similar cohesion to that of the full calculation.
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It may not be worth making the approximation when the symmetry is so
high that we can obtain a solution by the solution of quadratic equations, Eq.
(5.30). However, if we go to carbon monoxide, which has the same number
of electrons per molecule but no reflection symmetry, we must solve four
simultaneous equations to obtain the c-orbital energies. However, in
Problem 5.5 we form sp-hybrids on the oxygen and carbon, and can obtain
the bond and antibond energies from the solution of a quadratic equation.
This enables a simple estimate of the cohesion, as for N». The use of
hybrids is of even greater advantage in crystalline diamond or silicon, where
it allows the approximation of treating the crystal as made up of independent
bonds.

We may consider one more molecule, CO7, which forms with the three
nuclei in a straight line, equally spaced, with carbon in the center and with a
carbon-oxygen distance of d = 1.16 A, as shown in Fig. 5.8. We now have
twelve orbitals, but all three reflection symmetries of Fig. 5.4. We proceed
part way with the analysis, which is straightforward, though a little intricate.
Beginning with states which are odd under the reflection oy, there is one py-
state on each atom . If we seek a molecular orbital also odd under the
reflection 07 it cannot include the py-state on the carbon atom (which we
number as 2) in the center and will simply be (lpy1> - Ipy3>/\/2, with
molecular-orbital energy €p(O) since it contains no state coupled to these
two atomic orbitals. The states even under ¢, will contain an even

combination (|py1> + lpy3>/\/2 coupled to the carbon p-state [py2> by
\/EVppn and have energy

T

&)+ 550 \/[M@f +2Wipr? (15.32)

This, and the |px> counterparts, are multicenter bonds, involving orbitals

from three atoms. The energy could be directly evaluated from the orbital
energies from Table 4.1 and Vppr evaluated in terms of the oxygen-carbon

spacing d.

Fig. 5.8. The carbon dioxide molecule is linear, as shown to the left. The
three |py> orbitals form three m-states, as shown to the right, each
degenerate with the mt-states based upon the [px> orbitals as shown.
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The remaining six molecular orbitals are even under both 6x and oy and
are based upon an s- and a p;-state on each atom. The molecular orbital
even under G, contains only the carbon s-state, the even combination of
oxygen s-states (|s;> + |s3>)/\/2 and the even combination of oxygen pz-
states. This requires the solution of a cubic equation. Similarly the
molecular orbital odd under o, contains only the carbon pz-state and the odd
combinations of oxygen s- and p-states, again requiring solution of a cubic
equation. In fact the oxygen s-states are so deep in energy that it would not
be a bad approximation to neglect their coupling to the carbon states and
take them as two states at energy €5(0), leaving only quadratic equations and
solutions of the form of Eq. (15.32), but with Vppr replaced by Vppe for the
odd molecular orbital and with Vppr replaced by Vspo and €p(C) replaced by
£5(C) for the even molecular orbital. These would again represent three-
center bonds. A further approximation, which would be less accurate and of
no advantage, would be to make sp-hybrids on the carbon atom as we did for
CO, pointing to right and to left. Even if we neglect the coupling of the
right-pointing hybrid to orbitals on the left oxygen, we have three coupled
orbitals and solution of a cubic equation is required. We now have a
formulation in terms of two-center bonds, but nothing is gained from the
further approximation.

In this case, and in the case of more complicated molecules, the tight-
binding approximation should have similar validity to that for the diatomic
molecules, and all of the parameters are obtainable in the same way. It is
also possible to estimate all of the same properties for these other molecules
which we estimated for Li2 in Problems 5.1 and 5.2.
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The same tight-binding expansion in atomic states which we used for
molecules is applicable also to crystalline solids. However, in solids we may
also use an alternative description in terms of free-electron states because of
the fact, which we saw in Section 4.3, that the effect of the atomic potentials
can be represented by that of a weak pseudopotential. In fact, when we
combine the two approaches, in analogy with the complementarity principle,
it will provide us the parameters, such as Vgsg = -(m2/8)h2/(md?2), needed to

carry out the calculations. We begin with a one-dimensional chain of atoms.
6.1 The Linear Chain

The simplest generalization to many-atom systems is a chain of lithium
atoms, illustrated in Fig. 6.1. It is convenient to use periodic boundary
conditions, as in Section 1.7, which corresponds to bending the chain into a
ring so that the last atom is coupled to the first. As for Lip we approximate
the orbital for the entire chain as a sum of N s-states, one on each atom, |w>
= Zjuj|sj> , and the variational equations, Eq. (5.13), become

ui€s + Vsso(Uj+1 + uj-1) = uje, (6.1)
Vsso Vsso
j=1 2 3 . i N 1

Fig. 6.1. A row of N lithium atoms, each with a valence 2s-state of energy
&, coupled by Vg to the s-state on each of its neighboring atoms. With
periodic boundary conditions, the Nth is also coupled to the first.
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since Hijj is only nonzero for i = j at &g, and for nearest neighbors at V.
There are N such equations. We guess a solution uj = elkdiA/N , with the
factor 1/VN  for normalization. (Zjeikdi|s;>A'N s called a Bloch sum.)
Substituting this form into Eq. (6.1), a factor eikdi\/N cancels out, leaving

EKS = € = €5 + Visoleikd + e-ikd) = ¢4 + 2Vsq coskd . (6.2)

We have added labels on the energy €. Since the dependence upon j
canceled out Egs. (6.1) is satisfied for all j within the chain, but we must
choose kdN equal to an integral multiple of 27 so that it is satisfied forj =
1and j =N . This is the same condition on k as with periodic boundary
conditions for free electrons in Section 1.7.

We have found the best tight-binding estimate for the energy eigenstates
in the chain. The results are illustrated in Fig. 6.2 for a chain of N = 8
atoms. Then the 8kd must equal an integral multiple of 27, and points
indicate the wavenumbers at which this is true. Two points which differ in
n by eight, or a multiple of eight, give coefficients uj = eikdj/NN which are
identical (differing by factors of ¢12™), so they are the same state, and of

N=8
T T T T T T
Brillouin Zone
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n=8kd?2r

Fig. 6.2. The energies of tight-binding states for a row of eight lithium
atoms are indicated by points. The n values -3, -2, ...3,4 represent the full
set of eight states, and all other integers repeat these states.
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course have the same energy. We limit the values -N/2 <n <N/ 2, or -n/d
< k < m/d , which is called the Brillouin Zone, the set of smallest
wavenumbers for each state. This same limitation to a Brillouin Zone will
apply to three-dimensional systems.

The 7-states in benzene, which we discussed in Section 2.1, are exactly a
case of a chain with periodic boundary conditions, in this case with N = 6.
The benzene molecule is flat, as illustrated in Fig. 6.3, and the molecular
orbitals which are odd under reflection in the plane will consist entirely of
|pz> states if the z-axis is normal to the plane. Each is coupled to its
neighbor and the nt-bands are obtained exactly as in Eq. 6.2 as

ngC = Ep + 2Vpp7‘[ COSkd . (63)

In this case, with N = 6, the allowed states are at k = 2n/6d , with n =
-2,-1,0, 1, 2, and 3 in the Brillouin Zone. There are six electrons available
to occupy these states. Because these energies are given relative to the free-
atom states, we may obtain the change in energy of these six electrons as
they doubly occupy the lowest levels in the formation of the benzene. These
give the m-bonding contribution to the cohesion of benzene, as calculated in
Problem 6.1. This calculation of cohesion was not possible for the free-
electron description without the g5 reference. However, the free-electron
description is also meaningful, and the levels in the Brillouin Zone in Fig.
6.2 are qualitatively similar to a free-electron parabola. We note from Eq.
(6.3) that for this to be true Vppr must be negative so that it is minimum at &
= 0. Further, if we match up the band width of -4 Vppr from the Eq. (6.3) to
the free-electron width for wavenumbers at the Brillouin Zone boundary,
-h2(n/d)2/(2m)  we obtain the Vppr = -(n2/8)h2/(md?) which we used in the
preceding chapter. We shall explore this comparison in detail for a three-
dimensional structure in the next section.

We chose periodic boundary conditions so that we could obtain solutions
uj = eikdiA/N, and this eliminated the effects of ends to a chain. We can,
however, treat finite chains by noting that we could also satisfy the Egs.
(6.1) within the chain using solutions uj = etkd] - ¢ -ikdj = 2j sin(kd}), or V2IN
sin(kdj) normalized. Then if we choose boundary conditions such that u;j is

Fig. 6.3. A benzene molecule, viewed from the side, with six m-orbitals
oriented perpendicular to the plane giving rise to six 7-states.



6.1 The Linear Chain 91

zero for j = 0 and j = N+1, as illustrated in Fig. 6.4, we will satisfy the
equations for j = 1 to N even though there are no terms in the state for j = 0
and j = N+1. We have obtained a solution for a finite chain. From a free-
electron point of view the allowed k's are for vanishing boundary condition a
distance d from the last atom, rather than d/2 from the last atom as we
assumed in Problem 2.2 when we broke the benzene chain. In Problem 6.1
we redo the breaking of the benzene chain for this more appropriate, tight-
binding, view. We noted also the change in boundary conditions when we
treated metal surfaces in Chapter 2.

The generalization to an s-band in a three-dimensional system is
immediate. For a simple-cubic lattice, in particular, each atom has a nearest
neighbor at +d in the x-direction, and the same in the y- and z-directions.
The states are again written as a linear combination of s-states on atoms at
position rj with coefficients u;j = ek TN | and with nearest-neighbor
coupling the bands become

ng =&y + 2VSSG(COSkxd + COSkyd + COSkZd) (64)

We imagine a large crystal in the shape of a rectangular parallelepiped, Nx
atoms along the x-direction, Ny and N; along the other two, since it is the
simplest case and most results are insensitive to the boundary conditions, as
we have seen. With periodic boundary conditions, the restrictions on K are
the same as for free-electrons in a rectangular box of dimensions, Lx = Nxd,
Ly = Nyd, and L; = Nzd which we treated in Section 2.2 and the density of
states in wavenumber space is the same. If we wished to study surfaces we
could use vanishing boundary conditions but it is clear that we must apply
these conditions a distance d from the last atoms as in Fig. 6.4, so the
effective dimensions are Ly = (Nx+1)d, etc. This also allows us to construct
explicit wavefunctions valid even at the corner atom in the crystal, and such
wavefunctions can be used to study electron tunneling from a metallic tip, as
we shall see in Section 8.3.

The generalization to more realistic structures than simple cubic is
straightforward, and discussed in Section 13.2. Of more immediate

uj

S N
N\ A S

Fig. 6.4. Solving the tight-binding equations for a finite chain of N = 6
atoms, by requiring the coefficients to go to zero at j =0 and 7.
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importance is the incorporation of p-states, as we did in going to the nitrogen
molecule and we turn to that next.

6.2 Free-Flectron Bands and Tight-Binding Parameters

We see that the boundary conditions determine the wavenumbers at
which states occur, but the bands themselves, x5 = €5 + 2Vgso coskd in one
dimension, depend only upon the crystal structure and the electronic states
on the atoms which make up the crystal. We have replotted our tight-
binding s-band for a chain of atoms as the heavy line in Fig. 6.5. We may
argue that because of the weakness of pseudopotentials a free-electron
description is also meaningful and we have also drawn in a free-electron
parabola with the £ = 0 energy adjusted to the s-band minimum, and Vo
chosen equal to -(12/8) h2/(md?) such that the two bands match also at the
edges of the Zone. When we include Vgps we shall see that this is the
appropriate point for matching.

The free-electron bands extend to wavenumbers beyond the Brillouin
Zone, as shown in the figure. By the convention used in tight-binding chains
we would translate these bands back, by some multiple of 27/d , so that they
were plotted in the Brillouin Zone, also shown in Fig. 6.5. They must have
some correspondence to tight-binding bands from other atomic orbitals for
the constituent atoms.

In particular, we might imagine tight-binding bands arising from p-states
oriented along the chain axis. They are calculated just as were the s-bands
leading to €kP = €p + 2Vppscoskd. They would in fact match the (translated)
free-electron bands at the Zone center and Zone edges if Vpps =
+(312/8)h2/(nd?) and €p is suitably chosen, as illustrated above in Fig. 6.5.
Indeed, this is a sensible relation to make since p-states oriented along the
chain, each have a node at the atomic site. Thus the state at kX = O has one
node at each nuclear site and one midway between each atom, two per
distance d. This is to be compared with a free-electron state, sinkd for k =
27n/d (the wavenumber of the state translated to £ = 0) which also has two
nodes for each distance d. The identification requires a positive Vpps but
that is just what is expected for these p-states, as we indicated in Section 5.5,
because the wavefunctions have opposite signs in the region where they
overlap.

One thing has been left out, the coupling between neighboring s- and p-
states Vspo which coupled, for example, the bonding s-state and the bonding
p-state in the N2 molecule. It is not difficult to see that for tight-binding s-
and p-band states at k = 0 there is no coupling between the tight-binding
band states. This follows because an s-state on one atom is coupled to a p-
state to the right by Vgps and to a p-state to the left by -Vspo (because the
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k
Brillouin Zone

Fig. 6.5. The free-electron and tight-binding bands for a chain of atoms.
The heavy line is an s-band, €k$, for nearest-neighbor coupling, with
parameters adjusted so that it fits the free-electron band at the center and
edges of the Brillouin Zone. The free-electron band which continues
beyond the Zone is redrawn within the zone, by the convention used in
crystals, and parameters for a p-band, €xP, are adjusted to fit these
translated free-electron bands.

positive lobe of the p-state is nearest) and the two terms cancel. Similarly at
the Brillouin Zone edge the two coupling terms cancel. However, at other
wavenumbers, the two are only partly out of phase and the cancellation is
not complete, but given by 2i Vgpgsinkd. The net effect is that the s-bands

and p-bands of Fig. 6.5 (or the simple-cubic counterpart) are combined as

£xS + gxP expP - g8
Ekzl”z*ki V(“kz—ka'l“l-vspo'lende . (65)

We see that the sp-coupling does not shift the bands where we matched
them to obtain Vgso and Vppe , but it causes the bands at intermediate
wavenumbers to move away from each other and become more free-
electron-like. Everything has worked out to make this matching of free-
electron and tight-binding bands appropriate and matching at the Zone edge
as in Fig. 6.5 was the appropriate choice.
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Fig. 6.6. Energy bands in a simple-cubic crystal, for k in a [100} direction
to the Brillouin Zone face. Light lines are free-electron states, reduced to
the Brillouin Zone. Heavy lines are tight-binding sp-bands with
parameters fit to match the free-electron bands. The top two complete
bands shown are m-like and are doubly degenerate, two bands at the same
energy.

There are various ways to adjust Vspg to fit the free-electron bands, but
probably the best is to note that the magnitude of the coupling between s-and
p-bands, 2Vspesinkd , grows linearly with change in wavenumber from the
Brillouin-Zone edge. Thus it can be adjusted to make the bands linear in &k
at the Zone edge, with slope equal to that for the free-electron bands, rather
than horizontal, as the tight-binding bands are seen to be in Fig. 6.5. This is
simple to do. Writing the energy at the Zone boundary €z =
(n2/2) h?/(md?), and keeping terms only linear in the 3k measured from the
edge, Eq. (6.2) becomes €k = €z * 2Vspo d Ok . Setting this equal to €zB +
dex/ok 8k = h2(m/d)dk Im  gives Vspo = (m/2) h2/(md?), chosen positive
because with the orientation of orbitals chosen by convention, ©® 0O, the
orbitals are of opposite sign where they overlap. The resulting tight-binding
sp-bands are given by the lowest two heavy-lines in Fig. 6.6. An alternative
matching would be to adjust Vspe such that the curvature of the band
02¢1/0k2 at the bottom of the band has the free-electron value of h2/m , as
done in Problem 6.2¢c, giving a value nearer 1.9 h2/(md?) than the 1.57
h2/(md?2) we find here. It can be seen from Fig. 6.6 that the larger value is
needed to lower the s-like tight-binding band further to the free-electron
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band. One might also suggest the geometric mean of Vssg and Vppe, equal
to V3 (n2/8) h2/(md?) = 2.14 K2/(md?).

Before collecting these results together, we should consider a three-
dimensional, simple-cubic system. We gave the s-band for such a structure
in Eq. (6.4), and we see that it yields the same band width from k = 0 and k
equal to 7/d in an x-direction, so the predicted V5o is unchanged from one
dimension, and the same applies to the pg-bands, p-states oriented along k,
so in fact even our fit of Vgpe remains appropriate. However, the free-
electron bands have an important new feature in three dimensions. We are
translating all free-electron states back to wavenumbers within the Brillouin
Zone, -1/d < kx <t/d, -m/d < ky <7/d, and -1/d < kz <T/d . The Brillouin
Zone has become a cube in three-dimensional wavenumber space, centered
at k = 0. For our bands along the x-direction, from k = 0, we have translated
those at k = (kx - 2n/d )X to 0< kxX <X /d, with X a unit vector in the x-
direction. We must also translate the states for k = kX - 2n/d)§y , with § a
unit vector in the y-direction, back from the side to the same line. These
states have energy h2[(2n/d)2 + kx2]/2m and are shown as the higher light
line in Fig. 6.6, emerging horizontally from the vertical axis, and rising
parallel to the lowest free-electron band. There are in fact four such bands
of the same energy, translated to this line by (2n/d)y; and +(2n/d) times a
unit vector zi in the z-direction. At k = 0 one combination of these states is
the state we identified with the pg-bands, but with p-states oriented along the
y-direction. As we increase kx, these become exactly mt-like bands, py-states,
with the phase of the coefficients changing along the x-axis. Adding the
coupling with all six neighbors we obtain bands, exP = gp + 2Vpp0 + 2Vppr(1
+ coskxd ). Adjusting these to fit the free-electron bands h2[(2n/d)2 +
kx21/2m at the Zone center and edge, we find that Vppr = -(n2/8)h2/(md2), as
we found for the m-bands in benzene. Combining all of these results we
have the "universal" parameters for sp-bonded systems,

n2 h2 n h?
Vsso = _—8— M’ Vspo= +§W,
(6.6)
3n2 h2 n2 h2
Vopo=+"g" 2 > Vopn = g a2

Another combination of these four free-electron bands can be
identified with the p; 7-bands along the kx axis. The other two of these
free-electron bands would need to be identified with atomic d-states and the
highest free-electron band, rising linearly from the vertical axis, would need
to be identified with at atomic s-state of higher quantum number than that
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identified with the lowest free-electron band. None of these additional bands
will be of interest here.

We might note one other remarkable feature of the three-dimensional
bands. We saw that the s- and p-band states were not coupled at the center
of the Brillouin Zone nor at the face of the Briliouin Zone, (n/d, 0, 0),
because of the symmetry of the states. This is of course true at the center of
the other five faces of the Brillouin Zone. This justified our use of those
points for determining Vgso and Vppo. It is not difficult to show that, in
addition to the face center with energy (12/2) h2/md2, there are two other sets
of points within the Brillouin Zone for which the s- and p-band states are
uncoupled. They are at the center of the cube edges, with energy
2(n2/2) hi2/md? , and at the cube corner, with energy 3(m2/2) h2/md2.
However, we see from Eq. (6.4) that in going from the cube center
successively to these three points, the tight-binding energy rises by -4 Vgsg at
each step so that we would have obtained exactly the same formula for Vgsg
had we used any two of these four points. Furthermore, the states based
upon p-states oriented along k are found to have energies identical to the s-
band energies at these points with the parameters of Eq. (6.6) and therefore
again, any pair of the four points could have been used to obtain the same
values. It appears also that the m-like states at these four points are also
consistent with the free-electron bands, a remarkable consistency.

The evaluations for these points with wavenumbers not parallel to a
cube axis required a construction of matrix elements between p-states which
we have not needed before, but will need in the next section and it should be
explained at this point. A p-state oriented along the x-axis, described in
Section 2.4, can be written R1(r)X-r , with Rj(») a function only of radial
distance and x] a unit vector in the x-direction. Then clearly a p-state
oriented along a direction® cos¢ + ¥ sind, with § a unit vector in the y-
direction, can be written Ri(r)(X cos + ¥ sind)r = cos¢ Ri(r)X-r + sind
R1(r)¥-r so that the p-states can be divided into components just as vectors
are. If we have a p-state with axis and angle ¢ from the internuclear axis to
an s-state, we simply divide it into a G-oriented component with a factor
cos9, and coupling +Vsps and a n-oriented component which is not coupled
to the s-state. This is illustrated in Fig. 6.7. Similarly, for two coupled p-
states we may divide both into - and ©-components (two orientations of 7-
components) to obtain the matrix elements for the two p-states, also
illustrated in Fig. 6.7. For d-states the decomposition is more intricate and is
given in the Slater-Koster (1954) tables.

These fits to the free-electron bands also lead to values for €p - &
which are proportional to h2/(md?), as seen in Problem 6.2. These values are
in some accord with experiment, but vary much more with spacing than real
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Fig. 6.7. p-states can be decomposed like vectors into ¢-oriented and 7-
oriented components with coefficients cos¢ and sind, respectively. Only
the o-component is coupled to an s-state, so the coupling between the
orbitals shown to the left is cos¢Vspo. Between those to the right, which
are coplanar, the coupling is cos$;cos¢ Vppo + sind sind, Vppr If one was
rotated out of the plane by an angle ¢p, there would be an additional factor
of cos¢p in both terms.

systems. It is of some interest that such a relation can be used in reverse to
predict equilibrium spacings for solids in terms of the free-atom term values,
and is in semiquantitative accord with experiment for elements. However, it
would not allow us to distinguish the different atoms in compounds, for
which we use the free-atom term values as we did for molecules in the
preceding chapter. Similarly, we use the free-atom term values for the
elements rather than free-electron fits to the term values.

Eq. (6.6) for the s- and p-state couplings was derived for a simple-cubic
structure, for which the calculation is particularly simple. The results are
quite similar, but not identical, if the same calculation is carried out for a
different structure. For example, in the tetrahedral structure of diamond and
silicon, the fit yields Vsso = (9n2/64) h2/(md?), only 1.5% larger than the
simple-cubic value. If we are specifically treating such tetrahedral solids,
we can as well use these tetrahedral results, or in fact coefficients fit to the
known band structures of the semiconductors themselves. That is what was
done in Harrison (1980) and (1999), using an average from silicon and
germanium. It is just as easy to use such a coefficient, taken as universal, as
to use -12/8, but for the purposes of this text we take the values from Eq.
(6.6).

It seems also reasonable to use these couplings for molecules since they
represent the coupling between atomic orbitals and these change little in the
formation of molecules or solids. That is in fact exactly what we did in
Chapter 5 in treating N2, CO, and CO2. If on the other hand, we go to
structures with more neighbors, such as the face-centered-cubic structure of
copper and aluminum with twelve nearest neighbors to each atom, our
coefficients lead to bands which are much too broad, and a fit of free-
electron bands to those structures yields smaller - and more appropriate -
values to be used there. The difference appears to come from our neglect of
the nonorthogonality, and its absorption into an overlap repulsion.
Including nonorthogonalities systematically is much more complicated, as
discussed in Section 5.3, but it avoids this difficulty of tight-binding theory
in carrying over parameters to much different circumstances.



98 Chapter 6. Crystals

Finally, we should note that the variation of each coupling as 1/d? can
only apply near the observed spacings, which are much the same in different
structures. Indeed it is only near the observed spacings that the bands are
free-electron-like. At much larger spacings the couplings drop exponentially
as the wavefunctions do and at smaller spacings the nonorthogonalities grow
and modify the couplings. However, for a very wide range of calculations
we are only interested in spacings near equilibrium and the theory is very
powerful. It even has remarkable physical predictions, such as that we can
estimate the change in some properties of silicon with pressure by
interpolating, as a function of spacing, between that property for unstrained
silicon and for diamond.

6.3 Metallic, Ionic, and Covalent Solids

We give a very brief account of the electronic structure of solids,
described much more fully, by a factor of fifty, in Harrison (1999). The goal
in Applied Quantum Mechanics 1is to provide the tools which make such an
analysis possible, not to carry it out.

It is remarkable that both the free-electron and tight-binding limits are
meaningful for describing solids, but for particular solids they are not
equally convenient. When the energy bands are partly occupied, the
defining property of metals since then a small electric field shifts electrons
between states to allow current to flow, the free-electron limit is ordinarily
much simpler. When for example we sum the energy over occupied states, it
is very simple for a free-electron gas, as we saw in Section 2.2. When the
energy bands are each either completely full or completely empty,
characteristic of insulators since then a small field cannot cause
redistribution of the electrons, a tight-binding view is ordinarily simpler.

For this distinction it is useful to look again at the Periodic Table of the
elements, the central part of which is shown in Fig. 6.8. All elements
outside of Columns IV and VIII are metals, and those shown are considered
free-electron metals, with weak pseudopotentials and as many valence
electrons per atom as the column number, as assumed in Problem 2.3. To
the left of Cu, Ag, and Au are the transition metals, with partly-filled d-
shells (atomic states with [/ = 2). The electron states based upon these d-
states are best treated in tight-binding theory. [Extensive analysis of
transition metals, and all other types of solids in these terms is given in
Harrison (1999).] Similarly, to the right of Ba are the rare earths and to the
right of Ra are the actinides, all with partly-filled f-shells (! = 3). The f-
states are also best treated in tight-binding theory.

Elements in Column VIII have eight valence electrons, filling the s-
states and all of the p-states. [Helium has no valence p-states, but the
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Fig. 6.8. The periodic table of the elements, arranged to show the
electronic structure of solids. The nonmetals in the center are bounded by
Column-1V elements which form covalent semiconductors based upon
two-electron bonds, and by Column-VIII elements which form insulators
based upon full electronic shells. Listed elements beyond these two
columns are simple metals. Those to the left form covalent compounds
with the nonmetals; those to the right form ionic insulators with the
nonmetals. To the left of Column I are the transition (d-shell) metals, to
the right of Column IIA are the rare earths and actinides (f-shell metals).

situation is similar.] The states above these are empty and far removed in
energy. In this situation the atoms are chemically inactive. They cannot
accept electrons from other atoms, nor can their electrons be easily removed.
When these atoms interact with each other, any bonding energy is canceled
by an antibonding energy. Thus they form inert gases. Even as solids, held
together by van-der-Waals forces which we discuss in Section 12.2,
electrons cannot move from atom to atom and the crystals are insulating, and
transparent to visible light, which does not have photons of sufficient energy
to excite the electrons.

Elements in Column 1V form semiconductors, which are insulating for a
different reason. Though they have only two of the six p-levels per atom
occupied, they form completely filled and completely empty bands. This is
most casily understood in terms of the hybrid states we introduced in
Chapter 5. Instead of forming two orthogonal hybrids from a p-state and the
s-state, as we did for N2, we form four orthogonal hybrids on each atom,
each oriented in the direction of one corner of a tetrahedron with the nucleus
at the center. Then if the atoms are arranged such that each has four
neighbors in these same directions, the diamond structure, we may form
independent bonds with each neighbor, using the two hybrids directed into
the bond, just as we formed the 6-bond in nitrogen. Each atom contributes
one electron to each bond, filling all bonding states and leaving all
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antibonding states empty. With the formation of four hybrids, there are no
nonbonding states left over.

The bond states are coupled to neighboring bond states, just as the
lithium s-states were coupled to their neighbors in Fig. 6.1, and broaden into
fully occupied bands called valence bands for a semiconductor. The
antibonding states are coupled to their neighbors forming empty bands,
called conduction bands. In this case the gap between valence and
conduction bands is only an electron volt or so and some electrons are
thermally excited into the conduction band, as we shall see in Chapter 10,
making them weakly conducting, semiconductors.

One construction of four hybrid states on an atom is given by

lhi> = (|s> + |px> + [py> + [p2>)/2,

lh2> = (|s> + |px> - [py> - [pz>)/2,
6.7)
[h3> = (s> - |px> + |py> - [p2>)/2,

lhg> = (|s> - |px> - |py> + [pz>)/2.

The three p-states in the first can be added, as in Fig. 6.7, and seen to be a p-
state V3 |p> oriented along a cube diagonal in the cube defined by the x-, y-,
and z-axes. Itis normalized, with a probability 3/4 on the p-state and 1/4 on
the s-state, called an sp3-hybrid, in contrast to the sp-hybrids in nitrogen.
The other three are along other cube diagonals and are orthogonal hybrids,
<hjlh2> = (<s|s> + <px|px> - <pypy> - <py|py>)/4 = 0. From these four
orthogonal atomic states, [s>, |px>, [py>, and |pz>, only four orthogonal
orbitals can be constructed. In a similar way three orthogonal hybrids (sp2-
hybrids) can be constructed from the [s>, |px>, and |py> states, oriented in
the direction of the three neighboring atoms in a graphite xy-plane, or the
two neighboring carbon atoms and a neighboring hydrogen atom in benzene.
Again fully occupied valence bands are formed, and the 7mt-states are formed
from the remaining |pz> orbitals as we saw in Section 6.1. In the case of
tetrahedral bonds, Eq. (6.7), the coupling between the two hybrids directed
into one bond is -V7, with V2 the covalent energy given by

V2 = (-Vsso + 2V3 Vipo + 3Vppo)/d = 4.4482/(md?), (6.8)

where in the last step we used Eq. (6.6). An analysis with couplings based
upon the known energy bands of silicon and germanium (Harrison (1999))
gives a slightly smaller value of 3.22 h2/(md2). This covalent energy
characterizes the strength of the covalent bond which separates the occupied
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and empty states in these covalent semiconductors. The other nonmetals
between Columns IV and VIII in Figure 6.8 find other ways to make
covalent bonds. In Column V three bonds are formed with neighbors with a
doubly occupied nonbonding state. In Column VI (Se and below) two bonds
are formed with two doubly-occupied nonbonding states per atom, and in
Column VII, one bond is formed so that they are molecular gases.

Many compounds can be understood from the same point of view, using
"theoretical alchemy". For example, when compounds are formed between a
nonmetallic element and a metal to the left, it is ordinarily in a tetrahedral
structure for which we may again construct an sp3-hybrid on each atom, but
the hybrids have different hybrid energies, <hj|H|h1> = (g5 + 3€p)/4. Half
the difference in the two hybrid energies is called the polar energy, as
described in Section 5.3, and doubly-occupied polar bonds are formed,
leading again to semiconducting behavior, and properties calculated in terms
of the parameters we have given (Harrison (1999)). Such a series of
compounds can be made from a single row of the periodic table by starting
with the Column-1V element, Ge, and transferring one proton from alternate
nuclei to those between, leaving the first as a Ga nucleus and transmuting the
second to As. (See Fig. 6.8.) The bonds shift slightly toward the As, but are
qualitatively the same. A second transfer produces Zn and Se nuclei, and the
third transfer produces Cu and Br nuclei. This is a series of isoelectronic
compounds of increasing polarity, Ge, GaAs, ZnSe, and CuBr, with similar
electronic structure. The "covalent" in Fig. 6.8 indicates the formation of
such compounds with metals to the left.

Similarly if compounds are formed with equal numbers of metal atoms
from the right (columns IA, ITA), they can be understood beginning with
inert-gas atoms placed in a crystalline array and transferring protons to make
a series such as Ar, KCI, CaS, understood as was the inert gas atom, as made
up of closed-shell ions (charged atoms), in this case full-shell configurations
but charged, rather than neutral atoms. In these cases the atoms which
receive protons become metals, while in the covalent solids the atoms which
lost protons became metals. In the case based upon inert-gas atoms the
tetrahedral arrangement needed for covalent-bond formation is not useful
and these ionic solids form in more closely-packed structures, such as the
rock-salt structure which would arise from beginning with simple-cubic
inert-gas atoms. The "ionic" in Fig. 6.8 indicates the formation of such
compounds with metals to the right.

The ionic compounds turn out in some ways to be the simplest to
understand. Proceeding not from theoretical alchemy, but from for example
potassium and chlorine atoms, we could imagine bringing them together to
their final structure, and transferring one electron per atom pair, to gain
es(K) - €p(Cl) equal to 9.77 eV from Table 4.1, not far from the observed
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cohesion of KCI of 6.9 eV per atom pair (Harrison (1999), p. 337). Further,
the lowest-energy excitation for the system might be expected to be this
same 9.77 eV, not far from the observed band gap of 8.4 eV (ibid. p. 333).
We shall see part of the reason that such a simple analysis works in Section
20.1, but a further discussion is beyond the scope of this text, as is a
discussion of the extraordinary variety of other compounds which can be
understood using these same covalent and ionic concepts (Harrison (1999)).

Before leaving the electronic structure of crystals, we should note an
important difference which arises when we consider systems with d-
electrons or f-electrons. The difference is the strong localization of these
states around the nucleus, which greatly reduces the coupling between such
states on neighboring atoms. Because of this they form bands very narrow
in comparison to the free-electron bands arising from s- and p-states.

The reason for this can be seen already classically. The d-states have
two units of angular momentum, as we saw in section 2.4, but in transition
elements they have energies near the s-state energies (since we are
successively filling d-states as we move across the series with a single
electron, or two electrons, in the s-state). If we then think of this d-state
orbit as a classical circular orbit, as illustrated in Fig. 6.9, we then imagine
an orbit with no angular momentum, an s-state, at the same energy. It is
oscillating through the nucleus, moving always radially if it has no angular
momentum. However, when it is at the radius of the circular d-state orbit it
has the same kinetic energy, directed now inward or outward, as in Fig. 6.9.
Thus it will move far out from the radius of the d-state orbit, corresponding
to a much larger orbit. The argument for localization of f-states, with three
units of angular momentum, is even stronger.

This effect not only makes the orbit for d-states much more localized,
but it causes the coupling between d-states on neighboring atoms to drop
much more rapidly with increasing distance d . It is in fact found to drop

d-state

N

Fig. 6.9. An electron in a d-state represented as a circular classical orbit,
has all of its kinetic energy directed tangentially. An electron in an s-state
at the same energy, represented as a classical orbit passing very close to
the nucleus, has the same Kinetic energy when at the same radius, but
since it is directed outward (or inward) it carries the electron much further
from the nucleus. This explains the high localization of d-states in
transition-metal atoms.
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approximately as 1/d5 . The coupling between neighboring d-states with no
angular momentum around the internuclear axis is given, for example, by

45 h2rg3
Vado =- "1 745

(6.9)

with rq a "d-state radius” characteristic of the element in question, tabulated
in Harrison (1999) (e. g., 1.03 A for Ti, 0.74 A for Fe, 0.69 A for Cu). The
coupling Vddr 1is given by the same expression, with the leading factor
replaced by 30/m, and Vd4s by the same expression with the leading factor
replaced by -15/(2n). We will not have occasion to use these expressions. It
is interesting to note that the element-dependent parameter r43 was necessary
to obtain the units of energy, with a 1/d> dependence. For f-states the
coupling drops more rapidly, as r5/d’ with the f-state radius providing the
correct units. For the s- and p-states with coupling varying approximately
as 1/d? the corresponding orbital radius would enter to the zero power,
suggesting correctly that the formulae for the coupling are independent of
element, as given by Eq. (6.6). We note, however, that in all cases these
formulae for couplings are only approximations.
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III. Time Dependence

Electronic structure is primarily concerned with the lowest-energy state
of a system, the ground state. This encompasses many properties, but often
we are interested in higher-energy states, and transitions between different
states. Up the this point it might appear that the goal of quantum mechanics
was to find solutions, or approximate solutions, to the Schroedinger
Equation. For the rest of the text we move on to other problems. The
parallel in classical mechanics would be first addressing the calculation of
normal modes of vibration, and then moving on to trajectories, collisions,
and the myriad of other problems an engineer or scientist must deal with. In
quantum mechanics the basic premise is still the wave-particle duality, with
h providing the relation between the two, but we now seek the answer to
different questions.



Chapter 7. Transitions

7.1 A Pair of Coupled States

We have seen already in Eq. (1.22) that the time dependence of an
energy eigenstate of energy €; is given by a factor eigth If a state is
expanded in states of more than one energy, each term varies with its own
factor. This leads to complicated time dependence, just as when a classical
violin string vibrates in several modes. In the case of two coupled electronic
states, as in the polar molecular orbital described in Section 5.3, we may see

that it gives an oscillation of the electron between the two atoms. We write
the state as a sum of the bond state, with coefficient up at ¢t = 0 and time

dependence e—i?«bffh, and the antibonding state, with coefficient 1y and time
dependence e-i€ath,

[w> = ub[ \/ (1> + \/ |2>J e-igpt/h
(7.1)
1-a 1+o A
+ ua[ \’ —2—9 1>- —22 |2>J eiggtfh,

We may confirm that the electron will be on atom 1 with probability
one, at t = 0, if the expansion coefficients are chosen as up = (I+0p)/2 and
Ug =" (1-0p)/2. The terms in Eq. (7.1) may then be rearranged to obtain
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lw> = [( coswor + ioipsinmen)|1> + i\/ 1-0p2 sinwor |2>]e-i(€; + eU(2h) (7.2)

with g = (€a - €p )/(2h). The probability density on atom 2 is
, 1 - op?
P = (1-0pp2) sinZwpt = 5 (1-cos2mot ) (7.3)

and on atom 1 is one minus this. We see that a fraction 1-0p2 of the charge
oscillates back and forth with a frequency given by the bonding-antibonding

splitting divided by Planck's constant, 2\ V22 + V32 /h. For two coupled
atomic states of the same energy (V3 = (), the transfer is complete each
period. If the energies of the atomic states are different, and the coupling V3
between the two atomic states is very small, the amount of the transfer is
proportional to the square of that coupling and the frequency is determined
by the energy difference as ® = 2Va/h = (g2 - €1)/h.

This latter case will be of most interest since we shall see that the
corresponding oscillating dipole will radiate energy with a frequency (€2 -
€1)/h , corresponding to how = € - €1 , and at a rate proportional to the square
of the electron-light coupling. In the process, the electron drops (or makes a
transition) to the lower-energy state. However, in the model we are
discussing, without light, no transition occurs - the system simply oscillates.
We shall see that a real transition can occur only when there is a range of
energies for the final states, a range of frequencies of light in the case of
emission of light .

The requirement for a range of frequencies is already there in classical
physics. A pair of coupled oscillators, of different frequencies, will transfer
vibrational energy back and forth between the two oscillators. However, if
an oscillator is coupled to a system with many frequencies, as in the
oscillator coupled to a taught wire, illustrated in Fig. 7.1, the vibrational
energy of the oscillator will be dissipated into the modes of the wire.
Similarly an electron in a quantum-well state can tunnel into a continuum of
electronic states beyond the barrier, also illustrated in Fig. 7.1.

7.2 Fermi's Golden Rule

In order to understand quantum transitions, then, we consider a
Hamiltonian which has a state |0> at energy €p coupled by matrix elements
Hoj to states |j> with a range of energies &j. This could be the system in Fig.
7.1b. We expand the wavefunction in all of these states, including the time
dependence e-1®jt with oj = €j/h, but allowing additional time dependence of
the coefficients which will arise from the coupling,
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Fig. 7.1. Part a. A classical oscillator, coupled to a system with many
modes of similar frequency, will dissipate its vibrational energy into those
modes. Similarly, Part b, an electron in a quantum well can tunnel into a
range of continuum states, treated in Problem 7.2.

lw> = ug(He 100> + 2 uj(t)e-iOftlj>. (7.4)

We shall set #p equal to one, and all other coefficients to zero, at time ¢ =0,
and calculate the rate that the coefficients u; grow with time for small 7.

We substitute Eq. (7.4) into the Schroedinger Equation, ihd|y>/0t =
H|y>. We obtain uj(¢) by multiplying on the left by a particular <j| , noting
<jli> = 8jj, to obtain

dui(t) . . , :
ifl_glt(*)e‘let +l"10)juj(t)e'10)jt= uj(Oeje 1Ot + Higupe 1ot +... (7.5)
The additional terms would be from any coupling Hj; between the state |j>
and others, |i>, of that collection of states. We shall see that the u; will be of
first order in the coupling so these terms would be second order, written
O(H;i2), and can be dropped at small 7. The terms in ho; and €j cancel and

at small times we can take ug(f) equal to ug(0) = 1. We multiply the
remaining term on each side by e 1®jt to obtain

ih%it@ = Hijpe (@ 0)t + O(H;0?). (7.6)

The final term indicates the second-order terms which we have neglected.
We may integrate directly from =0 to get

Hio .
uj(t) = m (e-il@p-wpt- 1), 1.7

or
HoiHjo 4sin?{(®q - o)) /2]
e e

(7.8)
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108 Chapter 7. Transitions

The right-hand fraction is a function of the energy difference E = h(wg -
®j) between the two coupled states which is very interesting. It is peaked at
E = 0, more so as time proceeds, and has an integral over E which is 27thz .
In other words, as time proceeds its properties approach the mathematical
properties of 27tht times an energy delta function, 8(E) = 8(gq - €j). This
Dirac delta function (E) is defined to be nonzero only near E = 0, and to
have | S(E)JE = 1 (to be distinguished from the Kronecker delta function
defined in Eq. (1.24).) This is illustrated by the plot of the final factor in Eq.
(7.8), divided by 27tz in Fig. 7.2. Thus the total probability of a transition
having occurred increases linearly in time, and is more and more
concentrated in the energy-conserving states as time proceeds. If we sum
ui*(Huj(t) over all states |/> we obtain the total probability that a transition
has occurred, and if we divide the result by ¢ we obtain the transition rate,
which we might write 1/t = (0/00) Zjuj*(O)uj(t) or Zjuj*()uj(t)/. We obtain it
by replacing the final factor in Eq. (7.8) by d(g; - €0)/(2nh) and summing
over j to obtain Fermi's Golden Rule, or the Golden Rule of Quantum
Mechanics. Sometimes it is also referred to as time-dependent perturbation
theory since it carried terms only to second order in the perturbation which
coupled the starting states. Thus the transition rate is

1 0 21
T = gzj'uj*(t)uj(t) |t=0 =5 Zj HojHjo d(eo - gj) - (7.9)
3 T T I
25 | .
| 9 picoseconds
2 b | N
215 - 7
o)
1 . a
3 picoseconds
05 , n
f— _ 1 picosecond
0 el L I

2 -15 -1 05 0 05 1 1.5 2
E (millivolts)

Fig. 7.2 A plot of D(E) = 2H sin2[E#/2h)/(mtE2), for which JdE D(E) = 1,
is given for different times.
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As its name implies, it is one of the most important equations in
quantum theory. The sum over states coupled by Ho;j will always be

converted to an integral on energy over a density of states, and the integral
over the delta function will give a one, with Ho; evaluated at the energy for
which the argument is zero. Since [de S(e - €g) is dimensionless, 8(¢ - €g)
has the units of reciprocal energy. With Hoj having units of energy, and h of
course energy-times-time, the right side of Eq. (7.9) has units of one over
time as it must. The meaning of the 7 is that the probability of occupation of
the initial state is dropping as e-/T. We shall see in Chapter 19 (Egs. (19.7)
and (19.15)) that an equivalent form can be derived for the absorption of
energy in a classical system such as that illustrated in Fig. 7.1a.

7.3 Scattering in One and Three Dimensions

It is important to illustrate the use of the Golden Rule immediately, and
we return to the simple case of a the one-dimensional chain of lithium atoms
discussed in Section 6.1 and sketched in Fig. 7.3. We gave the equations
from which the states could be determined in Eq. (6.1),

ujgs + Vsso(uj+1 + uj-1) = uje . (7.10)

The eigenstates were given as uj = eikdj/N . If we change one lithium atom
to a sodium atom, with an s-state differing in energy by d€s = 0.38 eV (Table
4.1), the expectation value for the energy of each such state is shifted by
only 8&¢/N , but there is also a coupling introduced between any two states of
wavenumbers k and k' of Hyg = dege i-K)di/N if that impurity is at the
position j = i . This perturbation can produce a transition of an electron
initially in the state k& to a state k' moving in the opposite direction with the
same energy. We calculate the rate directly using Eq. (7.9). Itis

1 2 Seg2 2nNd [, 8es?
;2?"5 P ng(gk._gk)= %%Idk’ N; S(ex - k) (7.11)

In the first step we noted that the two matrix elements were the complex
conjugate of each other so the phase factors canceled. In the second step we

OOC}OOOQOOOOOOCB

j=1 2

Fig. 7.3. The one-dimensional chain of Section 6.1, with the atom at the
position j =i replaced by an impurity.
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110 Chapter 7. Transitions

noted that the spacing between successive wavenumbers allowed by periodic
boundary conditions is 27/L = 2n/Nd so that the number of states in the
interval dk’' is Nd dk’ /(2m) and the integral as written, times the factor
Nd/2rm, is equal to a sum over those states. We substitute for dk’ using the
differential relation dey = -2dVgsgsink'd dk’ (from € = &g + 2Vysg coskd ).
Then the integral can be performed, giving a contribution from the delta
function where €x' = € of

1 8852 d 6852

T~ 2|Vesolsinkd Mi ~ v NR2 (7.12)

In the final form we used the electron speed v = (1/h)de/dk , and that form
is correct also if we use the form €x = h2k2/(2m) throughout, rather than the
tight-binding form, since the corresponding factors came from changing
variables from k' to €' for the integration.

We may check that the units are correct and that the rate goes to zero as
deg goes to zero, as it should. We may also note that the scattering rate is
proportional to 1/N , which it should be since the probability per unit time of
hitting the impurity is inversely proportional to the length. We might have
expected the rate to increase with velocity for the same reason, but in this
case we seem to have found that the chances of reflecting upon impact are
proportional to 1/v2 . We shall confirm that this result is correct at the
beginning of the next chapter when we evaluate the reflection from an
impurity in a chain in a more direct and accurate way. We might have
thought of calculating scattering to states moving in the same direction as the
initial state, forward scattering, but then the delta function takes us to the
same state and it would not be regarded as a scattering event. Note that we
have calculated the density of states in wavenumber space for a single spin,
The reason is that the perturbation does not couple the initial electron state to
states of different spin. In cases with spin-orbit coupling such spin-flip
scattering can be allowed, and is treated in parallel to the calculation here.

The calculation is similar for an impurity in a three-dimensional crystal.
For a tight-binding s-band the coupling between two states is Hi'k=
dege i(k-K') ri/N  if the impurity is placed at the site rj. The first form in Eq.
(7.11) is essentially the same and, since the product of matrix elements is
independent of the direction of k', the sum over k' can be written as
(Q/(2n)3)|4nk2dk’ if we take the bands to be spherically symmetric as for
free electrons. Here €/(2m)3 is the density of states in wavenumber space if
the volume of the system is Q and 4nk?dk’ is the volume in wavenumber
space of a shell of radius k' and thickness dk’. In the more usual case the
matrix elements will also depend upon k' - k, and therefore on the angle 0
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between k and k'. We would then perform the integral (Q/(2m)3)[2nk2dk’
sin@ dO.

We may again convert the integral over £’ to an integral over €' and use
the delta function to obtain

5e2K2Q  Belmy Q
TRAN2 T mRANZ (7.13)

1_
o=

In the last form we used the free-electron v = hk/m. Again the various
factors are understandable and in this case the proportionality to v is as we
might have guessed. In Problem 7.1 we redo this calculation for an impurity
in a two-dimensional plane of atoms.

We may return to the emission from a local state illustrated in Fig. 7.1 b.
There will be tunneling matrix elements between the localized state [0> and
states |k> outside of the well, and ordinarily they will vary smoothly with & ,
rather than having magnitude independent of k as assumed for our scattering
calculations above. Then we can again replace the sum over final states by
an integral over £ in order to obtain the rate of decay. Such a rate is
calculated in Problem 7.2 for transitions from the lowest s-state in a
spherical bowl. The matrix elements between an s-state and states of higher
angular momentum vanish, so the sum is only over the s-states outside of the
well.
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Chapter 8. Tunneling

8.1 Transmission in a 1-D Chain

Perhaps the simplest problem involving quantum-mechanical tunneling
is the one-dimensional chain which we treated in Section 7.3. If the shift in
the impurity level d€g takes that level above the energy of the electron state
we consider, then the transmission of that electron through the impurity can
be considered tunneling; the electron is transmitted though it has insufficient
energy to be on the intervening atom. It is a good case to treat because it is
so simple and because we can compare our result with that obtained with the
Golden Rule.

The Eq. (6.1) for obtaining the (variational) states in a one-dimensional
chain, which we used in Section 7.3 to calculate scattering, can be
generalized to

ujgj + Hjjvriuj+1 + Hjj-145-1 = yj€ 8.1)

for a case where couplings and state energies vary from site to site. We look
for a state with an electron incident from the left, partiaily reflected back and
partially transmitted. The most convenient way to construct a state from
which we may obtain the transmission is to write uj = Te kdj to the right of
the impurity [T is a transmitted-wave amplitude] and use Eq. (8.1) to work
back through the impurity. We then fit the results to a Ie ikdj + Re -ikdj, []
and R are also amplitudes.] This correctly applies the defining condition,
that there is no incident electron wave from the right, and R*R/[*[ is the
reflectivity. In this problem we are not concerned with boundary conditions
in the sense we were when we wanted to obtain quantized energy
eigenstates. If we were, we would need to apply them at the outer
boundaries. It would not be permitted for example to use periodic boundary
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conditions to the right of the impurity and let the left region "take care of
itself".

For this case we let again all couplings be the same, Hjj+1= Hjj-1 =
Vsso. We let all €j be the same €5 except at one site which we number as j =
0. Then we see that Eq. (8.1) is satisfied (with € = &5 + 2Vsgc0skd) by uj =
Teikdj forj=1,2,... ifindeed ug=7. Similarly, Eq. (8.1) will be satisfied
forj=-1, -2, ... by le ikdj+ Re -ikdjif 4o =1+ R. Thus one condition for this
simple case 1s

I+R=T. (8.2)
The other condition is Eq. (8.1) for j = 0, which is

T(es + O€g ) + (Telkd + [eikd 4 Reikd) Vo5 = Te (8.3)
or

(-2Tcoskd + Teikd + [eikd 4 Reikd) Voo = -TS¢s . (8.4)
We may substitute R = 7 - I from Eq. (8.2) into Eq. (8.4) and solve for T as

I 2iVSSG sin kd
I ~ 2iVisso sin kd + 3¢

(8.5)
For comparison with our result from the Golden Rule, we may substitute this

into Eq. (8.2) and solve for R/l to obtain a reflectivity

Reflectivity < KR _ 82
etlectiVity =" =4y o2sin2kd + Oeg2 °

(8.6)

proportional to 82 at small 8¢ as for our Golden Rule calculation. In order
to make a detailed comparison we may drop the small 8¢s?2 in the
denominator and note that the velocity is v = (1/h)de/dk = -2d Vgsgsinkd/h so
that the reflectivity can be written d28¢s2/( hv)2. When the perturbation is
small most of the wave is transmitted so that the beam is equally distributed
over the length Nd of the system and the probability of striking the impurity
per unit time is vw/Nd which is to be multiplied by the reflectivity to obtain
the transition rate,

1 ddes?

TSN R &7
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exactly as we obtained in Eq. (7.12). Eq. (8.6) is a more exact result,
containing terms of all orders in des2 . It is a nice confirmation of our
derivation of the Golden Rule, Eq. (7.9), for the second-order term in the
transition rate.

The other limit, when 8€s2 is large, corresponds to electron tunneling.
Then we evaluate one minus the reflectivity as the transmission,

4Vsso2sinZkd h2y 2
Trans. = gy o2sin2kd + oes2 ~ des2d? (8.8)

where in the last form we have dropped the first term in the denominator and
substituted in the numerator in terms of the velocity. It is quite interesting
that we can think of this limit as a transition rate of electrons from the left
side of the barrier to the right. It is not easy to see how the matrix element
for such a transition is to be evaluated, but we can see by writing both
expressions for the rate. For transmission near zero the electron state is a
standing wave on the left. If that length is written L] the electron will strike
the barrier at a rate v/(2L1) so that multiplying by the transmission gives the
rate

1 h2y 3

p 2L - Trans. = DLioeld2 (8.9)

We may calculate the rate directly from the Golden Rule using the unknown
matrix element 7’12 and taking the length of the region on the right as Ly . It
is

1 2n 2n L2
.= g ZelaTdE-e)= 3 - [ dkyT21T128(82 - €1)
(8.10)
2L,
= 72, DT

In the first step we noted that the change in wavenumber between successive
states on the right for standing waves is /L7, and in the final step we wrote

dky = dey /(hv) and performed the integral over energy. Equating the rates
obtained in these different ways we find that the tunneling matrix elements
must be given by

_ ()2 (hv)* 4Vsosintkd
T2 = gy Troms =40 158e 2@ = NiNgSe? (8.11)
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The proportionality of each matrix element to V 1/N1N2 is as expected due
to the normalization of the states coupled. Even in much more complicated
situations, such as we shall discuss, it is possible to calculate a barrier
transmission and see what tunneling matrix elements are needed to obtain
the correct formula from the Golden Rule. In Section 9.1 we shall see a case
where such tunneling matrix elements can be derived more directly in terms
of perturbation theory.

8.2 More General Barriers

The first generalization from the one-dimensional chain is to a three-
dimensional crystal in which there is a plane of defect atoms, or several
planes, of different atoms. We can see that this only slightly changes the
analysis which we made for the one-dimensional chain. The simplest case
would be a simple-cubic crystal with the defect plane parallel to a cube face,
say an xy-plane. We still retain the translational periodicity parallel to that
plane so we can apply periodic boundary conditions (or we could put
vanishing boundary conditions) on the lateral faces and construct tight-
binding states with uji=e iky FiGuj for the coefficient on the i'th atom
in the j'th plane. k. is the transverse wavenumber for the state with
components kx and ky, but no z-component. For each such transverse
wavenumber we have an energy for an isolated plane gj(k¢) = &s(j) +
2Vsso(coskxd + coskyd). For that transverse wavenumber Eq. (8.1) applies
with ¢j replaced with gj(ky). Thus at each transverse wavenumber the
problem reduces exactly to a one-dimensional problem. There can be slight
complications for more complicated structures, more orbitals per atom, or
different orientation of planes, but the essential point remains: for planar
defects in crystals, transverse wavenumbers k¢ can be constructed and the
tunneling problem for each K is essentially a one-dimensional problem such
as described by Eq. (8.1). We avoid those complications here. We continue
with the tight-binding formulation as we generalize the barriers, but then
consider a formulation based upon free-electron, or effective-mass states.

A second generalization is for multiple planes, or multiple defects in the
one-dimensional part of the problem. One such system 1is illustrated in Fig.
8.1, showing a double-humped barrier. We have chosen now to have the
transmitted wave on the left and flowing to the left as uj = Te-ikdj, rather than
to the right as before. We may take T = 1 since in the end we evaluate
T*T/I*1 or R*R/I*I as in the preceding section. Then any constant factor in
the transmitted wave cancels. Thus we may use Eq. (8.1) to obtain
successive uj values in order of increasing j . We need to set a wavenumber
for the transmitted beam, including any transverse wavenumber k; and
longitudinal wavenumber k| corresponding to an energy € = gj(ky) +
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2Vgsocoskid . Then successive uj are obtain from Eq. (8.1) which can be
solved for uj+] as (writing €j(ky) as €; for each k )

uj+1 = [uj(€ - €j) - Hjj-14j-11/Hjj+1 . (8.12)

In the simplest case all Hj j-] are taken as Vgso and only the €j vary from
site to site. They will be real in any case. Only u; and uj-1 are needed to
determine uj+] so only two terms in the transmitted-beam region are needed.
They will have real and imaginary parts, uj = xj + iyj , so both xj+1 and yj+1
need to be evaluated, both using Eq. (8.12). It is quite simple to write a
computer program to work through the barrier in terms of a specified set of
gj to obtain two successive sets of coefficients in the incident region to the
right, as in Problem 8.1. Then we must determine the longitudinal
wavenumber k in the incident region from the starting energy. k; remains
the same, but in the illustration Fig. 8.1 the & will be different from the
starting k. Only two successive sets, j and j + 1 are needed to determine the
transmission. The derivation of the form proceeds as in Section 8.1. After
some algebra it leads to a transmission T*7//*] equal to

_ 4 sin’kd
~ (Xj+1-xjcoskd+yisinkd)24(yj+ | -xjsinkd-yjcoskd)? *

Trans.

(8.13)

Had we kept a transmitted amplitude 7, the denominator would have been
multiplied by T*T and a T*T would also have appeared in the numerator.
The ki entered in the starting u; = e-iK1dj, and therefore affected the xj and y;
which enter Eq. (8.13), but it is only the k£ for the right which enters this
equation explicitly.

Problem 8.1 sets up a system for such a calculation, leading to a
transmission as a function of energy for a double-humped barrier. In
general this is a very good way to gain an understanding of various tunneling
situations. It is easy to do very complex systems, keeping only the features
one wishes to explore, as in the illustration here where we kept all Vg the
same, but it is simple to allow those to change if one wishes, or to model a
set of energy bands of interest. It is not even difficult to include additional
orbitals and couplings which allow accurate modeling of particular band
structures. We do not carry through examples except for Problems 8.1 and
8.2, but will note some results in connection with more general descriptions.

It is ordinarily less convenient to proceed numerically with the full
Schroedinger Equation when modeling a system, but there are some
analytical results which are of interest and it may also be simpler to



8.2 More General Barriers 117

I
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¢ 6J <
R

j=2101234567 809

Fig. 8.1. Successive energy levels €; through a barrier. The coefficients y;
are written Te “K14 to the left, and each successive uj,; determined from
Eq. (8.12). Beyond the barrier to the right the transmission is obtained
from the calculated coefficients and & on the right, using Eq. (8.13).

understand the procedure than for the tight-binding analysis we just gave. In
doing this we are extending the analysis which we began in Section 2.2.

We imagine a free-electron Schroedinger Equation with a square barrier
lying in an xy-plane, as illustrated in Fig. 8.2. As for the tight-binding
representation we may take periodic boundary conditions on the lateral
boundaries (xz- and yz-planes) so that outside the barrier the electron states
can be written ei(k;z + kX +kyy) Here kx and ky are components of the
transverse wavenumber and in the region where the potential is zero the
energy is € = h2(kx2 + ky2 + k;2)/2m , as in Section 2.2. Taking the
transmitted beam on the left side, as in Fig. (8.1), the transmitted beam is
Te -ik;z, with k, positive, and with a factor ei(kgX +Xy¥) which will appear in
all beams due to the matching, as for the tight-binding case, and we do not
write it explicitly. On the right side the incident beam is Ie -ik;Z and the
reflected beam is Re k;z. We match wavefunctions, as in Fig. 8.3, through
the boundaries since the wavefunction is single-valued (this conserved kx
and ky), and match normal derivatives at each interface so the kinetic energy
operator does not give an infinite value at that point.

Vo
| : >
i<

Fig. 8.2. A simple planar square tunneling barrier to free electrons.
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V(z)

—~
\,/\/?

Fig. 8.3. Matching the wavefunction through the barrier, starting with a
transmitted wave on the left, matching it to exponentially decaying and
growing states in the barrier, and finally to an incoming and reflected
wave on the right.

In the barrier region, if the height of the potential Vjy exceeds the energy
of the state € , the energy eigenvalue equation will give us an imaginary k;
with magnitude k given by € =Vo+ h2(kx? + ky2)2m - h2x2/2m (which
follows directly from the eigenvalue equation, Eq. (2.2)). Thus the
wavefunction within the barrier has the general form

Y = [AeXZ + Be “KZ]el( kX + kyy), (8.14)

We specify the transverse wavenumber, (kx,ky), and the energy which
specifies K as well as k; for the incident, reflected, and transmitted waves.
We match the value and slope to the incident wave at the left surface of the
barrier by adjusting A and B. This allows determination of the wavefunction
and slope at the right surface of the barrier, which in turn is matched to the
incident and reflected wave by adjusting I and R. In the matching at the left
surface we obtain one term which grows exponentially to the right and one
which drops exponentially. Ordinarily we can neglect the one which drops.
The resulting transmission, obtained after some algebra, is

T*T  (4kky)?
Trans. =[5 = 1 +Z]<2)2 e 2KW 4 O(e-4Kw) (8.15)

The exponential factor comes from the wavefunction dropping exponentially
from the incident to the transmitted side a distance w away. The factors in
front come from the matching. It is in fact interesting to compare this form
with the tight-binding form for tunneling through one atom, Eq. (8.8). The
numerator in that equation contained a velocity squared, which corresponds
to (hk,/m)2 for free electrons and explains the k;2 factor in Eq. (8.15). The
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denominator in Eq. (8.8) contained a factor 8&52 , which corresponds to the
barrier height squared, ( h2k2/2m)? and explains the denominator (with the
velocity term in k,2 dropped as in the final form of Eq. (8.8)). For one atom
as in Eq. (8.8), there is no exponential term but otherwise the two forms are
quite closely related, as we would expect.

This same formula would apply if the free-electron had an effective mass
m* as in semiconductors, discussed in Section 14.2, but there is a difficulty
if the mass changes at an interface. We may see that if we then match y and
dy/dz at the boundary charge is not conserved; it disappears or appears at
the interface. To see this we must derive the current operator, which we may
do using the continuity equation, the requirement that charge not disappear
locally. The probability density is y*y so its rate of change is obtained
using the Schroedinger Equation (1.16).

a *
*‘573@ W* S+ g W= My RHY +(hHy) Yy
(8.16)
i

ih
= 5 (WEV2Y -y V2yx) = 5 VA (y*Vy - y V).

In the second step we noted that the term in the potential canceled and kept
only the Kinetic-energy term. The continuity equation can be written dp/dt
=-V- je with p the charge density and je the electric-current density, the
statement that the only way the local charge density can change is from net
current flowing in or out. Canceling a factor of -e this becomes a relation
between the time derivative of the probability density dy*y/dt and the
divergence of the probability-current density. We may then identify the
probability-current density j from Eq. (8.16) as

. ih
J=- 5, WV -yVys). (8.17)

We may confirm that for a free electron with wavefunction (1/\/Q)e ik-r this
is (Ak/m)y*y = vy*y as we would expect, but it is now much more general.

We now see that if we match y and dy/dz at an interface, but the mass
which appears on the two sides (the effective mass) is different, the current
flowing into the interface will differ from that flowing away from it, so the
description is incorrect. We could use the requirement of current
conservation, matching (y*/m*) dy/dz as one condition, but that leaves the
other uncertain. A full solution of the eigenvalue equation, or Schroedinger
Equation, in the solid, using the full potential in the solid will of course give
the correct answer, and using that answer for an interface describable by
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effective-mass bands would tell the condition for that particular case. A
more general, but approximate, way is to perform a tight-binding calculation
to determine the states near the bottom of a band and see what matching
condition would give the correct result. This was done by Harrison and
Kozlov (1992) for a simple band using Eq. (8.1) with Hj j+1 different on the
two sides so the effective masses at the bottom of the bands (determined
from 02eyx/dk?) were different. The result was more complicated than
anticipated, giving matching conditions

y+=Ay- + B dy/0dz,
(8.18)
oyt/dz = Cy+ D oy-/dz,

with the plus and minus indicating the wavefunction to the right and to the
left, and with the coefficients A B, C, and D depending upon what was
chosen for the matrix element Hj j+1 coupling the states across the interface.
The only way the result became simple, with B and C equal to zero, was if
the matrix element Hj j+1 coupling the states across the interface was the
geometric mean \/(Hj,j+1+Hj,j+1‘) of those to the left and to the right, a
perfectly plausible choice. The matching conditions then became

’_1_ /_L
m+\lf+= m-\lf‘ ’

Afut_ | [ Loy
mtdz = Nm-9z "’

(8.19)

This would appear to be the only simple choice which can be correct.
However, for real simulations of semiconductors, where the question of
effective masses arises, it would seem preferable to use Eq. (8.1) directly as
we did above, with parameters chosen to fit the system in question.

8.3 Tunneling Systems

We note that once we have calculated a transmission, one way or
another, the argument which led to Eq. (8.11) can be used to write the matrix
elements which will give the correct transmission Trans. when used in the
Golden Rule as

h2v v
T12T721 = m Trans. (8.20)
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with of course vy 7 the velocities on the two sides and L1 » the length of the
system on the two sides. This could for example be used with Eq. (8.15).
The discussion of tunneling in terms of transition rates is often the most
appropriate way to analyze tunneling systems of current interest. An
important system is a metal such as aluminum, allowed to oxidize in air
which frequently leaves an insulating oxide some 20 A thick, upon which a
second metallic layer is deposited. Current between the two metals arises
from tunneling through the oxide. With no voltage applied the states on both
sides are filled to the same Fermi energy and no net current flows. An
applied voltage ¢ raises the Fermi energy on one side by V = -e¢ relative to
the other, and tunneling in that energy range goes only one way. The net
current may be calculated (assuming zero temperature) using the Golden
Rule as in Eq. (8.10), usually assuming conservation of transverse
wavenumber. Usually one will expect the matrix elements 712 to be
insensitive to energy for applied voltages small compared to the Fermi
energy. The number of coupled states occupied on one side and empty on
the other will be approximately proportional to the applied voltage, so the
current will be approximately proportional to applied voltage, as a simple
and perhaps uninteresting resistor. However, in special cases, such as with a
superconductor on one or both sides, there may be a proportionality to the
density of excited states, with a gap at the Fermi energy, as observed by
Giaever (1960), providing a powerful test of the theory of those excitations.
The same system led to the discovery of superconducting tunneling when
both metals were superconducting, the Josephson Effect (Josephson (1962)).
The transition-rate approach can be particularly useful in treating the
scanning tunneling microscope where a metallic tip is held over a crystal
surface, as in Fig. 8.4, sufficiently close that electrons tunnel into, or out of,
the substrate. As it scans across the surface the matrix element 772 between

0

s = <7 4

Fig. 8.4. In a Scanning Tunneling Microscope (STM) a metallic tip,
shown above, is brought sufficiently close to a substrate, shown below,
that electrons can tunnel between. By applying a voltage, and causing the
separation z to vary such that the current is constant as the tip moves
across the surface, one traces out the surface, like a phonograph needle on
an atomic scale.
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the tip and the substrate varies giving information about the geometry of the
surface atoms. The tip can be modeled as a crystal corner, as described at
the end of Section 6.1 with the matrix element between the tip wavefunction
and a surface atom given by V2/IN sinkxd sinkyd sinkzd Vsso for a simple-
cubic crystal corner and all s-states. One can build upon such a model to
construct a more accurate representation of the tunneling spectroscopy for
any system of interest. In a more complete analysis one may construct
approximate eigenstate wavefunctions for the entire system and use the
current operator of Eq. (8.17) to evaluate the current.

8.4 Tunneling Resonance

The system for which the transmission was calculated in Problem 8.1 is
illustrated schematically in Fig. 8.5, a double-humped potential which is
almost high enough to form a local, bound state - called a resonant state -
within the barrier. For a finite barrier height the electron can tunnel out on
either side as shown and as we have seen. It has finite kinetic energy,
corresponding to approximately a half wavelength equal to the width of the
well, also as shown. The very remarkable result in such a case, and found in
the problem, is that the transmission rises to one at an energy equal to the
resonant-state energy, and then drops at higher energies. This system
illustrates a number of quantum effects which we shall explore.

The first concerns transitions out of such a localized state. If this were a
spherical shell, rather than a one-dimensional system, the state could be
constructed just as we did in Section 2.4. There could be a resonant state of,
for example, spherical symmetry. We can calculate the rate electrons would
leave such a state just as we calculated the transition rate between two sides
of a barrier in Eq. (8.9), and we shall carry out such a calculation in Section
9.2. From that rate we can deduce the half-life of the state, the time in which
it would have a 50% probability of having escaped.

Such a theory describes for example the decay of a nucleus by the

~
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Fig. 8.5. A double barrier may very nearly form a state, called a resonant
state, out of which, however, a particle can tunnel.
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emission of an alpha particle, a-particle, which itself is a helium nucleus.
We saw in Section 4.4 that the helium nucleus, with two protons and two
neutrons, all in the lowest one-nucleon 1s-state, has particularly low energy
and is therefore particularly stable. In the heavier nuclei the binding energy
per nucleon is reduced by the Coulomb repulsion of the many protons
confined to the nucleus, and at the same time the binding-energy per nucleon
is rather insensitive to the exact number of nucleons just as the cohesive
energy per atom of a metal becomes independent of the size of the metal for
bulk crystals. Thus it becomes energetically favorable to remove one helium
nucleus, an o—particle, from a heavy nucleus. There is however a barrier to
this removal because as the alpha particle moves just outside of the nucleus
which initially had Zy,c protons, beyond the attractive square well which we
described for the shell model in Section 4.4, it has a very large electrostatic
potential 2(Zpyc-2)e?/r. Thus a plot of the energy of the o-particle as a
function of radial distance, relative to its energy at infinite distance should
appear as in Fig. 8.6. The transmission of the barrier can be calculated as we
did in Section 8.2 (using the tight-binding description as an approximate
calculation on a grid of the continuous radial wavefunction, or by the WKB
method, which we have not described in this text), and the tunneling rate
deduced. For any case Znyc is known and one has a good idea of the nuclear
radius, as indicated in Section 4.4, so one can reliably calculate the
transition-rate out, as a function of the energy of the emergent a-particle,
and the results are in good accord with experiment.

A particle outside the barriers of a system such as this will have very
strong scattering if its energy is near that of the resonant state. This is then
called a scattering resonance and is analogous to strong scattering of sound
by a resonant body when the sound wave has frequency near that of the
resonator. In this case it would be scattering of -particles by a nucleus.

To r

Fig. 8.6. The potential energy of an o-particle as a function of distance r.
from the center of the nucleus. rg is the radius of the nucleus, and €4 is
thought of as the ground-state energy of the «-particle within the nucleus.
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We return next to the one-dimensional case shown in Fig. 8.5 and ask
how it can be that an incident electron could have transmission near unity as
if it did not see the pair of barriers. The answer suggested by Fig. 8.5 is
essentially correct. The probability density inside the barrier is very high for
the resonant state and its tunneling out may not be symmetric so that it
corresponds to a tiny transmitted beam on one side and a tiny incident and
reflected wave on the other. The calculated transmission is high because in
that circumstance the probability within the well is high and it feeds the
transmitted wave. It is not that the incident electron does not see the barrier.
If the individual barriers are thick and high, the resonance becomes
extremely narrow in energy; the transmission is high only over a very
narrow energy range. Thus if we constructed a wave packet for an electron
approaching the double barrier, it would include states of low transmission
and the packet would be largely reflected as we would expect physically.

The small-amplitude packet which does tunnel through spends a time of
the order of h divided by the resonance width before proceeding beyond. If
there is more than one electron tunneling, the probability of both being in the
barrier at the same time is greatly reduced by the Coulomb repulsion
between them, an effect called the Coulomb blockade.

We can construct states in this energy range in detail, and find that over
the resonance width (the energy range with high transmission) the states are
closely spaced, as without a well in the barrier, but that an extra state is
crowded in within this energy range, as illustrated in Fig. 8.7. There is no
single resonant state and each state has only a small probability of being
within the well, a probability of order the reciprocal of the product of N, the
density of states, and the resonance width.

System plus a well-state gives a resonarnce.

¢ Resonance Width.

One extra level.

TR
|
\
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Fig. 8.7. If a potential well is inserted within a barrier, a resonant state
which arises will be an additional state crowded in among those already
present.
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The case of tunneling resonances, with one state coupled to two different
continua of states as in Fig. 8.5, is an interesting one to explore. We have
seen the nature of the states which arise in an exact calculation and have
seen the resonant transmission going to unity at the center of the resonance.
It will also be useful to proceed in an approximate way to understand better
the properties of such systems.

9.1 Second-Order Coupling

It is of interest to consider the effect of the resonance on tunneling for
states well removed in energy from the resonance, as illustrated in Fig. 9.1
We proceed in perturbation theory using the matrix elements given in Eq.
(8.20). In zero-order, the resonant state of energy €2 is an independent
energy eigenstate, as is our starting state of energy €1 outside the barrier.
We may correct our starting state using the first-order perturbation theory of
Eq. (5.26) to obtain

1>—|1>+ [2> 9.1

€1 -€

Even if there is no direct coupling between the state |1> on the left and a
state |3> on the right, there will be a coupling of this first-order state to the
state on the right through the coupling 732 between the resonant state [2>
and the state to the right [3>. Thus there is a second-order coupling through
the resonant state given by

125
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V4

“1 Ty,

Fig. 9.1. A resonant state is treated as a zero-order energy eigenstate 2>,
coupled to a continuum of states |1> and to a second continuum of states
3>

132771

d —_
<3|H2nd|1> = el - &

9.2)

There is actually an additional term arising from the first-order
correction to the state |3> and a cross term from the two first-order
corrections. They turn out to be of the same magnitude when €1 = €3 and the
cross term is of opposite sign so for the calculation of transition rates
between |1> and [3> we need only the term given in Eq. (9.2). If there were
more that one state in the well, the terms would add in the second-order
matrix element and if the terms were opposite in sign they would cancel
each other. We shall make use of this feature that there is interference
between terms in Section 23.4.

The matrix elements with the local state, 712 and 723, contain a single
factor of 1/VL1 or 1/NL3 so that if we write the transmission combining Egs.
(8.20) and (9.2) as

4L1L3|T12T23[?
Trans. = h2v1va(e) - €2)2 (9.3)
all of these length factors cancel, as they should. As the energy €1 of the
incident (and transmitted) electron approaches the energy €7 of the resonant
state, the transmission becomes large. In this form it would diverge but the
perturbation theory is only valid when €] - € is large. We proceed in the
following section to describe tunneling in the other limit, that in which the
incident energy is approximately equal to that of the resonant state.

A case where such transmission through a resonant state is important is
shown in Fig. 9.2 where electrons tunnel through an oxide between two
metals. If there are impurity atoms in the oxide, they can dominate the
tunneling. This can be seen experimentally if vibrations in impurity
molecules are excited (as described in Section 23.2), so that the transmitted
electron has reduced energy.
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M’e}z:aé 7 (Eid@ 7 Metai

Fig. 9.2. A tunnel junction between two metals. Impurities, indicated by
striped circles, can provide resonant states which contribute to, or even
dominate, the tunnel current.

9.2 Carrier Emission and Capture

We must proceed differently in order to discuss tunneling when the
incident electron has energy approximately equal to that in the resonant
state. Then the possibility of transitions into and out of that state arises. In
deriving Fermi's Golden Rule we emphasized the necessity of having a
continuum of final states, which we do not have for capturing electrons, but
we can use the Golden Rule to calculate emission. We could proceed as we
just have to obtain matrix elements 7723 between the local state of energy €
and an external state of energy €3 to the right. Then the emission rate is
obtained as

1__2nl3 _ 213723732
<= = & nfdk3T23T32 o(e2 - €3) = hovy 9.4)

v3 is the speed in the final state. Again the size of the system to the right
cancels out in L37737T37 .

Although we cannot directly use the Golden Rule to obtain a capture
rate, such capture into discrete states must occur since, for a system in
equilibrium, electrons in an impurity state in the barrier will tunnel out with
a rate given by Eq. (9.4) and there must be electrons tunneling in at the same
rate to replace them. This is called detailed balance. In Chapter 10 we shall
define probabilities of occupation of such an impurity state as f{€2) and
probabilities of occupation of the states into which they tunnel as f{e3). For
a transition to occur the internal state must be occupied and the outside state
empty, so the transition rate out is given by f(e€2)(1 - £€3))/1. Similarly there
must be a transition rate in equal to f{e3)(1 - f{€2))/T" with a T' which we wish
to know. However, €3 = € for the transition and in equilibrium we shall see
in Chapter 10 that f depends only upon energy. Thus fle3) = flep),so 1’ =1
and we have the rate also for capture and can use the capture rate f(€3)(1 -
J(€2))/t also when we do not have equilibrium distributions.
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We return to the system shown in Fig. 9.1 in which tunneling occurs
through a resonant state, but now when the incident electrons have energy €1
near €2 . For the moment we let all such states |1> be occupied, and none of
the transmitted states |3> of equal energy be occupied. Then electrons will
be captured into the resonant state |2> from |1> and the occupation will
increase until the transition rate out to |3> equals the rate in, steady state.
This will be with the probability of occupation of |2> equal to one half if the
1/t is the same between |2> and |3> as it is between |1> and |2> and the
tunneling rate through the resonant state would be half the rate given in Eq.
(9.4). We look at more general steady-state cases in Section 11.1.

This would be called sequential tunneling rather than the resonant
tunneling treated in Section 9.1. The full transmission calculation in Chapter
8, and Problem 8.1 in particular, gives transmission for all energies and
includes both types without distinguishing. However, in a real system we
may make the distinction and it can be very useful to consider both and to
see which dominates. For example, in a semiconductor tunnel junction, with
a resonant state at energy €2 well above the conduction-band edge Ec, the
contribution of sequential tunneling will be reduced relative to resonant
tunneling by the much lower occupation of electrons at the required energy,
by a factor e -(€2 - Ec)/KgT as we shall see in Chapter 10, than the occupation
of levels near the conduction-band edge. However, we see from Eq. (9.4)
that the rate for sequential tunneling has only two factors of 712 or 723 while
the resonant tunneling rate is seen in Eq. (9.3) to have four such factors.
Each of these factors is seen from Egs. (8.15) and (8.20) to contain a factor
of e - X% which may be extremely tiny. It is not clear from the outset which
type of tunneling will dominate. It will differ for different systems and it
can be extremely useful to learn for any one system which mechanism is
dominant and therefore what its dependence upon parameters such as
temperature will be.

9.3 Time-Dependent Perturbations

We have treated transitions arising from perturbations which do not
depend upon time, such as the coupling between a resonant state and
continuum states, and this led to the conservation of energy. If we now
allow perturbations which vary with time we shall find that they can do work
on the electron and shift its energy in the transition. The derivation of the
corresponding rate follows closely the derivation of Fermi's Golden Rule in
Section 7.2.

We introduce a perturbation, which might be a potential V(r,#) or other
small term added to the starting Hamiltonian which had eigenstates |j>. Then
the coupling between these states Hjj will also depend upon time. It is
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convenient to expand the time dependence of the perturbation in a Fourier
series, V(r,1) = ZuV(r)e -0t so that

Hji(t) = 2 Hg(o)eo, ©.5)

and each term is a separate perturbation. This however leads to a persistent
ambiguity since V(r,r) is certainly real so that V_q(r) must equal Vi(r)*.
This restriction on the Fourier components is compensated for by the fact
that Vi»(r) has independent real and imaginary parts. We shall deal with this
systematically in Chapter 15 for lattice vibrations and in Chapter 17 for
light, where we find that we may think of each component as an independent
term, and it is best to do that here. The ambiguity will resolve itself for any
real problem if we are careful that our expansion represents the potential in
that system, and that we have correctly included all the terms in the
perturbation theory. For the present we treat a single term Hjie -0t and add
the other terms in Eq. (9.5) at the end.

We again expand in the eigenstates |j> of the starting Hamiltonian, [y>
= Zjuj(te -0ftj>, as in Section 7.2 and let ug = 1 at = 0. We may then
proceed exactly as in Eqgs. (7.6) through (7.8), but keeping the time
dependence so

Ju; .
iﬁ"%p = Hjpe-i(@g - ©; + )t + O(Hjo2). (9.6)

The final term indicates the second-order terms which we neglect. We may
integrate directly from =0 to get

i) =0 (g o +o) - 1) 9.7)
7 h(wo - 0 + o) J

or

HoiHio 4sin2l(wg - o + 0)t 2]
U (Ouit) =""¢> (@0 - ©] + )2

(9.8)

The second factor on the right is an energy delta function exactly as shown
in Fig. 7.2, but with an additional term in the argument. Thus we obtain
exactly the result, Eq. (7.9), with the argument of the delta function replaced
by €0 - €j +hw. We may now add all of the other terms in Eq. (9.5) to
obtain the time-dependent perturbation-theory result
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1 2
T = % ijm Hoj(w)Hjo(w) d(eg - g + hw) . (9.9)

If there were only one term in the sum over m, with ® = 0, the equation
reduces to Eq. (7.9) as it should. For each term in the sum over @ for which
o is positive the final-state energy is higher than the initial-state energy by
A, as if a quantum of energy hw was absorbed. For the perturbation to be
real, for each such term there must be another for which w is negative, and
the final-state energy for that term is lower, as if a quantum of energy was
given up by the electron. When we finally quantize the vibrational states or
optical energy in Chapters 16 and 17 we shall see that this is exactly the
case, but for the present we have introduced a classical perturbation
depending upon time and the classical system can add or subtract energy
from the electrons to which it is coupled. We continue this classical
treatment of the electromagnetic field in the following section and see how it
can ionize an atom by exciting an electron from a bound state to the
continuum.

9.4 Optical Transitions

The first step in the calculation of transitions caused by an
electromagnetic field, and the ionization of an atom in particular, is to obtain
the perturbation. It would be possible, and simpler, to carry out a derivation
in terms of a perturbation -(-e)E- r with E the time-varying electric field of
the light at the atom. However, that formulation is not convenient for other
problems and we proceed more generally to obtain results which we shall
use later. As we indicated in Section 3.3, the electric field can be included
by adding a vector potential A, in terms of which the electric field is given
by E = -(1/c) dA/0t. Then the interaction with the electron is obtained by
adding -(-e)A/c to the momentum operator in the Schroedinger Equation.
The p2/(2m) is written out and the cross term eA-p/(mc) = -iheA-V/(mc) is
the interaction, thought of qualitatively as the velocity times the field,
divided by frequency since E is proportional to dA/dr . We can expand the
vector potential as we shall do in Eq. (18.1) but making the time-dependence
explicit in analogy with Eq. (9.5), keeping two terms which will lead to real
fields

AT, ="\ / 45“ (uqei@r- 00 4y ge-i(gr-on), (9.10)

This corresponds to a wave propagating in the direction of q and only the
first term can raise the energy of the electron according to Eq. (9.9). We
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shall find that the wavelengths of the light of interest are so long (thousands
of Angstroms) compared to the size of an atom that we can neglect the
variation of Eq. (9.10) over one atom. Then we may take our origin of
coordinates at the atom, we take our z-axis along the light wavenumber q
and the x-axis along the polarization direction, the direction of the electric
field, ug. Then the perturbation representing the electron-light interaction
becomes

Hel= -\ , % % (uge SOt + y_ge 100t) aa—x . (9.11)

which will become Eq. (18.10) when we quantize the light field. As we
indicated, for the absorption of light we keep only the first term.

We may use this form for coupling between atomic states to learn which
states are coupled. We look first at the matrix element between an s-state
|0> and some atomic state of angular-momentum quantum number /, the
matrix element <l|He|0>. All of the factors in Eq. (9.11) except d/0x can be
taken out of the integral in the matrix element, and for a spherically
symmetric state |0>, d/9x|0> = (x/r)d/0r|0> is of p-symmetry. Thus an s-
state is coupled by the electron-light interaction only to a p-state since all
other states are orthogonal to (x/r)d/dr|0>. This generalizes to the statement
that if the initial state has angular-momentum quantum number /, there will
only be nonzero matrix elements with states of quantum number [ +1. We
shall make this important generalization in Section 16.3. Such rules are
called Selection Rules. In a similar way matrix elements of x between
harmonic-oscillator eigenstates ¢pn(x) are only nonzero if the two states differ
inn by t1.

In the case of the electron-light interaction of Eq. (9.11) it has the
important physical interpretation that a photon has a spin angular momentum
of one unit, K, since the absorption or emission of a quantum of light energy
always changes the angular momentum of the system it interacts with by one
unit. Indeed this is more than an interpretation, it is a proof that photons
have unit angular momentum.

For excitation to the continuum, we seek matrix elements <I|Hej|k>
between an atomic state </ | and a freely propagating state k> =
(1NQ)eik r. It might seem preferable to represent the freely propagating
state by a plane wave which has been made orthogonal to the atomic states,
[k>> = [k> - X [I'><l1k>, called an orthogonalized plane wave, since the
true propagating states are orthogonal to the atomic states. This would lead
to cross terms for /' = [ * 1, but such terms are usually small and we neglect
them here. We have chosen the matrix element with the plane wave to the
right so the derivative d/dx|k> = ikx|k>. The matrix element we seek is then
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[47 ite d
<l|Hel'k> = - E o uqe l(l)t<l| a l >

47 hk .
= Eﬂ m)ée uge 10t <f|k>.

(9.12)

The matrix element <k|He||l> is the complex conjugate of this, which can be
shown by making a partial integration on the d/0x .

The plane-wave states themselves can be expanded in spherical terms as
(e. g., Schiff (1968), p. 119)

ek r = 2 U+ )il ji (kr)Pp (cosO) (9.13)

with O the angle between k and r, where the P; are Legendre polynomials
P[0 introduced in Eq. (2.27), and where the j; are the spherical Bessel
functions introduced in and after Eq. (2.34). For an atomic state of angular-
momentum / there will be terms for I’ =1 in <lJk> or terms for [' = [ 1 in
<l|doxlk>.

We may complete the evaluation of the matrix element using the final
form in Eq. (9.12), which we do for an atomic s-state,

eikrcos@
<Ok> = ,[ 2nr2dr J. sin0dOw(r)eikrcosd = f2nr2ws (Hdr o |0

(9.14)

sin kr

—\/— r2Vy(r) kr dr.

This can be evaluated from tabulated wavefunction or for a simple hydrogen

1s-state, or a state approximated by that form, ys(r) = Vu3/meHr with
energy € = -h2u2/(2m). For that case it becomes

Af sm
<Olk> = Jre) (u2+k2)2 . (915)

Then the time-dependent matrix element becomes

hikxu32e  16mp . .
<O|Hellk>= — & 12 + k22 (qe 10+ uge 1), (9.16)




9.4 Optical Transitions 133

We may now evaluate the rate that such transitions to an ionized state
are made using the time-dependent perturbation theory of Eq. (9.9). Itis

%: 2?“ Zk<0|He1Ik> <k|H1|0> 3( gg - ek +hw), 9.17)

and <k|H1|0> is the complex conjugate of <0|Hcj[k>. We may see already
from the kx factor in the matrix element of Eq. (9.16) that the probability of
exciting the electron into a state of wavenumber K is proportional to cos20 ,
with 0 the angle which k makes with the direction of polarization of the light
wave. This makes physical sense since that polarization direction is the
direction of forces on the electron. Our neglect of the variation of the field
over the atom has made the result completely independent of the direction of
propagation of the light, the direction of q.

As usual, we replace the sum over final states (of the same spin as the
initial state since the He} we use does not couple electron states of different
spin) by an integral, in this case with angles measured from the direction of
polarization,

Y= (—%gf 21d6 sindJdk k2 = (2’7?522{12 [ do sin6ldex k . (9.18)
Integrating over angle and energy gives

1 256me?  pdk3

T = 3mC2}/19 (uz + k2)4 uqu_q . (919)

The evaluation of the delta function relates the final-state energy to the
photon energy as

242
};—:1 = ho + &, (9.20)

with €5 = -h2u2/(2m) measured relative to an electron at rest far from the
atom.

It is difficult to interpret a result in terms of the amplitudes uq, but we
can also write the light-energy flux in terms of the uq using Eq. (9.10). The
ratio of the two is meaningful and the uq cancel out. We may return to Eq.
(9.10) which gives the vector potential, and then the electric field. We can
square it and divide by 87 to obtain the energy density, which averages over
space or time to g2uqu.g/Q2. There is an equal energy density from the
magnetic field so we multiply by two, and by the speed of light to obtain the
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energy flux. We may then divide by hw to obtain a photon flux of
unqu-q/(ﬁQ). Finally we set the rate of ionization from Eq. (9.19) equal to
this photon flux times the cross-section for ionization 6x and solve for ox as

_ 128me2  pSk3  128mhe2  p7k3
%= 3mew (W2 +k2)4 ™ 3mcles] (U2 +k2)5 -

(9.21)

The leading factor in the final form is a constant, equal to 0.55 A2 if € =
-13.6 eV, and the second factor is dimensionless and can be written in terms
of w = ho/led = (U2 + k2)/u2as (w - 1)3/2/w4. This is plotted Fig. 9.3,
showing how the cross-section rises above the threshold hw = -g5. We note
that the leading factor is similar in magnitude to the area, 0.91 A2, one
would get from the Bohr radius (1/u = 0.54 A) squared times 7, and does
vary with the depth of the s-state as appropriate to that. However, the final
factor is quite small, as seen in Fig. 9.3, so the correspondence between the
cross-section and the "area" of the atom is not close numerically.

This evaluation of the flux in the analysis above is tricky because of
factors of two and here we have been careful to use the same vector
potential, Eq. (9.10), for both the transition rate and the flux. In Chapter 17
we proceed more generally and then the algebra should take care of the
consistency there. It would be dangerous to use different approaches for two
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Fig. 9.3. The final factor in Eq. (9.21) giving the cross-section for photo-
ionization as a function of photon energy for a hydrogenic s-state.
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parts of the same problem.

In Problem 9.1 this calculation is redone for excitation of an electron out
of a state in a semiconductor quantum well, localized in one dimension, but
propagating in the other two. The procedure is very much the same, but with
different geometry. This could be quite accurately done by constructing the
excited states for the system as states were constructed in Section 8.2, but for
the purposes of the problem simpler states were chosen analogous to those
we have used in this section. It is interesting that for a single electron and
light propagating paraliel to the plane of the well, with polarization
perpendicular to that plane, the ionization rate at a given electric-field
strength does not depend upon the area of the well, only the thickness. Thus
we can again define a cross-section for ionization ox, which in this case is
considerably larger. When it is plotted it leads to a curve similar to that
shown in Fig. 9.3.

9.5 Beta-Ray Emission from Nuclei

We turn now to a very different type of transition, but one which can be
described using the Golden Rule. We indicated in Section 4.4 that a neutron
could decay into a proton by emission of an electron. Such an event could
only occur in conjunction with some other effect since the neutron has spin
1/5, as do the proton and the emitted electron. With necessarily a half-
integral spin change, and orbital angular momentum in integral units of h,
angular momentum could not be conserved. The other effect is the emission
of a neutrino, which has spin 1/3, so it could cancel the spin of the electron
and leave the proton with the same spin state as the neutron. The neutrino
clearly has no charge, and it has very tiny, if any, mass - we shall treat it as
vanishing - so that we can almost think of it as pure spin without substance
leaving the scene with the emission. However, it does have wavenumber g
and thus momentum hq, and if it has negligible mass, its energy from the
relativistic formula given in Problem 1.1 will be hqc.

The emission of the electron and neutrino can be considered a transition,
calculated with the Golden Rule. It is an interesting problem to consider
since we have no way of knowing what the matrix element is. In this case,
and in most others, we can nevertheless proceed by making the simplest
sensible guess for the matrix element, and learn the consequences. This is
what Fermi (1934) did for beta-decay and it turned out to describe the
process well. If it had not, the failure would have taught him how to correct
the matrix element. The theory applies to the isolated neutron, or to a
neutron contained in a nucleus,
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Fermi chose the matrix element to be independent of the magnitude of
the momentum of the electron, the neutrino, the neutron, or the proton.
However, we recall that momentum conservation is always enforced by the
matrix element, so that the matrix element must only be nonzero if the sum
of the momenta, or wavenumbers, for the electron, the neutrino, and the
proton equals that of the starting neutron. Restating this, we may take the
starting wavenumber of the neutron (or nucleus) as zero, and then the sum of
the electron wavenumber k and the neutrino wavenumber ¢ must be the
negative of the proton wavenumber K (or that of the nucleus after the
decay). There would be a relativistic correction if the starting neutron or
nucleus had velocities in the laboratory frame comparable to the speed of
light. We do not consider that case, but write the matrix element
<k,q,K|H|0> as independent of the magnitudes of Kk, ¢, and K, and the
condition K = - q - k remains true for a relativistic system.

We also need to write the energy delta function. We use the relativistic
formula (given in Problem 1.1) for the electron and neutrino energies, which
we indicated was Aigc for the neutrino, and we keep only the first two terms
for the electron. Thus we require that the sum of the electron and neutrino
energies mc?2 + h2k2/(2m) + hgc plus the recoil kinetic energy of the nucleon
or nucleus be the negative of the change in the internal energy AE of the
nucleus or nucleon. In fact the nucleon is so heavy in comparison to the
electron and neutrino that this recoil energy h2K2/(2Mp) is negligible.
However, we must retain the K since it allows k + q to be nonzero. Thus
we neglect the recoil energy in the energy delta function and the Golden
Rule gives us a transition rate

1 zﬁf‘— 2 |[<k.qK|H|0>[2 8(me2 +12k2/(2m) +hige - AE), 9.22)

with the sum over all final states.

The final states are now specified by two wavenumbers, k for the
electron and q for the neutrino, since K = -k - q, so we will sum over both
wavenumbers, writing each sum as Q/2n)3 times a three-dimensional
integral over wavenumber, with an additional factor of two for the two spin
states of the electron (with the neutrino of opposite spin, though a more
complete analysis of the interactions allows the electron and the neutrino to
have parallel spin, and the spin of the nucleon is then flipped). The matrix
element must contain a factor of the reciprocal volume of the system 1/€2,
just as did the matrix element of the electron-electron interaction, so that the
final rate does not depend upon the volume of the system. We think of this
factor of 1/€2 as coming from the 1/NQ normalization of the neutrino and
electron wavefunctions and an integration over a local interaction with the
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nucleon states. Thus we write <k,q,K|H|0> = M/Q, with M having units of
volume times energy. We proceed by finding the rate into a particular
electron wavenumber state k by summing over q and afterward convert to a
distribution as a function of k. With this simple matrix element the rate is
independent of the direction of k or q or the angle between them, so the
probability of a final state with a particular k and spin is

1 2 M2

f h2k2
W™ h @mq 4 da el + 5 g - AB)

M2 h2k2
= TOh3 J(flcq)z d(hcq) 8(mc2 + St hgc - AE) (9.23)

M2 h2k2
= nodcs (AF -mets 0

Then the probability per unit time of emission of an electron into one of
the 2x4mk2dk Q/(2m)3 times (m/h2k )(dex/dk) states in the energy range dej
is

M2
Pey dex = #6—3@ Ver(AE -mc? - g dex, (9.24)

shown in Fig. 9.4.

Pe,

Fig. 9.4. Probability of emission of beta-rays (electrons) as a function of
their energy. AFE is the magnitude of the change in energy of the nucleus
due to the transition. The rest of the energy is given to the neutrino.
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The scale depends upon the matrix element M which must be obtained
from experiment, such as the total half-life of the free neutron. This theory
of B-decay is an impressive accomplishment of quantum theory. We do not
know at the outset what nature has given us in the way of particles and
interactions, but learn that a neutron has somewhat more mass-energy than a
proton. Thus energy can be conserved if a neutron decays into a proton and
an electron with the excess energy going to the electron. However, such a
process cannot conserve angular momentum. When we learn that the
process nevertheless occurs, we deduce that another particle - the neutrino -
must be created (or perhaps could have been absorbed).

We of course do not know the matrix element for the process but can
make the simplest guess and see if it fits experiment. The same approach
was taken for a wide range of particle decays, and collision processes. One
assumes that all processes are possible but each with an unknown but
nonzero matrix element. If a particular process does not occur, one
concludes that it is ruled out by some other conservation law. This is the
path which led to the Standard Model of particle physics, mentioned in
Section 4.4.

The matrix element for B-decay was found to be small, and called a weak
interaction, small compared to the electromagnetic interaction and the strong
interactions between nucleons arising from 7-mesons as described in Section
17.4. At the same time the weak interactions are strong compared to
gravitational interactions.

A principal goal of contemporary particle theory is to understand the
ratio between these four interactions in terms of one theory. That has not
been accomplished, and in any case for us it would only explain what nature
has given us. It is still true that given what we have, quantum theory tells us
how to understand its behavior.



IV. Statistical Physics

To a large extent in our analysis we have been able to treat individual
particles or waves, based upon a one-particle or one-electron approximation
introduced already in Section 2.2. Occasionally we have introduced
collections of particles, as for quantized conductance in Section 2.3. It is
appropriate to take time to organize the subject a little more completely,
discussing first statistical distributions in equilibrium, then transport theory
when systems are out of equilibrium, and finally some aspects of the theory
of noise. These are separate subjects from quantum mechanics, but are
absolutely necessary if one is to make quantum-mechanical studies of
systems involving many particles. They are not always incorporated in
undergraduate programs, sSo it may be necessary to include them in a course
on quantum theory. They also lead to quite different results in the context of
quantum mechanics. We proceed as we have in other discussions by treating
the simplest cases carefully, and seeing how they generalize to more intricate
contexts.
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Chapter 10. Statistical Mechanics

Statistical mechanics is concerned with systems in thermal equilibrium,
the state of any many-particle system if it is left by itself long enough. It
does not depend on the mechanisms which bring the system to equilibrium.
There may be a vast number of possible states of the entire system, and a
major aspect of statistical physics is dealing with this complexity by
formulating the right questions. We discuss this first in describing the
distribution functions which are sought. The analysis is then based upon the
statistical assumption that in thermal equilibrium the probability of any
particular quantum state depends only upon the energy of that state. It will
then follow from our first example that the dependence of that probability
on its energy €;jis given by the Boltzmann factor, e&/kgT in term of the
temperature 7. It may seem odd to use a detailed model to obtain this very
general result, but the model is easy to understand and in terms of it the
derivation of the general result becomes obvious. This first example is a
very large number of identical, independent harmonic oscillators, such as we
discussed in Section 2.5. For it we carry out the intricate calculation of the
most likely distribution. The remainder of the analysis in the subsequent
sections generalizes the solution to normal modes of vibration, light waves
or photons, Bose-Einstein particles, and finally fermions, particles such as
electrons which obey the Pauli Exclusion Principle.

10.1 Distribution Functions

The quantum-mechanical state of a set of NT harmonic oscillators, with
displacement coordinates {uj}, is a many-particle wavefunction ¥'({u;},0.
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[As in Chapter 3 we are using the brackets {} to designate a collection of
values.] If the oscillators are independent, as we assume (H = ZjH(uj,pj)),
we saw in Section 2.2 that the wavefunction could be factored as W({y;},0)=
[Ty (uj,r) . We found further in Section 2.5 that each harmonic oscillator has
eigenstates numbered by an integer n; with energy li(o(nj + 1/3) . Thus
energy eigenstates of a collection of N1 oscillators can be specified by
giving the n;j of each one. If we measure the energy of this system, we shall
find it to be in one of these eigenstates.

We in fact may not care which ones of the harmonic oscillators are
excited to which level and might ask only for the number of these oscillators
N(n) which are in the n'th level of excitation. This would be called a
distribution function. It is a simplification of the description, obtained by
asking only for the information which will prove useful. There are still a
very large number of possible sets {N(n)} and what we might really prefer
is an average over many observations, on the system in equilibrium, of each,
<N(n)>, called an ensemble average. For a given total energy, the resulting
<N(n)>/NT would be some well-defined set of numbers which we would
call an equilibrium distribution function for the excitations of each
oscillator.  This distribution function is enough to answer the principal
questions we want to ask, and it is what we seek from a statistical analysis.

Our starting point is saying that the probability a system in equilibrium
is in any particular quantum-mechanical state depends only upon the energy
of that state, that all states of the same energy are equally likely. This is not
an obvious statement. If for example we had N1 = 2 oscillators, and a total
excitation energy of 2hw, we might incorrectly apply first an excitation
randomly to one of the two oscillators and then, apply the second randomly
to one of the two. Fifty percent of the times we did this the second
excitation would be on the other oscillator from the first, giving a fifty-
percent probability of the state with one excitation on each oscillator. The
other fifty-percent of the times they would be both on the same oscillator,
25% for the state with oscillator-one doubly excited and oscillator-two in the
ground state, and 25% for the reversed state. This would be inconsistent
with our starting point of equal, 331/3%, probability for each of the three
states and is not correct. The error arose because the probability of
excitation of an oscillator does depend upon whether or not it is already
excited. We should avoid saying that the assumed equal probability for each
state is justified by there being no reason to favor one over another since we
have just, incorrectly, found one. The assumption is much deeper, but we
can be as confident of it as we can of thermodynamics since variations from
that assumption lead to violations of the Second Law.

Given that every quantum state of the same energy has equal probability
we can calculate the probability of any particular distribution function
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{N(n)} occurring by counting the number of quantum states to which such a
set corresponds, and dividing by the total number of quantum states. Thus if
we had three oscillators, and a total of three units of excitation, there are
three quantum states, or arrangements of the excitation energy, with N(3) =
1, N(2) = N(1) = 0, (again N(3) is the number of oscillators triply excited)
depending upon which is excited. There is only one arrangement with N(1)
= 3, and six arrangement with N(2) = N(1) = 1. These are all of the ten
quantum states of the three oscillators of this energy. We would say that
with three units of excitation the probability of finding the first arrangement
is 3/10, the second arrangement is 1/10, and the third is 6/10. This is a
detailed calculated distribution for this energy, based upon the statistical
assumption that all states of the same energy are equally likely.

We may do the same calculation for a large number N1 of oscillators.
For a particular set {N(n)}, we might first assign the N (1) in
NTUINT - N()IN(D)!] ways [that is, NT(NT-1) ... (NT-N(D)+1)/IN(1)!
where the numerator is the number of ways N(1) objects can be placed in NT
bins, and the denominator is the number of different ways those same N(1)
objects can be arranged in the same N(1) bins]. Note that this is looking for
distinct quantum states as we did above for the NT = 3 case, not applying
excitations to the system as we incorrectly did for the NT = 2 case before.
Similarly, for each such assignment of single excitations, there are(NT-
NOYYIINT-N(1)-N(2))!N(2)!] ways of assigning the N(2) oscillators in the
second state of excitation among the NT - N(1) remaining oscillators.
Continuing on for the entire series of n values, we obtain the total number of
equally likely ways this set can be accomplished as

Nyl (NT-N(1)! ) Nyl
W= Nt - MO)IN(D! (NT-NCD-NR)IND)! = NODIN@)ING)LL.. -10-D

We may confirm for the example given above with N7=3 that we obtain the
correct answer from this for the three cases, {N(0),N(1),N(2),N(3)}=
{2,0,0,1}, {0,3,0,0}, and {0,1,1,0}, respectively, which we discussed above,
noting of course that 0! = 1! = 1. Similarly for the case discussed above
with N1 = 2 we correctly obtain W = 1 for {0, 2, 0} and W =2 for {0, 0, 1}.

These W-values would enable us to find the probability of any particular
distribution function {N(n)} as we did for the NT=2 and N1=3 cases, but it
will be much more useful to find the most-likely distribution function. It
turns out that when Nt is very large, the vast majority of the huge number of
possible distribution functions are very close to the most probable one. We
may find the most-likely distribution by maximizing W subject to the two
conditions,



10.1 Distribution Functions

2 N(n)= Nt (10.2)

and
Ho 2y nN(n) = Eexc. (10.3)

where Eexc. is the total excitation energy, over the zero-point energy of
15hw NT.

There are two ways to greatly simplify the calculation. The first is to
maximize not W but equivalently to maximize the logarithm of W, first
since the logarithm of the product is a sum of logarithms of the factorials,
and second since we then can use Stirling's formula for the logarithm of the
factorial of large numbers,

In(N!) = N In(N) N + ..., (10.4)

neglecting the remaining terms, which are much smaller when N is large.
Then

W =InNT! - 2, InN(n)!
= NT InNT - NT -2 [N(1) InN(n) - Nn)] + ... (10.5)

Second, we use the method of Lagrange multipliers which we derived
in Section 5.2 to apply the constraints. We subtract from InW a Lagrange
multiplier o times 2, N(n) - Nt (which is zero by Eq. (10.2)) and a
corresponding term with Lagrange multiplier B for the second constraint, Eq.
(10.3). Then we can obtain the maximum of InW subject to the two
constraints by maximizing lnW - o[22, N(n) - NT] - Bl Aw 2y nN(n) - Eexc.]
without any constraint and adjusting the o and P to fit the constraints.
Setting the derivative of this expression (using the second form in Eq.
(10.5)) with respect to N(n) equal to zero gives immediately

1nN() - 141 - o - Prk 0 = 0. (10.6)

We take the InN(n) to the right, and exponentiate both sides noting that
elnN(®) =N(n), to obtain

N(n) = e-® e-priio (10.7)

e® and B are to be determined by fitting the conditions, Eqgs. (10.2) and
(10.3).
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With increasing total energy, corresponding to higher temperature, 3
must decrease. In fact temperature is defined for any equilibrium system by
T = 1/(BkB), with kB called the Boltzmann constant, and P the Lagrange
multiplier used to fix the total energy. Then T can be shown to have all the
properties we associate with temperature. [For example, the pressure of a
contained gas can be used as a thermometer, and an analysis similar to that
here used to show that temperature is proportional to 1/f.] We use the
definition in the reverse sense to write § in terms of temperature as

1
BZ-kB"T . (10.8)

The derivation of Eqgs. (10.7) and (10.8) can be generalized to the proof
of the statement that the probability of any system in equilibrium being in
any accessible quantum state of energy €; is proportional to the Boltzmann
factor, e-€/kpT | with the same proportionality constant for every state. We
do this by duplicating exactly this system many times and letting all
duplicates be in equilibrium with each other. This is called an ensemble.
Then each duplicate does not need to have the same energy, but the average
energy - or the temperature - must be the same for the ensemble. With
respect to one system, all of the others have become a thermal reservoir.
We can even include a variety of other systems within this thermal reservoir.
Then all of the energies &;j = Taho of the duplicates replace the energies

nho of the individual oscillators from our previous derivation, and the
probability of any particular €; is proportional to the number of duplicates

having that energy, N(g;), obtained from Eq. (10.7) by replacing nho by gjto
obtain e-€/ksT, with the same proportionality constant e-® . This is used in
Problem 10.1, noting that the same derivation applies to the excitation of
electrons from a defect, to obtain the relative probability of different charge
states. It is accomplished by evaluating e-* as we do here for the set of
harmonic oscillators.

The condition Eq. (10.2) states that

2p Nn)=e 2, ePrio=Ny. (10.9)

The sum is of the form 1 + x + x2 + x3 + ... = 1/(1 - x) s0 e® = N(1 - e-Bhw)
and the probability of an excitation number n for any particular oscillator is

P(n) = N]%”Tl = (1-e-Bfw ) eBriiw (10.10)
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Of more interest is the average excitation per mode,

<n> = ZnP(n)n = (l—e'Bﬁw)Zn ne-Priw = _ (l-e-Bf’l(D)aBL}inn e-Prhm

(10.11)
1 e-Bho 1

9
— _ (1_a-BAm) — -
=-(1-e? m)aﬁ}iw 1-eBio ~ 1-ePio  ePho_ 1’

At the third equal sign we used a term-by-term derivative to write the sum,
and at the fourth we performed the sum as for Eq. (10.9). The final form is
the important result.

We may evaluate this for high temperatures, where <n> is large and
classical physics applies. Then the average excitation <n> =1/(ePh® - 1) =
1/(1 + Bhw + ... - 1) = kpT/tw). This gives the classical result for the
average excitation energy of a harmonic oscillator gexc. = <n>H® = kT (as
the classical average energy of an ideal gas atom is 3/2kp7) . We have
derived it for the quantized oscillator, but these relations reassure us that we
have made the proper definition of temperature with Eq. (10.8).

10.2 Phonon and Photon Statistics

Eq. (10.11) may be immediately applied to the energy in vibrations of a
crystalline lattice, which we shall consider more completely in Part V, or to
sound waves in a gas, which we introduced in Section 1.8. Normal modes in
a pipe of length L with closed ends could be obtained from vanishing
boundary conditions so that the wavenumber g satisfies gL = nn . The
amplitude u(z) for each of these normal modes satisfies a classical equation
of motion which may be rewritten from Eq. (1.30) as

d2u 5
P32 =-4 B u (10.12)

at any position z , or in particular u(z) with z at the antinode. This is exactly
the harmonic oscillator equation (spring constant K = g2B /p ) and our
treatment in Section 10.1 applies directly. It may somehow be even more
remarkable that wave-particle duality applies to the system made up of this
disordered fluid than when it applied to the center of mass of the weight in
the harmonic oscillator but the statement of wave-particle duality specified
that it was true of everything. The average energy in a mode of frequency ®
is then obtained from Eq. (10.11).
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This is an important quantum-mechanical result when applied to a solid.
For N atoms bonded together in a solid there are 3N normal modes.
Einstein (1907), (1911) imagined 3N modes of the same frequency ®Eg, and
therefore a thermal energy given by

3INAOE

] 10.13
ePhog - 1 ( )

Etherm. =

At high temperature, where  is small, the exponential in the denominator
can be expanded and the leading term in Etherm. is 3NkBT , the classical
result as discussed at the end of Section 10.1. This corresponds to a specific
heat, Cv = 0Etherm/0T = 3Nk. However, at low temperatures 3 becomes
large and the thermal energy, and the specific heat, go to zero, as they do
experimentally. Prior to this treatment it was impossible to understand this
experimental result.  The observed specific heat does not drop off
exponentially, as predicted by Eq. (10.13), because all of the frequencies are
not the same. Debye (1912) redid the problem representing the normal
modes as sound waves, with frequency equal to the wavenumber times the
speed of sound v, restricting wavenumber to be less than a gp which limits
the number of each of the three (longitudinal and two transverse) modes to
N. Then the thermal energy is obtained, by replacing the sum over modes by
an integral as in Eq. (2.9), as

_3Q dng2dq hvq
Etherm. = (2m)3 0.9p Bhvg 1 (10.14)

This again leads to the classical result at high temperatures, small 3. At low
temperatures we may change variables in the integral to x = {¥#ivg , bringing
a factor of 1/B4 outside an integral over x . At low temperatures the integral
can be extended to infinity, becoming a constant, so the thermal energy is
proportional to 7# and the specific heat proportional to 73, in good accord
with experiment. This appears to be the first time quantum theory was
applied to such a macroscopic system as a sound wave. In Problem 10.1 we
use this same Debye Approximation to calculate the vibrational zero-point
energy.

Eq. (10.11) also leads immediately to the familiar Planck Distribution of
the energy of light. We first note the equation of motion for the amplitude of
light, Eq. (1.20) based upon the vector potential, is of the same form as the
equation of motion for sound given in Eq. (1.30), so again each light mode
in a cavity is an independent harmonic oscillator of frequency ® = cq, now
with ¢ the speed of light. We will carry this analysis out in detail in Chapter
18. The average energy in each mode, Ao (<n > + 1/2) is again obtained from
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Eq. (10.11). We write the energy in a frequency range d® = dg/c , adding
the two directions of polarization and dropping the zero-point energy, as

B3 Q
3Elight = (2%2)3 Ang28q <n>hm = 1 0

23 o1 O (10.15)

which is the Planck distribution of light in thermal equilibrium obtainable
only with the use of quantum theory. It is shown in Fig. 10.1.
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Fig. 10.1. The Planck distribution of the energy density of light in thermal
equilibrium as a function of frequency, from Eq. (10.15).

10.3 Bosons

The photons which we treated in Section 10.2 are particles with energy
Ao and momentum }fq , and one unit of spin as we saw in Section 9.4 when
we saw that they added or subtracted one unit of angular momentum to an
atom when they were absorbed or emitted. Phonons, the quantized
vibrational energies of the sound waves in the solid, are also particles. It
would not mean anything to distinguish two photons since they simply
represent the second state of excitation of the oscillator if they are the same
mode, or excitations of two different oscillators if they are different modes.
We would therefore say that "interchanging” two photons does not change
the state of the system and we shall take this to mean that the wavefunction
representing the state is the same. The field theory of other particles with
integral spin similarly leads to particles for which the wavefunction of the
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system "goes into itself" under interchange, and all are called bosons. Their
statistics are called Bose-Einstein statistics.

When bosons have mass, the statistical calculation is the same except
that there is an additional constraint: the total number of bosons does not
change when they collide. When we change the temperature of a photon
gas, the number of photons, by Eq. (10.10) automatically changes, but
energy is not available to create or destroy massive bosons when the
temperature changes. Thus for bosons with mass, we cannot treat each q
independently because the number conservation applies to the collection of
states, and we must therefore redo the calculation.

We do this by dividing the spectrum into groups of Nt states allowed by
the boundary conditions (rather than modes) in a range of energy 8¢ near €
(that € replaces Aw for modes of frequency ®). The number of ways a
distribution of occupations {Ng(n)} can be made is again given by Eq.
(10.1), with a different set of N¢ for each range. We should multiply these
W's together, which adds their logarithms as in Eq. (10.5). We add the same
constraint for the number of states Zn,Ng(n) = NT for each range with
Lagrange multipliers O, but now a global (summed over € as well as n)
Zn’g Ne(n)ne = Eyor, with a Lagrange multiplier B and in addition a global
Zn,g Ne(n)n = Niot, with a new Lagrange multiplier - gu. fixing the total
number of particles. [The use of the product -Bu turns out convenient in the
end.] Then setting the derivative with respect to Ng(n) equal to zero gives

-InNg(n) - o - Ben + Pun = 0. (10.16)
in place of Eq. (10.6) and solving this gives

Ne(n) = eOee-BE-wn (10.17)

We can again fix ote so that 2nNe(mn = N1 and again evaluate the average
n for a single state, ateach €, to obtain

1

<n(e)> = M—_l )

(10.18)

in place of Eq. (10.11). At high energies, where <n(g)> is small, this
approaches the classical Boltzmann distribution proportional to e-P€. Again
B = 1/kT and u is called the chemical potential for these bosons. It is
adjusted to obtain the correct number Niot, = XeNT<n(€)> of particles.
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At high temperatures, W is large and negative. As the temperature drops,
U increases to keep the number N of particles fixed. If we find u > 0 (the
energy of the lowest states is zero), <n> in Eq. (10.18) becomes negative.
This is not meaningful and in fact a phase transition must occur. To obtain
the condition for this we evaluate the number of particles using Eq. (10.18)
with w = 0 and an energy € =h2k2(2M). The condition for finding pu > 0
becomes, using a sum of Eq. (10.18) over states rather than ranges €,

1 _(2Mp2 Q f 4
exp(Bh2k2/2M)) - 1 ‘”[ﬁZB (m2 e

Idk 4mk2 (10.19)

~ @ny3 1
The integral can be evaluated numerically (Kittel and Kroemer (1980) p.
204) giving 1.306m!/2. Then we may solve for kgT = 1/ to obtain the
condition in Eq. (10.19) as kgT < (2nh2/M)(N /2.612Q))2/3 given by Kittel
and Kroemer (1980), and called the Einstein Condensation Temperature.
We may see that at this point <n> for the lowest state has increased to the
point that a sizable fraction of the bosons are in the lowest-energy one-
particle state, which is called Bose-Einstein condensation. Using the M and
N/€2 for liquid helium (4He), this gives 3°K for 4He, approximately equal to
the temperature at which helium becomes superfluid. This is generally
agreed to be the nature of superfluid helium, though treating the helium
atoms as noninteracting is a very crude approximation. There are a number
of peculiar properties of helium in this state, discussed by Kittel and
Kroemer, op. cit., such as a vanishing viscosity. In recent years alkali-metal
vapors were found to undergo Bose-Finstein condensation (Ensher, Jin,
Matthews, Wieman, and Cornell (1996)). In these atoms the valence-electron
spin combines with the nuclear spin to form an atom of vanishing or integral
spin, which can then condense into the Bose-Einstein ground state.

10.4 Symmetry Under Interchange

We have seen that there is no meaning to interchanging two photons
since they are simply degrees of excitation of an oscillator, and that this is
also true of other bosons. Thus if we are to regard them as particles, and
write a wavefunction for two photons (we use a capital ¥ for a state of more
than one particle), W(ry, rz), it must be same state as ¥(r2, r1). This would
seem to require that ‘P(rz, r1) = W(ry, rp) for all identical particles but
when we discuss half-integral spins shortly we shall see that when the two
particles have the same spin the wavefunctions with coordinates
interchanged are of opposite sign. It is said of bosons, with W(rz, r1) =
¥(r1, r2), that the wavefunction is symmetric under interchange of particles.



150 Chapter 10. Statistical Mechanics

For noninteracting bosons, for which we saw in Section 2.2 that we can find
product solutions, the products must take the form

Wy 1) = [wi(rpwa(rz) \7214!1(r2)w2(r1) ] (10.20)

One consequence of this symmetry of the wavefunction is the Bose-Einstein
statistics which we have developed above, and the Bose-Einstein
condensation which can occur at low temperatures.

There is another quite remarkable consequence for the rotational states
of molecules for which the nuclei are identical bosons. If we wished to
discuss the rotational states of a molecule such as O, with nuclear positions
r; and rp, we would ordinarily change variables to a center-of-mass
coordinate R | and a relative coordinate r = r2 - ri, and further write r in
spherical coordinates {r, 0, ¢}. With no external torques, the eigenstates
will be of the form yc(R)yi(r)Y/™(0,0) as for other spherically symmetric
systems as discussed in Section 2.4. In particular, there will be rotational
states with energy proportional to the square, {(I + 1)42, of the total angular
momentum. There is however a difficulty with this if both atoms in the
molecule are oxygen-16. We saw in Section 4.4 that this nucleus with eight
protons and eight neutrons completes a shell so, as for electrons in an inert
gas, there is no net angular momentum and a total spin of zero. Thus these
nuclei are bosons. With zero-spin they must be in the same spin state, and
interchanging them does not change the state, so the wavefunction (the state
of the system) must be the same. If we imagine the molecule in a rotational
state of angular-momentum quantum number [ , written yc(R)y(r)Ym(0,),
for odd ! the spherical harmonic changes sign when r is replaced by -r,
violating the condition Y (r2, r1) = ¥(ry, r2). We conclude that only even [
are allowed states and that is found to be true in experimental infra-red
spectra. No such odd-integer rotational states are observed for 016016,
though they are observed for 016017 since the extra neutron in O17 makes
the nucleus distinguishable from the O16 (Hilborn and Yuca(1996)).

It seems truly remarkable that these two nuclei, which have negligible
possibility of direct interaction with each other, can "know" the symmetry of
the other nucleus. As with the Aharanov-Bohm Paradox of Section 1.4, this
is not resolved by imagining some tiny interaction, but is to be recognized as
a consequence of wave-particle duality, our starting assumption.

We would seem to have shown that only integral values of angular
momentum were allowed under any circumstances when we formulated the
rotational states of an 016016 or Q16017 molecule. We simply apply the
same analysis to any other rotating object. This may be clearer if discussed
relative to the angular-momentum axis where with circular symmetry the
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wavefunction will have the form eim¢. If we say that the object is in the
same state if rotated 3600, we conclude that the wavefunction must be the
same and m must be an integer.

Let us consider, however, an object such as the ball rolling without
sliding which we treated in Problem 3.1. In particular, let it roll around the
inside of a pipe of diameter 3/ that of the ball, as illustrated in Fig. 10.2.
We may see that when it completes one path around the pipe, the ball has
only rotated 180°. Two circuits are required to return to the same state. We
could write the total kinetic energy, including both the spin of the ball and
the revolution of the center of gravity around the center of the pipe, in terms
of ¢ and define the canonical momentum conjugate to ¢ (defined in Section
3.1) from the derivative with respect to ¢. Again the operator for that
canonical momentum is (#/i)0/0¢ but with a change in ¢ of 47 required
return to the same state, the phase factor can be €%/2 and the canonical
momentum is then K/2 . This same rolling ball can also have any other half-
integral multiples (but not full-integral multiples) of h as states of higher
energy. The actual angular momentum of each state, the sum of the angular
momentum of the spinning ball and of the center of gravity revolving around
the center of the pipe (in the opposite direction), is equal to this half-integral
canonical momentum conjugate to @, just as it is integral multiples in simple
rotating bodies independent of the moment of inertia of the body. We have
found, contrary to our first guess, that a simple mechanical system can have
half-integral angular momentum.

We note further, that if the ratio of the two radii were an irrational
number, there would have been no quantization of the angular momentum at
all. The point is that the simple rule of angular momentum quantized in
units of B need not apply in all systems, but we retain the concept that the
wavefunction goes into itself when the system is rotated into the same
physical state.

We might never have thought of the possibility of half-integral angular
momentum had it not arisen experimentally. However, we accept whatever
particles nature provides, and it provides an electron with mass m , charge -e
and angular momentum #/2 , appropriately called spin since it is intrinsic to
the particle. We accommodate to the spin as we did to E = p2/2m when we

QOO

Fig. 10.2. A ball, with "F" written on its side, roles without slipping inside
a pipe of diameter 3/, as large. It has only rotated 180° by the time it has
rolled completely around the inside of the pipe, and like a fermion must
roll around twice to return to its initial state. Its canonical angular
momentum can be half-integral multiples of h.
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invented the Schroedinger Equation in Section 1.2, even though we continue
to think of the electron as a point particle. If nature gives us a particle of
spin #/3 we will know how to proceed, and one could even be constructed
using a scheme such as that in Fig. 10.2.

We can make a general connection between spin of particles and the
symmetry of their wavefunctions under interchange, just as we did for the
0167 molecule above. We replace the oxygen molecule by a hydrogen
molecule, for which the two nuclei are protons, particles of spin 1/2 just as
electrons are. We again write an energy eigenstate W(ri,rp2) in terms of the
coordinates r] and ry of the two proton nuclei. Now, however, the two
protons have spin and the wavefunction contains another factor with the spin
coordinate for the first proton y1(¢1) = ¢¥1/2 if the first proton has its spin
parallel to our z-axis. If the other proton has parallel spin (called
orthohydrogen), the state contains also a factor for the second electron
Y2(92) = ei02/2. [We have neglected any interaction between the spin and
the other coordinates for this discussion, allowing, as in Section 2.2, the
wavefunction to be factored as ¥(ri,r2)yw1(d1)w2(¢d2).] Now we imagine
rotating this entire wavefunction around the z-axis such that the two protons
interchange positions, replacing r by -r, or equivalently interchanging rj and
r2. In addition, the rotation changes Ww1(¢1) and y2(¢2) each by a factor
e-1M2 g0 that the rotated state becomes -‘F(ra, r))wi1(d)w2(¢2). The two
protons are identical so that, as for the oxygen, this is the same state as
before rotation, W(r1,r2)w1(®1)w2(¢2), and we conclude that ¥(ra,ry1) =
-¥(ri,r).

This antisymmetry applies in general for half-integral-spin particles of
parallel spin, including protons, neutrons, and electrons. They are
antisymmetric with respect to interchange as illustrated in Fig. 10.3. If this
is two electrons of parallel spin, and we neglect any interaction between

0,2m T2
/2 /2

Fig. 10.3. To the left is a schematic representation of a state of half
integral spin, €'9/2 which changes sign with a single full rotation and
must be rotated twice to return to itself. The state of two such particles,
e101/26192/2 will change sign if the particles are interchanged through a
rotation of 7 radians, as illustrated to the right.
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them so that they can be written as a product wavefunction, that product can
be written, in analogy with Eq. (10.20), as

_ [wilrpwa(r) - yi(r2)wa(ry) ]

Y(ry, r2) \/2

(10.21)

For noninteracting electrons of antiparallel spin the wavefunction is
again given by Eq. (10.20). We say that if the state is symmetric with
respect to spins (parallel), the spatial wavefunction is antisymmetric, but if
the state is antisymmetric with respect to spins (antiparallel), the spatial
wavefunction is symmetric.

If we again look for rotation states of the Hp molecule, by writing
Y(riro2)= v (RW(r)Ym®O,p), we see that rotational states for
orthohydrogen (parallel nuclear spins) are allowed only for / an odd integer,
since only then does the wavefunction change sign when r is replaced by -r.
If we redo the analysis with the two proton nuclei of opposite spin
(parahydrogen), ¢i®1/2 and e-i92/2, we find that W(ra,r1) = ¥(ry,r2), and
rotational states are allowed only for even angular-momentum quantum
number [, as it was for O16,. The allowed states for the tumbling of
hydrogen molecules are just as remarkable as those for oxygen. In the case
of hydrogen only even or odd values of rotational quantum numbers are
allowed depending upon whether the spin of the two nuclei is antiparallel or
parallel. Parahydrogen can have lower (zero) rotational kinetic energy than
orthohydrogen, providing an effective interaction favoring antiparallel
nuclear spins in the ground state. A recent publication, with references, by
Bertino, et al., (1998) described additional effects on the bouncing of these
molecules from crystal surfaces.

10.5 Fermions

Such particles of half-integral spin are called fermions . The effect of the
antisymmetry of states of the same spin is even more profound than the
effect of symmetry on bosons. It tells us that two electrons of the same spin
cannot occupy the same orbital, because if we take y1(r) = y2(r) in Eq.
(10.21), then ¥(ry, r2) = 0, meaning as always that there is no such state.
This is the Pauli Principle, which we have used in all of our discussions of
many electrons, but now the origin is clearer. It applies to any pair of
identical particles of half-integral spin. It is again a direct consequence of
the wave-particle duality we assumed at the outset.

The separation out of the spin state, as parallel or antiparallel, is only
possible if there is no term in the Hamiltonian coupling spin and orbital
motion so that we can make the factorization, as in Section 2.2. There is
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such a coupling, which we shall discuss in Section 22.5, and a proper
treatment of the states requires the relativistic theory, Dirac (1926) theory,
which is seldom used in molecular and solid-state problems. It is usually
adequate to ignore spin-orbit coupling as we have done here and specify
each electron state as spin-up or spin-down. The Pauli Principle allows one
of each to occupy each orbital. For half-integral spins of s = 1/2, 3/5, 5/, ...,
the total spin angular momentum squared, as for integral spin, is L2 = s(s +
1)A2, and the z-component is s# with s, = s, s-1, s-2...-s. We will only be
concerned here with spins of 1/7 and thus sz = +1/5.

The generalization of the antisymmetric state of two electrons in Eq.
(10.21) to many particles is called the Slater Determinant, and is written

yi(rp)yir2) yirs) ..
ya(ry) ya(r2) ya(r3) ..

w3(ry) (10.22)

T({ri})=%N—,De

Recall that determinants have the property that they change sign when two
columns are interchanged, here corresponding to interchanging two
electrons. Each yij(rj) is imagined to contain a spin-state factor, providing
the overall antisymmetry.

The antisymmetry of fermions profoundly affects the statistics, allowing
only two electrons in each orbital state, and we must redo the analysis we
did for bosons. We again divide the states into sets of Nt states (counting

different spins as different states) in a small range of energies d¢ near €, and
say Ng of these are occupied. The number of ways to do this is

NT!

W) = (- N

(10.23)
We do same for every energy range, take the logarithm of the product of
all W(e), use Stirling's formula, to obtain 2eln(NT!) -Z¢ (NT- Ng) In(NT - Ng)
- Neln(Ng) + (NT - Ng) +Ne. The condition fixing the total energy is 2gNge =
Eiot., applied with a Lagrange multiplier § . The condition fixing the total

number of particles is ZgNg = Niot., applied with a Lagrange multiplier,
again -Bp. Setting the derivative with respect to Ng equal to zero yields

In(NT - Ne) - In(Ng) + 1 — 1 — Be + B = 0. (10.24)

We take the logarithms to the right and exponentiate to obtain Ng¢/(NT - Ng)
= ¢-B(€ - W) and finally, the fraction of states occupied is
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Ne 1
fo® =Ny = B a1 (10.25)

which is the Fermi (or Fermi-Dirac) distribution function with again p =
1/kpT and p the chemical potential, or Fermi energy. It is plotted in Fig.
10.4. Well below the Fermi energy it goes to one; each state is occupied for
both spins. It goes to zero well above the Fermi energy. For any system the
Fermi energy is shifted to correspond to the correct number of electrons.
When we treated free-electron metals in Section 2.2 we had one, or a few,
free electrons per atom, which gave a Fermi energy {1 measured relative to
the band minimum €g as Ep= W - €0= 5 eV >> kBT. The Fermi function
could be taken as a sharp cut-off, fo = 1 for e< W, fo = 0 for € > p. At finite
temperature electrons are excited to energies of the order of kg7 from this
cut-off and the step is smoothed out as in Fig. 10.4. However, the total
excitation energy for the electrons is clearly very much less than the classical
3/2kBT so the predicted electronic specific heat (derived in most solid-state
texts) is greatly suppressed in comparison to classical theory, as is the
experimental value, another of the early achievements of quantum theory.
For semiconductors there is a gap Eg in energy between the states
occupied and the states empty in the ground state, as illustrated in Fig. 10.5,
and as we shall discuss in more detail in Chapter 14. The Fermi energy
ordinarily lies in that gap, allowing a small occupation of the upper band
from the tail of the distribution to the right in Fig. 10.4, and a small number
of empty states (holes) in the valence band below due to the deviation of the
distribution from one to the left in Fig. 10.4. Again the Fermi energy adjusts
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Fig. 10.4. The Fermi distribution function from Eq. (10.25), as a function
of the energy measured from the Fermi energy, in units of kgT.
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A Copduction Band
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Fig. 10.5. Semiconductors have a density of states n(€) for the conduction
band, shown as the heavy curve above, and a density of states for the
valence band below it and separated by a gap in energy Ey. The Fermi
distribution is shown as the light line, with a Fermi energy in the gap.

to correspond to the appropriate number of electrons present, equal numbers
of electrons and holes for the undoped system. If extra electrons are added
by doping (e. g., substituting a few phosphorous atoms, each with an extra
electron, for silicon atoms in silicon) the Fermi energy moves to higher
energy to account for those electrons.

In most circumstances in semiconductors the Fermi energy lies in the
energy gap, well removed from either band edge. Then (e -p ) =
(¢ - w/kBT is large for all € in the conduction band and the one in the
denominator in Eq. (10.25) can be neglected. Then we may measure
energies from the conduction-band minimum €¢ and Eq. (10.25) becomes

fo(€) = e (€c -W/kgT ¢ (€ - eVkgT (10.26)

The final factor is a simple classical Boltzmann distribution, and the leading
factor is a constant which sets the number of electrons. fo is small because
of this leading factor and so there is almost no effect from the Pauli Principle
which required no more than single occupancy of a state. The electron gas is
then considered to be classical. With very heavy doping, when fj becomes a
sizable fraction, the electron gas is called degenerate and we need to return
to Eq. (10.25) to describe its distribution.

In a similar way PB(e - u ) = (€ - W/kBT becomes large and negative for
all states in the valence band. We may expand the denominator taking
e B - W) as small to obtain fy = 1 - e P(¢ - W) with € - u large compared to
kBT and negative. This may be stated as a very small concentration of
missing electrons, or of holes, in the valence band, again with a classical
distribution as a function of depth into the valence band.
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In either case, the carriers lie very near the band edge, where the bands
may be treated as carriers having an effective mass m*, as we shall see in

Chapter 14. Thus the density of states for the conduction bands may be
written in terms of the energy measured from €. using Eq. (2.11) as

ON 1 2m* 2
n(e) = o5 = W(mZT Ve-ec. (10.27)

Then we can calculate the total number of electrons per unit volume in the
conduction band as

N; = e-(& 'M)/kBTJ‘gC‘m n (e)e (€-€kpT de

ksT)32 (2m* 312
= ¢ -(ec-WkpT ( 71:72) (Z;T J.o x2er? dx (10.28)

k]

1 (m kBT B2 o (e WkpT
-l S

where we have changed variables in the integration to x =V e/kgT . The
factor preceding the exponential in the last form can be thought of as an
effective conduction-band density of states, which when multiplied by the
Boltzmann factor for the band edge, gives the density of electrons. The
corresponding expression for holes in the valence band contains the hole
mass and the exponential e -( - €y YkT in place of that in Eq. (10.28). We
see in Problem 10.2 how this equation is used to determine the Fermi energy

and carrier densities in GaAs, as well as the average kinetic energy of the
carriers.
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Chapter 11. Transport Theory

Transport theory, like statistical mechanics, is not really a part of
quantum mechanics - in fact, the Boltzmann Equation we shall derive in
Section 11.2 will be seen to rest on a classical description. However,
transport also is modified by quantum effects and transport equations are
needed to make use of many of the quantum processes we have discussed.
While statistical mechanics described systems in thermal equilibrium,
transport theory specifically deals with systems out of equilibrium. We
begin with the simplest generalization, obtaining an equation for the time-
dependence of a distribution function. For that we use the sequential
tunneling problem we discussed in Section 9.2. We then move on to full
transport theory with distribution functions which depend upon momentum,
position, and time. By far the most important transport properties concern
electrons and we shall formulate each step in terms of electrons.

11.1 Time-Dependent Distributions

When we discussed sequential tunneling in Section 9.2 we found a rate
1/t at which an electron occupying a resonant state |2> (local state in the
absence of coupling with the continua) would make a transition to a
continuum of states [1>. If the probability of that resonant state being
occupied is f2(€2), and the probability of the states |1> being occupied is
fi(e1), then the rate electrons make transitions from [2> to [1> is
S2(e2)(1 - fi(e1))/t for €1 = €9. We then used detailed balance, the fact that in
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equilibrium, where the distribution functions are a single function of energy
Jfo(€), all processes go in both directions at the same rate. This allowed us to
show that capture of carriers into state [2> from the continuum |1> is given
by fi(e1)(1 - f2(€2))/t with again €] = €2, whether or not the system is in
equilibrium. We then applied the corresponding relation for a second
continuum |3> coupled to [2> and found that if fi(€2) was held at one and
f3(€2) was held at zero, f2(€2) would come to the steady-state value at which
electrons were arriving and leaving at the same rate. We generalize this
steady-state calculation to time-dependent situations.

We are considering transitions which conserve energy so we can drop
the €2 for each of the three distributions. Then the net rate electrons are
added to |2> from the continuum |1> is (fi(1 - f2) - f2(1 - fO))/T = (f1 - )/,
with any effect of occupation of the final states canceling out, as we shall
note also in the next section. We may allow the rate 1/t' to be different for
transfer between the state [2> and the continuum |3> so the net transfer from
|3> to |2> is similarly (f3 - f2)/t". Thus the net rate the occupation of |2> is
changing with time 1is

%:fl sz +f3r'f2’ (L.1)
which is a simple equation for the time-dependence of f2. This equation
allows us to predict the change in f> with time, in terms of the distributions
f1, f2, and f3 , just as the Schroedinger Equation allowed us to find how the
wavefunction changed with time.

The equilibrium state fi = fo = f3 = fo(€2) is a trivial solution of Eq.
(11.1). A more interesting case is the steady-state solution, which we
discussed in Section 9.2. If we apply the condition that df2/dt = 0, we obtain

T+ 13
h="Ti0 (11.2)
In the simple case we assumed for sequential tunneling (fi = 1, 3=0, T = 1)
this gave f» = 1/2 and a transfer rate of 1/(2t). We move directly to the
development of a time-dependence equation for an electron gas with an f
which depends upon momentum, position and time.

11.2 The Boltzmann Equation
For electrons each state, including spin, is occupied by one electron, or

no electrons and the distribution function we introduced is fp(€), the
probability of occupation of a state of energy € in equilibrium. For a system
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in equilibrium it does not depend upon where in the system we are or
whether the electron is moving to the right or left. Often a system is near
equilibrium, but the chemical potential (Fermi energy) or the temperature are
different in different parts of the system. Then also there will be flow of
carriers or energy from place to place and the distribution depends upon
position and upon direction of motion and may depend upon time. In such a
case we write a distribution function f(p,r.f) , depending upon both
momentum and position, This becomes intrinsically classical because in a
quantum system we cannot specify both momentum and position, though we
did both approximately when we constructed wave packets in Section 1.2. It
nevertheless retains some quantum features since we restrict f to be always
between zero and one, according to the Pauli Principle. Such a discussion is
sometimes called semiclassical. The physics of the analysis is quite clear,
whatever we choose to call it.

In order to proceed we need an equation from which we can determine
the distribution function, the analog of the Schroedinger Equation for
determining the wavefunction of a particle. We will then be able to predict
observables, such as the current, from the distribution function as we
calculated observables, such as the energy, from the wavefunction. The
equation we use gives us the time dependence of the distribution function,
just as the Schroedinger Equation, Eq. (1.16), gave us the time dependence
of the wavefunction.

We imagine electrons moving in the presence of various fields so that
their classical trajectories p(¢), r(f) can be plotted as illustrated in Fig. 11.1.
Some of these trajectories could be occupied by electrons and others not.

% >
Fig. 11.1. A schematic representation of trajectories of electrons moving
in the presence of fields. Different curves represent different starting

points at the time ¢ = 0, and ¢ increases along the lines in the direction of
the arrows.
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However, in the absence of any scattering, if we follow a trajectory, that
occupation f(p(1),r(¢),r) will not change with time. Alternatively, we can say
that the only change in the distribution function with time, as we follow
along the trajectory, will be that due to scattering, df(p(?),r(£),0)/9¢|scat..
Mathematically, we write this

dfpr®)n _ IRpOr®1) (11.3)

dr - ot scat.” '
(The different manner of writing the arguments of f in different expressions
is not significant.) The total derivative, d/df means the total derivative
including dependences upon all three of the variables, p, r, and ¢, and the
partial derivative d/0¢ includes only the dependence upon the one variable ¢,
not p nor r. We may write out the three terms on the left explicitly,

Jfipr ) dp +Qf(p rydr Jdfiprs _ Jfipry
op dr or dr ot~ ot scat.

(11.4)

The derivative of f with respect to p in the first term means that if we
went to r at time ¢ the derivative is the variation of f with p at that moment
at that position. The dp/dz is the rate the momentum changes with time at
that point, equal to the applied force. This is the Boltzmann Equation , and
is exact in the semiclassical context where fip r ¢) is meaningful. However,
of more use is an approximate form when the distribution is quite close to
the equilibrium distribution fo(€). Then we write the distribution as ip r £) =
Jo(e) + fi(p r ©). [Sometimes a local equilibrium distribution is used, as
when the temperature varies with position, but we use the simpler form
here.] f1 is of first-order in any applied fields which exert forces F(r, £) on
the electrons, and cause them to be out of equilibrium. We substitute this
form for f in Eq. (11.4) and will keep only such first-order terms. There are
no zero-order terms as nothing changes with time without applied forces.

The dp/dr is equal to F(r, 1) so we may take only the zero-order term in
df /9p in that term, which is (dfo(g)/de)-de/dp = (dfo(e)/de) v, using Eq. (1.7).
In the second term, only fi depends upon r and dr/ds is v . We also
simplify the scattering term on the right. Certainly the rate electrons leave
the trajectory is proportional to f(p r ¢), and we write a proportionality
constant 1/t though the rate really will depend upon the particle velocity
also, as we have seen in other parts of this text. This is called the relaxation-
time approximation. We must also include the rate electrons are scattered
onto the trajectory, but if we write the rate they are scattered off as ip r )/t
we note that in equilibrium, with f{p r ¢) = fo(€), the scattering rate onto the
trajectory equals the rate they are scattered off. We take that same rate to
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apply in this case so that the net rate of change of fp r ¢) with time due to
scattering becomes -f(p r ¢)/1 + fo(e)/T = - fi(p r #)/t. Making these
approximations in Eq. (11.4) leads us to the linearized Boltzmann Equation
in the relaxation-time approximation,

d
ﬁ’é ) VF(, )+ V- Viipr )+ fl(aI;”) = -fl(pr”) .

(11.5)

It is in this equation we use the scattering times from impurities and
phonons which we have calculated in other parts of the text. We illustrate its
application in detail only for the conductivity in the next section.

11.3 Conductivity, etc.

The simplest application of the Boltzmann Equation is to the dc-
conductivity, and that will serve to illustrate the approach. For dc-
conductivity the distribution function will not change with position, nor with
time, so the second two terms on the left in Eq. (11.5) vanish. We have only
the first term on the left, with F = -eE and we may solve for the first-order
distribution,

fip) = evE J:(fé o) (11.6)

We have solved for the distribution function and can evaluate the current
density in terms of it. We do this by summing the current from each state
-ev over the occupied states. The equilibrium distribution leads to no
current, so only f1 enters. We take a volume € for the system and the
current density is the j = Zp f1(p) (-ev)/€2. We now return to a quantum
description of the states with p =k, and convert the sum over p to an
integral over k using Eq. (2.9). We multiply by two for spin and have

; g S0E) 2021 dfo(e)
1= n )3Idke de é:‘gén; J~4 k2v2 fO dk. (11.7)

In the last step we recognized that the current was parallel to E, wrote the
angle between E and k or v as O and took the angular average of the
integrand, to obtain the factor 1/3. The evaluation is simplest for a metal,
where fo drops from one to zero just at the Fermi energy so -dfp(e)/de is
approximately a delta-function &(¢ - EF) . We take one factor of v =
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(1/K)de/dk to write vdk= (1/ h)de and the integral becomes -4mkg2ve/hi .
Now vE = kkp/m and (2/(21)3)4mkp3/3) is equal to the electron density n,
so we have j = oE with the conductivity given by

c="_" (11.8)

Actually, one can also perform the integration by converting the final
integral over k in Eq. (11.7) to an integral over energy, perform a partial
integration on energy and obtain an integral which gives exactly the electron
density whether or not -dfp/de is treated as a delta function, so the same
result, Eq. (11.8), applies also for a Boltzmann distribution of electrons.
One virtue of doing it as we did is in showing that though we sum over all
wavenumbers in a metal, only the values at the Fermi surface enter.

The treatment of other properties is quite straight-forward. (See, for
example, Harrison (1970).) For the Hall effect, the magnetic force
-(e/c)vxH is added. For thermal conductivity fj in the first term contains a
temperature varying with position, and this yields also the other
thermoelectric properties. One can also calculate the diffusion constant D,
describing an electron flux j/(-e) = -DVn , with n again the electron density.

There are also simpler, less accurate, approximations for treating the
transport properties. One assumes an electron density, n(r,f), varying with
position and time, and then approximates the flow locally as j(r,r) = cE(r,)
+ eDVn(r,t). Combining this with the continuity equation, -e dn(r,H)/dt =
V. j, and Poisson's Equation, one can frequently obtain an adequate
description of transport properties. Such an approach misses nonlocal
effects, such as the decrease in the current in the neighborhood of a surface.
Such nonlocal effects can be calculated using the Boltzmann Equation.
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Chapter 12. Noise

A familiar case of "noise" is the static on a radio. Noise exists in
classical systems, but can be strongly affected by quantum effects and it is
appropriate to include some discussion here. There are a wide variety of
origins of noise in general, as there are for static on a radio. We enumerate
the principal ones. A recent reference on noise is Kogan (1996).

12.1 Classical Noise

Thermal noise, also called Johnson-Nyquist noise, is understandable in
terms of the statistical mechanics which we discussed in Sections 10.1 and
10.2. At any finite temperature the modes of light are excited in a Planck
distribution, and the electromagnetic modes of any electrical circuit or
transmission line are similarly excited. If there is a resistor in the circuit, it
will absorb energy from these thermal fluctuations, and in equilibrium it will
radiate at the same rate into the same modes. In order to understand the
distribution of power radiated by a resistor, we construct electrical modes in
a line, a wire with resistance R’, with both its ends connected to a resistor R.
There can be current fluctuations of various wavelengths, and therefore
various frequencies. For a length L we apply periodic boundary conditions
so that modes will have wavenumbers & such that kL = 2nn  and the
frequency @ = ck , with ¢ the speed of light, which may depend upon the
geometry of the line but is calculated by applying Maxwell's Equations to
the line. The average energy in each mode is [1/(h@/kgT - 1) + 1/]hw as we
saw in Section 10.3 and it strikes the end of the line at a rate ¢/L times that.
If there 1s no reflection at the resistor it will absorb at that rate, and therefore
emit at that rate. Thus in a frequency range Af = A®w/27 = cAk/21 there will
be power absorbed and emitted at each end of the resistor of
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LAk 1 1 c 1 1
AP= g (ehu)/kBT_ 1 +2)F‘°’ L~ (ehu)/kBT_ 1 +2}F‘“’ A (12.1)

In the classical, or high-temperature, limit, AP — kg7 Af, and this is
called thermal noise. It is white noise, meaning that the power emitted by
the resistor in a frequency range Afis independent of the frequency f, which
in the case of light defines white light. It is sometimes restated by relating
the power emitted in a frequency range to the square of the voltage <V2>
and the resistance R . The resulting relation between voltage fluctuations
and resistance is called the Nyquist Theorem. Einstein had noted such a
relation between the fluctuations of a dust particle, Braunian motion, in a gas
and the viscosity of the gas, and there are similar rigorous relations between
every other kind of fluctuation, and the corresponding dissipation of energy.
In the quantum limit, or as the temperature goes to zero, the power in Eq.
(12.1) approaches (hw/2)Af. This is then called quantum noise, or zero-point
noise, rather than thermal noise. The Fluctuation-Dissipation Theorem is
the quantum generalization of the Nyquist theorem. From Eq. (12.1) we see
that thermal noise changes continuously to quantum noise as we lower the
temperature.

12.2 Quantum Noise and van-der-Waals Interaction

One might ask if these zero-point fluctuations of a harmonic-oscillator
dipole in the ground state really generate observable fields, and to make a
meaningful check we need to imagine an experiment to detect them. One
way of doing that would be to bring another harmonic-oscillator dipole near,
as illustrated in Fig. 12.1. If the first is generating fluctuating electric fields,
the second will be polarized by those fields and the interaction between the
induced dipole and the dipole which caused it would produce an attraction
between the two. Measuring that force would be detecting the fluctuating
fields. This force is observable, and is called a van-der-Waals interaction,

@W@ @VW@

A1

Source Detector

Fig. 12.1. Two coupled dipole oscillators, in the ground state, have
correlated zero-point fluctuations, giving a van-der-Waals attraction
between them.
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named after an attractive interaction added to ideal-gas theory by van der
Waals many years ago. It is quite easy to derive the force by calculating the
ground state of the two interacting dipole oscillators, as done earlier by
Kittel (1976), p. 78.

The calculation is simplest with two identical collinear oscillators as in
Fig. 12.1, but the result is easily generalized. We let the oscillators (spring
constant K, mass M) have displacement coordinates x; and x2, and therefore
dipoles p1 = ex| and p2 =ex2. The presence of a dipole p1 produces a field
2p1/r3 at the second, a distance r away, so that if the second has a dipole p2
there is a lowering in energy of -2p1p2/r3 = -2e2x1x2/r3= -K'x1x2 with k' =
2¢2/r3. Thus the potential-energy term in the Hamiltonian is l/okx12 +
1/2kx72 - x'x1x2. The kinetic-energy term is 1/2Mx"12 + 1/2M x»2 . We may
rewrite these terms in the energy in terms of normal coordinates 1] = (x1 +
x2)/N2 and u2 = (x] - x2)/N2 to obtain the energy LoMu'12 + YoMu'72 +1/2(x
+ Kup? + Up(x - KYup? for the two coupled oscillators. This represents two
oscillators with frequencies given by ®12 = (x + k')/M and w22 = (x - K')/M.
The quantum-mechanical ground state of the system will have each in the
ground state with a total energy 1/2h(w + ®2). With k' equal to zero the
frequencies are the same ® =V«k/M and the energy is that for the uncoupled
oscillators. If we expand in x' the two linear terms cancel out but in second
order both energies are lowered by -(1/16)(k/x)2 hw. Thus, due to the
interaction the energy is reduced by -(1/8)(k'/k)2hw.

This result may be written in terms of the polarizability of the two
oscillators, defined in terms of the equilibrium dipole due to an applied field
E by p=0kF . Itis easily obtained as o = e2/K by equating the spring force
to the negative of the electric-field force. Substituting also for k' we have
the interaction energy

2h
Evdgw = —Lzréw. (12.2)

It is quite remarkable that we can so simply calculate the effect of the
correlated motion of two coupled quantum systems in this way. In Problem
12.1 we generalize this to two three-dimensional dipole oscillators by adding
the contribution of the other two vibrational directions to the interaction.

In Problem 12.2 the van-der-Waals interaction is obtained for two
polarizable atoms or molecules. For two identical atoms with only a single
electronic state occupied on each atom the result could immediately be
guessed from Eq. (12.2) by replacing h, which is the energy of excitation to
the nearest coupled harmonic oscillator state, by the energy of excitation to
the first coupled atomic state. Often a harmonic oscillator provides a valid
model for an atom or molecule, with ho taken equal to the electronic
excitation energy, allowing estimates of properties in terms of clear simple
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models. For this particular case, the analysis in Problem 12.2 is also made
for two different atomic types and tells the form which Eq. (12.2) would take
for two dipole oscillators with different parameters,

£ %) ho1hos 3
VAW=" ho| + hwo)r6 (12.3)

In either case, we have treated the ground state of a multibody
interacting system. This is the simplest case of an extremely important set of
problems, called many-body problems. Up to this point we have avoided
such problems by introducing the one-electron approximation in Sections 2.2
and 4.2. The electron-electron interaction -2e2x1x2/r3 which we introduced
here is not to be confused with the coupling between states of a single
electron such as <y 1(r1)|H(r1)|wo(r1)>. We shall introduce the appropriate
formulation for such electron-electron interactions in Section 16.1 and
discuss a number of other many-body effects in Part VII.

Aside from being a very important type of quantum effect which we
have not discussed before, it is an important physical phenomenon. The
van-der-Waals interaction is an interaction between objects which do not
overlap each other at all, but interact with each other through
electromagnetic radiation. It is the principal attractive interaction between
inert-gas atoms, which cannot form covalent bonds, and between most
molecules. The extension to nuclear physics describes the interaction
between nucleons through the effects of meson fields, as we discuss in
Section 17.4

It is also central to the discussion of noise, which is the context in which
we brought it up. The field which arises from the quantum fluctuations of
the dipole, <E2> = 4¢2<x?>//9, is a noise field which we can think of as
power flowing from the source and there must be an equal flow inward.
Similarly an atom in the ground state is emitting and absorbing noise at the
frequency of its excitations. In a metal, with a partly filled band, incident
light can be absorbed by transferring an electron from an occupied to an
empty state. At zero temperature the corresponding absorption of zero-point
light fluctuations must be balanced by the emission of noise power from the
band electrons in the ground state. Thus individual electrons in metals emit
quantum noise even in the ground state and even without the Coulomb
interaction between different band electrons.

12.3 Shot Noise

A classical (or a quantum) charged gas will show fluctuations in current
across a plane due to the individual arrival times of the electrons, like rain-
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drops on a roof. This depends on the real discrete size of the charges, and
would go to zero if the charges were subdivided into smaller and smaller
particles of the same constant e/m, which thermal noise, at kg7 per
frequency interval, does not. This is a fundamentally different origin for
additional noise.

In a classical charged gas, such as a dilute electron gas in a
semiconductor, we may ordinarily assume that the electrons are crossing a
given plane at random times and calculate the current distribution illustrated
in Fig. 12.2. If there are N carriers per unit volume in the system, at a root-
mean-square velocity in the x-direction of vx = VkBT/m (as in Problem
10.3, the average kinetic energy for one direction is <1/omvx2> = 1/pkpT).
The half moving in the positive-x direction strike an area A of a yz-plane at
an average rate approximately (since the average speed <vx> is appropriate
rather than the root-mean-square speed) AN<vy>/2= (AN/2)NkBT/m . The
number crossing per unit area in the negative x-direction is equal to that in
the positive x-direction at (N/ 2)YVkp7/m as illustrated in Fig. 12.2.

We may select a long time period ¢y and Fourier transform the current
with respect to time, using frequency components such that ® = 27n/fp with
n any integer.

J(O) = Zj -ed(t-j) = Zqy jio €0t = (10/270)] AW’ jy' IO, (12.4)

Then the Fourier components ji, are obtained by multiplying by e -i®t and
integrating over time, ju = (1/fg) fO,to e -0t j(r) dr = (-e/tg) 2 Lje -0, with 4
the arrival times and +; being plus for arrivals from the right and minus for
arrivals from the left. The j,, approach zero with random sign as the time
period 7o is made long and are not so interesting, but jn*jm = (e/f0)?

Zij e o - t) may be evaluated noting that for random arrival times only the

terms i = j contribute and give (e/19)2N\VkpT/m tg for the (N /2)\NkpT/m to
hits from each direction, or

. €2 kpT

JoYjo=""N\ 7, ~ (12.5)
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Fig. 12.2. Electrons in a classical gas cross a plane at random times giving
a fluctuating current j(f) as shown.
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In the frequency range Af = A®w/2n there are dw ro/2n values so that the
sum of values in that range, Xju*je in Af is e2N\kgT/m Af. Note that £
has canceled out. This noise depends upon the "graininess" of the system,
and if we were to clump the particles together the noise would increase.
Combining particles in groups of n would let e—ne, m—nm, No>N/n,
and would increase the noise by a factorVn . It may be best to think of shot
noise in terms of current rather than power. If we have a resistor we can
write the power absorbed and emitted, but both are reduced by the
reflectivity of the surface. We note that this shot noise goes to zero for a
classical system as the temperature goes to zero and the particles move more
slowly.

In a quantum gas, such as electrons obeying the Pauli Principle, the
situation is different. If we had a full band of electrons, all states occupied,
we would have no currents and no noise from that band alone. We can
understand what this means by returning to the polarizable molecules and
their van-der-Waals interaction discussed just before Eq. (12.3). Imagine the
lower, filled, level as a bond level and the excited, empty, level as an
antibonding level. Had we filled both, the polarizability o would have
been zero, and polarization in the bond state would have been canceled by
that in the antibonding state. Correspondingly, in the context of this two-
level system, there would be no van-der-Waals force, Eq. (12.2), the force
we used to "detect” noise fields arising from one molecule. In that sense, a
full band (with no coupling to empty bands) would have no current
fluctuations. If we add coupling between the full-band states and those in an
empty band, there will indeed be current fluctuations, which can be
calculated exactly as in Problem 12.2. They will be much smaller than
fluctuations in a partly-filled band, and we neglect them here.

If we have a partly-filled band as in a metal, the states well below the
Fermi energy which are entirely filled do not contribute to the shot noise,
except from the coupling to empty states as discussed at the end of Section
12.2 and in the preceding paragraph. At finite temperature only the electrons
near the Fermi energy contribute to the shot noise, a fraction of the electrons
of order kg7/Efr . Thus the shot noise is suppressed by such a factor by the
Pauli Principle, just as is their contribution to the specific heat, as we
indicated after Eq. (10.25). In this case the velocities which enter are for
electrons at the Fermi energy rather than thermal energies so the square-root
factor in Eq. (12.5) is enhanced by a factor VEp/kgT and the net
suppression of the shot noise of Eq. (12.5) is only by a factor of Y kBT/EF .
In Bose-Einstein systems, on the other hand, quantum noise can be enhanced
by the statistics. The condensation of electrons into the lowest state is
analogous to the clumping of particles in classical shot noise as we discussed
in connection with the graininess of a system.
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In a system in which tunneling is occurring, as described in Section 8.3,
we ordinarily expect the tunneling events to occur at random times, as for
the carriers in a classical gas, and to have the same shot noise. There are
situations where that is not the case, as in the Coulomb blockade from a
tunneling resonance discussed in Section 8.4. A similar effect occurs in
small junctions, with very small electrical capacity C, where a tunneling
transition shifts the voltage across the junction by -e/C. If this drop in
voltage is comparable to the applied voltage, the tunneling probability drops
considerably. As current continues to flow into the junction, the voltage
across the junction builds up toward the applied voltage, as illustrated in Fig.
12.3, increasing again the tunneling probability. Then the tunneling events
become more evenly spaced in time. A Fourier transform such as we have
constructed then concentrates the noise at frequencies near the tunneling
frequency <j(f)>/e , with <j(#)> the time-average current. For optical
communication this can be an important effect, leaving most of the
frequency domain quite free of the shot noise which might otherwise have
seemed completely unavoidable. It also shows an important effect that
though the tunneling events are describable as discrete events, the flow of
charge into the capacitor can be regarded as continuous, as individual
electrons move closer and into the capacitor.

e/C
V@AM/I Y Pl

t

Fig. 12.3. If the capacity C of a tunnel junction is small each tunneling
event, shown by a spike below, drops the voltage across the capacitor
sufficiently to inhibit tunneling until the voltage rebuilds, spacing the
events more uniformly and concentrating the shot noise to a narrow
frequency rage.

12.4 Other Sources

With current flowing in a quantum wire, as we described in Section 2.3,
we might imagine the states flowing to the right filled to a Fermi energy
higher than those to the left, but a sharp cut-off at the Fermi energy in both
cases. Then shot noise is suppressed, as we discussed in the last section. If
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then we add a scattering mechanism, represented by a transmission Trans.,
as described in Section 8.1, some electrons moving to the right can be
reflected back, producing a shot noise exactly as for tunneling in the last
section. This is called partition noise arising from the partitioning of part of
the forward current into reflected current. A similar partition noise arises in
a y-shaped channel where some of the electrons move to the right and some
to the left.

For the case of reflection by a defect it can be calculated just as we
calculated shot noise in the preceding section. The classical shot noise was
proportional to the density N of electrons involved and for small reflectivity
1 - Trans., it is proportional to that reflectivity. On the other hand when the
reflectivity approaches one, so that almost all reflected states are filled, the
noise is again suppressed, being proportional to the transmission. Indeed
over the entire range the noise is proportional to Trans.(1 - Trans.). In a
similar way the partition noise in a y-shaped channel is proportional to the
fraction flowing to the right times the fraction flowing to the left.

Each of these mechanisms can be regarded as shot noise, and calculated
as we calculated shot noise in Eq. (12.5). If there is also inelastic scattering,
so that the carriers also relax toward the low-temperature Fermi distribution,
this will suppress this partition noise, just as lowering the temperature
decreases the shot noise in a metal.

There is another familiar type of noise, called 1/f noise, because the
noise power varies approximately as the inverse of frequency which occurs
in a wide variety of systems. In contrast to the types we have discussed it
arises from a type of cooperative effect, such as illustrated in Fig. 12.4. We
imagine current carried by carriers which hop from one site to the next, but
can only hop if the neighboring site is empty. If we sit at one site, and note
the times at which a carrier moves to the right, we obtain a current as a
function of time as shown below in Fig. 12.3. If we then evaluate j as in
Egs. (12.4) and (12.5) we find that noise power varies approximately as 1/m.
This is illustrated in Fig. 12.5 for which we have made such an evaluation
for the model shown in Fig. 12.4, but for 100 sites, with periodic boundary

lolet |ololet | [t [o]o]et [ofer | |et |

Fig. 12.4. Carriers which hop from site to site on a grid, but can only hop
if the neighboring site is empty, produce a current measured at any one
site which shows noise power per frequency interval, inversely
proportional to the frequency, 1/f noise. Displacements associated with a
single time step are shown by arrows.
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conditions, and with half the sites initially occupied at random. We did this
with 800 time steps, took the Fourier transform, and averaged over eight
neighboring frequencies. We repeated that calculation 100 times and
averaged again to obtain the result shown in Fig. 12.5, which appears as a
term proportional to 1/f plus some constant contribution. The noise for this
calculation begins to rise again at higher frequencies(smaller 1/f), apparently
because configurations with alternate occupied and empty states move along
unchanged and contribute strongly near the corresponding frequency. If one
were interpreting some statistical data, the constant term seen in Fig. 12.5
might be interpreted as from some other mechanism, and the straight line in
Fig. 12.5 would then represent the 1/f contribution. The model we used may
not be worth exploring that much further.

1/f noise is ubiquitous, arising from many different kinds of systems.
For example, it apparently is observable in the traffic flow on busy freeways.
It seems not so easy to derive the form, but it can be simulated as for Fig.
12.5.

0 1 | ! |
0 0.1 0.2 0.3 uf 0.4 0.5 0.6

Fig. 12.5. Noise power, per frequency interval, plotted against the
reciprocal of the frequency of the noise, for a periodic system such as Fig.
12.4 with half filling of 100 sites. It was calculated as indicated in the
text.



V. Electrons and Phonons

We have made applications of quantum mechanics to solids throughout
the text, and seen energy bands in simple systems. Crystalline systems are
so important, and their understanding so heavily based upon quantum
mechanics, that we should present the organization of the subject which is
generally used. For many purposes the tight-binding basis is most flexible
and easiest to use, as for the tunneling calculation in Chapter 8. However,
the nearly-free-electron limit is also useful and provides a good introduction
to Brillouin Zones, as well as formulating diffraction of waves in general,
and we use it here. Our study of lattice vibrations in Chapter 15 will be
closer to an energy-band formulation using tight-binding theory, but the
Brillouin Zones are the same.
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Chapter 13. Energy Bands

We begin by describing a procedure by which accurate energy bands
could be obtained using the pseudopotential method. We do it for our
approximate, empty-core form for the pseudopotential, but if we used
instead one of the more rigorous forms (e. g., Harrison (1966)) the
formulation would be the same and it could be a state-of-the-art band
calculation. We then proceed to approximations based upon that
formulation which will be more informative and allow discussion of a wider
range of properties.

13.1 The Empty-Core Pseudopotential

Our beginning discussion of electron states was for free electrons, and
we then saw that the effects of the potentials from the atoms constituting a
crystal could be described in terms of a weak pseudopotential, which we
took in the empty-core form, Eq. (4.18),

0 for r<rc
w(r) = (13.1)
w(r) for r>re,

with v(r) the free-atom potential, which we think of as -Ze?/r though
ordinarily it included also terms in the potential arising from the valence
electrons. Now in the solid we write the total pseudopotential as a
superposition of such atomic pseudopotentials,

W(r) = 25 w(r - I, (13.2)
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with rj the positions of the atomic nuclei in the crystal.

For a pseudopotential band calculation we would solve the energy
eigenvalue equation, Eq. (1.21),

/

h2
“om V20(r) + W(D)$(r) = ed(r), (13.3)

now called the pseudopotential equation, with ¢(r) the pseudowavefunction.
It would be solved by expanding ¢(r) in plane waves, |¢> = Zk'uk'[k">, and

|b:takr, (13.4)

with k' satisfying periodic boundary conditions. The expansion of |¢p> is
substituted in Eq. (13.3), we multiply on the left by <k| and obtain

h2k2
om Uk + k' <k|Wk'>uk' = Euk . (13.5)

For the first term on the left and the only term on the right, only terms
for k' = k were nonzero. The first step is the evaluation of the matrix
elements, which is quite simple using Eq. (13.1) and would also be quite
straightforward for more rigorous pseudopotentials. The important
simplification comes from the use of Eq. (13.2).

<KWk = g5 J a3 el (k) rE(r-ry)

éZjei(k'k')' T J. d3r el(k-K) (1) w(r-ry) (13.6)

= %]Zjei(k'k')' rj é(—),[ d3r ei(k-K")- ryy(r) = S(k' - K) wik'-k.

In the first step we wrote out the two plane waves. In the second we
interchanged the sum and integral, and multiplied under the sum by
eilk-k'yrig-i (k-K')rj= 1. In the third step we changed the variable of
integration from r - rj to r and factored the volume into the number of
atoms N and the atomic volume .

This third form is factored into two terms, a structure factor and a form
factor, written as S(q) and wgq in the final form, as is usual in diffraction

theory. We write k' - k = q, and the structure factor is written
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S(q) s—INZje—iq N (13.7)

It depends only upon the positions of the atoms, and is independent of the
particular pseudopotential which has been used. The form factor is given by

1 . 4 i
wq = QAOJ. d3r elq ry(r)= Q—T;_[ dr rz%l}qzw(r). (13.8)

For empty core pseudopotentials (with a convergence, or screening, factor
€~Xr) the integral may be carried out to obtain

4nZe2 )
wq = - 902 J.rc,oo singr e’¥7 dr

(13.9)
4nZe?

=- mcos gqre.

We would anticipate taking K = 0 in the convergence factor, but when we
calculate in Section 20.2 the redistribution of the electron charge due to
these pseudopotentials, self-consistently to first order in the resulting
electrostatic potential, we will find that in the Fermi-Thomas approximation
that the net effect is to introduce a k2 exactly as in Eq. (13.9), with

2
) =4mekF

K Th2

(13.10)

We see incidentally from the first form in Eq. (13.9) that this "screening of
the potential” has the effect of reducing the long-range Coulomb potential to
-Zee XIlr .

The pseudopotential form factor is all we need to know about an element
in order to perform a band calculation, or to calculate other properties using
the structure factors for whatever arrangement of atoms we wish to consider.
If we are satisfied with the approximate empty-core form, we need know
only the empty-core radius and the valence Z. In Problem 4.3 we calculated
the pseudopotential core radius for lithium and sodium from the atomic term
values given in Table 4.1. In Fig. 13.1 we show the pseudopotential form
factor obtained from Eq. 13.9 with that radius for sodium, along with an
earlier full calculation. The largest difference is at g/kp= 0, where our value,
-2/3EF, would now be considered correct. For some purposes one might try
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Fig. 13.1. The pseudopotential form factor for sodium from Eg. (13.9)
using the empty-core radius from Problem 4.3 and g = 0.92 A-1. The
points are the values calculated by Animalu and Heine (1965).

to improve the predictions by adjusting r¢ to fit a prediction to some known
property, and one can then use the same r¢ for related properties.

The evaluation of structure factors may be illustrated for the one-
dimensional case. For a regular chain of atoms, spaced by d as in Fig. 6.1,
the atomic positions are xj=jd forj=0, 1, ..N-1. Then periodic boundary
conditions require that k, k" and ¢ all are of the form 2nn/(Nd),

S(q) =]l\,2j e~iqd; :]%/(1 +a+a?+..aN-1)

(13.11)

_11-aN h g = il
=N 1.4 > Witha=exp 2miy |

The numerator 1 - a¥ is always zero. We can only find nonzero S(q)
when n/N is an integer so the denominator is zero. Then every term is one
and S(g) = 1. These wavenumbers, ¢ = 2n/d times an integer, are called
lattice wavenumbers (or loosely called reciprocal lattice vectors, with or
without the factor 2m). The same result applies for simple cubic crystals,
with gx = 2nny/d , qy = 21ny/d , and g, = 21nz/d .

For this one-dimensional case in Section 6.1 we defined a Brillouin Zone
as the range of wavenumbers which gave distinct states in tight-binding
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theory, -m/d <k < m/d. That generalizes to three-dimensions as being the
region of wavenumber space closer to q = 0 than to any other lattice
wavenumber. We shall see the significance of the Brillouin Zone in the free-
electron context. We shall also evaluate the structure factor for atomic
arrangements other than the perfect crystal.

13.2 A Band Calculation

For a chain of equally-spaced atoms, with nonvanishing structure factors
only at the lattice wavenumbers, a plane wave |k> is coupled, according to
Eq. (13.6), only to states [k+2nn/d>, states which differ from & by a lattice
wavenumber. The very large number of wavenumbers which are allowed by
periodic boundary conditions in a large system, N times as many as there
are lattice wavenumbers for a chain of N atoms, is irrelevant since only
those differing by a lattice wavenumber are coupled. If we focus on the
smallest & among a set of coupled plane waves, the eigenstate can be written
as a linear combination of that plane wave and all plane waves coupled to it.
In an approximate treatment, we include only a limited number of such
coupled states and the pseudopotential makes it possible for that number to
be quite small. We can understand this in terms of the pseudowavefunction
for sodium metal which we plotted in Fig. 4.3, a sum of atomic
pseudowavefunctions for the £ = (O state. The single plane wave for £k = 0
would be a constant. We may add to it the contributions of the two smallest
lattice wavenumbers g = 27/d, so the pseudowavefunction becomes ¢(r) =
Ag + 2A1cosqd. . Fitting the maximum and minimum in the curve in Fig.
4.3 gives A1/Ap only -0.15. These small corrections reproduce the
pseudowavefunction quite well, with the remaining discrepancy is largely
eliminated by even smaller contributions from the next set of g = 471/d .

With only a small number of plane waves needed for the
pseudowavefunction, the problem is the same as the calculation of molecular
states in terms of a small number of atomic states as we discussed in Section
5.1 and 5.2. We need to solve as many simultaneous linear equations as we
have terms in the expansion, as in Eq. (5.13). The coefficients Hj; which
enter such equations form a matrix, called the Hamiltonian matrix, and the
solution of the equations is called diagonalizing the matrix . In these terms
the pseudopotential has reduced the problem to the diagonalization of a
small Hamiltonian matrix, based only on plane waves which differ by the
smallest lattice wavenumbers.

This would not have been true had we sought an expansion of the full
wavefunction, given approximately by a sum of the full atomic states, for
sodium each with a large peak at the nuclear position and two nearby nodes
on either side. An extraordinarily large set of plane waves would have been
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Contributi'x_lg wavenumbers

+ + !kz + +
- ] ——»a ]

q,=2n/d

Fig. 13.2. Wavenumber space, showing the lattice wavenumbers (square
dots) and a wavenumber Kk in the Brillouin Zone (BZ) and all states (+)
coupled to the state [k>.

required, and the diagonalization of the corresponding huge matrix. The
same reduction occurs in two and three dimensions. In fact, had we
regarded Fig. 4.3 as the pseudowavefunction along a line in the three
dimensional crystal, the corrections to the k = 0 plane wave would have been
twelve plane waves with a coefficient Aj/Ag = -0.025. We discuss the
calculation in detail first for the two-dimensional case.

For a two-dimensional square lattice, with interatomic distances d, the
lattice wavenumbers are all integral linear combinations of lattice wave-
numbers of length 2n/d in the x- and y-directions, as indicated in Fig. 13.2,
The wavenumbers of the states to which a plane wave of wavenumber k in
the Brillouin zone is coupled, shown by +'s, should be included in the
calculation, but the ones differing by larger wavenumbers are only weakly
coupled (the coupling drops as 1/g2 at large ¢, according to Eq. (13.9)) and
they differ greatly in energy, also reducing their effect. The state which is
calculated contains terms with all of these different wavenumbers, but we
ordinarily specify it by giving the wavenumber with the smallest magnitude,
the one which lies in the Brillouin Zone shown for the square lattice in Fig.
13.2. This is the two-dimensional counterpart of the one-dimensional
Brillouin Zone -1/d < g < 7t/d discussed in Section 6.1.

For a simple cubic lattice in three dimensions, the wavenumber lattice is
simple cubic and the Brillouin Zone is a cube. Exactly the same situation
obtains with respect to a band calculation, which can be performed with of
the order of ten or twenty plane waves, by diagonalizing the corresponding
ten-by-ten or twenty-by-twenty Hamiltonian matrix. Before discussing the
results of such a straight-forward calculation, we see how this simple-cubic
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lattice is generalized to a more important structure, the face-centered-cubic,
or fce, lattice. This lattice is not only the crystal structure of many metals,
e. g., copper and aluminum, but also has the same translational symmetry as
most semiconductors and also rock salt.

The fcc lattice is illustrated in Fig. 13.3. It is based upon a simple-cubic
lattice, but with an addition (identical) atom at the center of each of the six
faces of every cube. The length of the cube edges is traditionally called a
and is then related to the nearest-neighbor distance d by a = V2d.
Traditional crystallographic notation takes a Cartesian coordinate system
oriented along these cube edges, and specifies directions as [100] along the
X-axis, or more generally parallel to any cube edge, [110] parallel to any face
diagonal, and [111] parallel to any cube diagonal. If this lattice is extended
to many cubes we see that the face-center atoms have identical arrangements
of neighbors to the those at the cube corners, and the cubes could as well
have had a corner at any atom in the crystal. Thus the smallest translations
T; of the lattice which take every atom in the interior to the position
previously occupied by another atom are of length d and are in [110]
directions. Three such translations are indicated in Fig. 13.3, and are called
primitive lattice translations. The density of atoms corresponds to four
atoms per cube, counted by noting that the eight corner atoms are shared by
eight cubes and the six face atoms are each shared by two cubes. If the
spheres representing each atom are expanded till they touch their nearest
neighbors, each is seen to touch twelve nearest neighbors, a close-packed
lattice with the densest possible packing of spheres in an extended system.

The extension of the concept of the simple-cubic lattice wavenumbers of
Fig. 13.2 to the fcc lattice is not so obvious since the primitive translations
T1, T2, and 73 are not perpendicular to each other. We may see that the
essential feature is that the primitive lattice wavenumber q1 be perpendicular
to T2 and 13 and therefore proportional to 77 XT3 . Then the primitive lattice
wavenumbers become,

Table 13.3. One cube of a face-centered-cubic lattice, showing the atoms
centered at each face, and a set of primitive translations 7; which take the
lattice into itself. The cube edge a is also indicated.
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21T) XT3

q1 = m, etc., (1312)
the other two obtained by rotating indices. For simple-cubic lattices these
reduce to the primitive lattice wavenumbers we gave. In the fcc lattice these
primitive lattice wavenumbers lie in [111] directions. The states coupled to
any plane wave of wavenumber k in the Brillouin Zone have wavenumbers
differing from k by an integral linear combination of these primitive lattice
wavenumbers, the linear combinations again being called lattice
wavenumbers. The wavenumber lattice made up of these lattice
wavenumbers, based on primitive lattice wavenumbers in [111] directions, is
called a body-centered cubic lattice. It is again based upon a simple-cubic
lattice but has additional sites at the cube center rather than in the cube faces.
It is also a common crystal lattice for elemental metals.

The Brillouin Zone for the face-centered-cubic crystal lattice again is the
surface containing all wavenumbers closer to q = 0 than to any other lattice
wavenumber, and is shown in Fig. 13.4. The primitive lattice wavenumbers
are shown as arrows, and the planes bisecting them, which would form a
regular octagon if all eight such planes were included, form part of the
Brillouin Zone. However, points inside that octahedron, but outside the cube
drawn, are closer to a lattice wavenumber 47/a along the cube direction than
to q = 0, so the cube faces truncate the points of the octahedron leading to
the shape shown. It may also be regarded as the cube shown, with its eight

/ A Art/a

—

Fig. 13.4. The Brillouin Zone for the face-centered cubic crystal lattice.
Lattice wavenumbers are again shown as square dots, and three primitive
lattice wavenumbers are shown as arrows, leading to the corners of a
circumscribed cube.
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corners truncated. The Zone has half the volume of that cube. This is also
the Brillouin Zone for the tetrahedral semiconductors, Si, GaAs, etc.,
because they have the same translational symmetry. For example, the
gallium atoms in GaAs have a face-centered-cubic arrangement, with
another face-centered-cubic lattice of arsenic interspersed.

For discussing free-electron bands and band calculations we return to the
simple-cubic lattice. There are free-electron states at all wavenumbers, but
we may represent all of them by the wavenumber in the Brillouin Zone for
the plane wave to which they are coupled. In this way every wavenumber
indicated by a "+" in Fig. 13.2 is replotted at the same point in the Brillouin
Zone. This is also what we did in Section 6.2 for the simple-cubic lattice for
matching with tight-binding sp-bands. Then for a wavenumber K in the
Brillouin Zone, there is a state with energy h2k2/(2m) but also one of energy
h2(k + q;)2/(2m) for every lattice wavenumber (every integral combination
of the primitive lattice wavenumbers such as the q1 in Eq. (13.12)). These
are drawn (as in Fig. 6.6) in Fig.13.5.

States of the same wavenumber in the Brillouin Zone are coupled to
each other by matrix elements of the pseudopotential. For any state well-
removed in energy from the others, the coupling can be treated in
perturbation theory and the shifts are small. When two coupled states

0.5 1

kd/m

Fig. 13.5. Free-electron bands redrawn in a cube direction in the Brillouin
Zone for a simple cubic lattice with spacing d. The four degenerate bands
are drawn separately.
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become close in energy, as for the two lowest bands at the edge of the
Brillouin Zone, the two coupled states must be treated exactly, solving the
two-by-two Hamiltonian matrix to obtain, in the case of those two states
near the Brillouin-Zone edge (k = g¢/2 with g =2n/d),

B2 2(k g)z ﬁ2k2 2(k— h2(k-¢)2
g = — 2m * T+wq2. (13.13)

We have written the matrix element coupling the two states <k+q|W k> =
S(qQ)wq = wg. Such a solution, when two coupled states are very close in
energy, is sometimes called degenerate perturbation theory.

The resulting two bands are plotted in Fig. 13.6. A gap equal to 2wq has
been opened up at the Brillouin-Zone edge, where the two free-electron
states are degenerate. Away from this region the states are quite free-
electron-like and any effect of the pseudopotential could be treated as a
perturbation. At the left edge of the Brillouin Zone it would be appropriate
to use the two states k and k + ¢ , rather than £ and k - ¢ . Then a gap
would appear there. The resulting bands within the Brillouin Zone represent
the electronic structure of the solid. The bands shown outside the Brillouin
Zone to the right are redundant replications of the bands within the zone, as
were the tight-binding bands outside the Brillouin Zone in Fig. 6.2.

Brillouin Zone

4L i
w
3L Coupled States

1 1 1

0
-1.5 -1 -0.5 0 0.5
kd/m

—_

1.5

Fig. 13.6. Bands from Eq. (13.13) giving the energy of two free-electron
states coupled by a matrix element wq with g = 21/d.
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The energy bands given in Eq. (13.13) correspond to the results of a
simple band calculation. In a full calculation one would include not only the
three plane waves, &, £ - g, and £ + g, which are needed to obtain the lower
bands, but all of the plane waves which have an appreciable effect on the
states. One could also use a more accurate method, in comparison to the
empty-core pseudopotential, for obtaining the matrix elements <k + q|W| k>
which couple the various plane waves. These are all, however,
straightforward generalizations of the simple calculation we performed here.
The most important approximation in any case is the one-electron
approximation which we introduced in Sections 2.2 and 4.2.

In a metal the coupling is very small compared to the Fermi energy
which would lie just below the gap in Fig. 13.6 for a monovalent metal (e.
g., sodium in a simple-cubic structure), and just above for a divalent metal.
For such a divalent metal the shifts in the band also distort the Fermi surface,
which would be spherical in the absence of a perturbing pseudopotential.
Experimental studies of these Fermi surfaces were important in learning how
to understand metals in terms of pseudopotentials (Harrison and Webb
(1960)) but by now have become a rather specialized topic. We see in
Problem 13.1 how diffraction changes the electron orbits in a magnetic field,
which can be interpreted in terms of Fermi surfaces made up of rearranged
segments of a Fermi sphere.

13.3 Diffraction

The opening of a band gap as in Fig. 13.6 sheds further light on the
diffraction of electrons by a periodic lattice. We shall see in Chapter 14 that
applied electric and magnetic fields cause electrons to move continuously
along the energy bands, and this was illustrated in Problem 13.1. Thus when
gaps are introduced at the left, as well as at the right, edges of the Brillouin
Zone in Fig. 13.6, an electron moving up to the Zone face at the right must
continue on to the right, or equivalently emerge from the left face of the
Zone. The electron has changed the direction of its wavenumber and its
velocity, which physically corresponds to a diffraction of the electron by the
periodic pseudopotential of the lattice. Indeed the Bragg condition for
diffraction is that two states of the same energy are coupled, exactly the
condition which causes us to solve the two-by-two degenerate-perturbation-
theory equation, Eq. (13.13). An approximate description of Fermi surfaces
in polyvalent metals (in these metals the Fermi sphere always crosses
diffraction planes) is possible simply by taking these diffractions into
account, again illustrated in Problem 13.1. This corresponds to the real
Fermi surfaces obtained from a band calculation, but in the limit as the



13.3 Diffraction 185

pseudopotential becomes small. We shall see how this affects the electron
dynamics in the following chapter.

13.4 Scattering by Impurities

We discussed scattering of electrons by impurities in the context of tight-
binding theory in Section 7.3. It is useful to understand it also in the context
of weak pseudopotentials.

We have seen that the matrix elements <k'|2jw(r - rj)|k> are zero for a
perfect crystal if the wavenumber k does not lie on a Bragg plane. Thus if
we were to change one atomic pseudopotential at rj in the sum by dw(r-rj) =
w'(r-ri)-w(r-rj), for all of these states away from the Bragg planes the matrix
element will be zero plus the matrix element of the change. Let us again
write k'= k+q (as after Eq. (13.6)), and then

<k+q|Zw(r - rj)k> = < k+q|dw(r - ry)|k>

(13.14)

e-iq. T e-1q. Ij
= JaB3 " (eorw(er) T = (wq' - wg )y

This is closely analogous to the matrix element Sege I(k-K)di/N  obtained for
tight-binding theory, in one dimension, following Eq. (7.10). As in that
case we can proceed with the Golden Rule but now the matrix element
depends upon the difference in wavenumber between the two coupled
states.

. 2
%:%Zk-[mN—WLj ek - £K) (13.15)

For the evaluation we replace the sum over k' by an integration as we
indicated at the end of Section 7.3, and take a coordinate system as shown in
Fig. 13.7. For a given magnitude of q = k' - K, the states in a circular ring of
radius k'sin® and small cross-section dk’ by £'d6 have the same matrix
element. The density of states in wavenumber space is £/(27)3 with Q the
volume of the system so

[

1 21 Q , wq' - wq ¥
Ezi(znpj 2“d95m9fdk'k"2( N ]S(Ek'-ek)- (13.16)
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We multiply by (deg'/dk)/( h2k'/m) which is equal to one, and integrate
over energy €k’ to obtain

1 mk Q _ (wg -wq P
T ~ B3 2nN2'[d981ne( N )
(13.17)
m€
=m.|.0,2k dg g (wq - wg)2.

with &g the volume per atom. In the final step we noted that for an isosceles
triangle (k' = k) we have g2 = 2k2(1-cosB) so sin0d0=gdg/k2. This form is
convenient to use with known form factors wq as in Fig. 13.1.

We may compare this with the tight-binding result in Eq. (7.13), if we
replace the velocity in that expression by v = hk/m, which leads to

1 8es2mk Qp
1 Snﬁ—31v _ (13.18)

We see that 852 has been replaced by 1/2,[ 0.2k d(g/k) (¢/k)(wq' - wq)2. The
integral could readily be performed using the empty-core form for the
pseudopotential, Eq. (13.9).

For calculating the conductivity as in Section 11.3 we should use the
momentum relaxation time T in which each scattering event is weighted by
the fractional loss of initial momentum, 1 - cos® = g2/(2k2). This factor can
be directly inserted in the integrand in Eq. (13.17).

Fig. 13.7. The coordinate system for summing over states in cylindrically-
symmetric systems.

13.5 Semiconductor Bands

Perhaps the most important energy bands are those for semiconductors,
and we will be discussing specifically electron dynamics in those bands in
the following chapter. We introduce them briefly here in the context of the
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Fig. 13.8. The diamond structure is obtained from the face-centered-cubic
structure (empty and lightly-shaded circles, as in Fig. 13.3) by adding a
second atom, displaced by one quarter of a cube body diagonal from each
of the original sites.

free-electron bands.

The semiconductors silicon and germanium are in the diamond structure,
which is based upon the face-centered-cubic structure which we discussed in
Section 13.2. One cube of that structure is redrawn in Fig. 13.8 and a second
atom added for each original atom, as indicated. Note that each added atom
is surrounded be a regular tetrahedron of the original atoms. Similarly, each
original atom is surrounded by a regular tetrahedron of added atoms of
inverted geometry (compared to the tetrahedra of original atoms). Most
compound semiconductors, such as gallium arsenide, are in this structure
with for example the original face-centered-cubic atoms gallium and the
added atoms arsenic. In either case the translational symmetry is that of the
face-centered-cubic structure, with two atoms in each primitive cell.

The free-electron bands for this structure are shown to the left in Fig.

’ 1 3—\
2 w2l

05 U5

kal2m ka/2m
Fig. 13.9. The free-electron bands, on the left, for the face-centered-cubic
(or Si or GaAs) structure for k along a cube-axis direction, analogous to
the free-electron bands for the simple-cubic structure shown in Fig. 13.5.
£ is given in units of (h%/2m)(2n/a)3. To the right are the corresponding
bands for a semiconductor such as GaAs.
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13.9, for wavenumbers along a [100] direction in the Brillouin Zone of Fig.
13.4. A total of eight free-electron bands meet at k = 0 with energy
3(h2/2m)(2n/a)3 (the bands shown double represent four bands each). As the
pseudopotential is introduced, these split into two sets of three-fold-
degenerate bands and two single bands. One of these three-fold sets is
lowest and the three bands emerging from this point are the upper valence
bands as shown to the right in Fig. 13.9 (here the double line represents two
bands). With eight electrons per atom pair the lowest four bands are filled
and are collectively called the valence bands. The lowest band above these
is the empty conduction band and in most compound semiconductors has its
minimum energy at k = 0. These are the bands for which we discussed the
statistics of occupation in Section 10.5. We shall discuss the dynamics of
electrons in such bands in the following chapter.

These bands are also understandable in terms of tight-binding theory, as
are the simple-cubic bands discussed earlier in this chapter. It was in fact
the comparison of the free-electron and tight-binding simple-cubic bands in
Section 6.2 which gave us our universal matrix elements. In the case of
covalent semiconductors we proceed from the atomic states to form sp3-
hybrids, as indicated in Section 6.3, and then form bonding and antibonding
states, four each for each atom pair. The four valence bands shown to the
right in Fig. 13.9 arise from coupling between neighboring bond states just
as the coupling between atomic states broadens them into bands. Each of the
states in the band is a linear combination of bond orbitals (and in a more
accurate calculation some admixed antibonding orbitals). The lowest state at
k = 0 turns out to be the sum of every bond orbital with an equal coefficient.
Thus on each atom it contains all four sp3-hybrids with equal coefficients,
the p-states all cancel out leaving a pure s-like state, as in the simple-cubic
bands. Similarly, the three states at the top of the valence band consist
entirely of p-states on the individual atoms. As wavenumber increases to the
right in Fig. 13.9, the c-oriented (parallel to k) p-state combines with the s-
states to form the three nondegenerate bands shown. The other two bands
are degenerate m-bands.

These tight-binding and free-electron bands can be used to derive
universal coupling parameters, as for simple-cubic bands in Section 6.2, and
the resulting parameters are more appropriate for the study of covalent
solids. Interestingly enough the values are quite similar. It is found that
Vsso = -9m2/64 h2/(md?), only slightly larger than the -n2/8 h2/(md?) which
we obtained here. Extensive discussions of the electronic structure and
properties of covalent solids based upon this tight-binding picture are given
tn Harrison (1999).
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It is clear that the electrons in the simple metals, with weak
pseudopotentials, have the dynamics of free electrons, with the additional
effect of diffraction by the pseudopotentials. They have velocity v = hk/m
and acceleration given by any applied force divided by the mass m. With the
more complicated energy bands, such as we discussed for semiconductors in
the preceding section, the dynamics may be deduced by constructing packets
much as we did in deriving the Schroedinger Equation in Section 1.2.

14.1. Dynamics of Packets

We found already in Eq. (1.6) that a packet moves with velocity v =
dw/dk , which for particles became (1/h)de/dk . That same result applies to
energy bands since we can make wave packets of band states just as we
made them of plane waves and follow the same argument. Thus for a
system with energy bands €k we have the velocity

v=%Vksk (14.1)

with of course Vi having an x-component of dex/dkx, etc.. This is the usual
form for free electrons, and for bands approximated by a parabola as €x =
h2k2/(2m*) it ishk/m* For cosine-like bands, as shown to the right in Fig.
13.9, we note that the velocity is zero at k = 0, but also at the Brillouin-Zone
edge, k = 2m/a (or m/d in a linear chain with spacing d).

We now imagine this packet moving in a slowly varying potential V(r)
so that it will pick up potential energy at a rate v-VV(r). It must therefore
give up kinetic energy, or band energy €k, at the same rate. This occurs by a

189
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change in the central wavenumber k of the packet, corresponding to
dk/dr -Vkek = -v-VV(r). But using Eq. (14.1) for Vkek we see that at least
for the components of force F = -VV(r) parallel to the direction of motion,

dk
3 =F=-Vv(). (14.2)

This is a very simple and plausible result, which turns out to be
applicable for all components of the force. The principal limitation on the
validity is that it can be used only where a description of the state in terms of
packets makes sense. It would not be applicable to potentials arising from
an impurity which varied rapidly over one atomic distance since making a
packet small enough to define the position at such a distance requires the
entire band, and an energy uncertainty corresponding to the band width.

These two equations, Eqgs. (14.1) and (14.2), are exactly Hamilton's
Equations, Egs. (3.5) with ik playing the role of momentum and the
Hamiltonian H(p, r) obtained from the energy bands €x plus a potential V(r).
Thus they describe completely the dynamics of the wave packet just as
Hamiltonian mechanics described the dynamics of classical particles.

For free electrons, with momentum p= hk, this is the classical dp/dr = F.
For any band structure, it tells that the wavenumber changes according to the
same formula. For a constant electric field the wavenumber moves through
the Brillouin Zone at a constant velocity. In a complicated band structure
the electron velocity itself, v =(1/A) Vi €k, may have a complicated
variation, but the wavenumber behaves simply. For example, for a uniform
electric field parallel to K in the lowest cosine-like bands to the right in Fig.
13.9, the wavenumber moves to the right at a constant rate, and the electron
increases its speed, reaches a maximum and then slows to a stop when the
wavenumber reaches the Brillouin-Zone face. At this point we would
represent the state by the equivalent wavenumber at the opposite Zone face
(though we could continue on outside the Zone if we so chose) and the
electron begins picking up speed in the opposite direction, reaches a
maximum and comes again to rest at k = 0. Physically we could say that the
electron accelerated but made a gradual diffraction, reversing its direction
and moving against the field, which brings it back to rest. If the
pseudopotential were weaker, the bands would be more like those to the left
in Fig. 13.9, bending over in a much shorter wavenumber range as in Fig.
13.6, and the diffraction would be much more abrupt, but still continuous. If
the pseudopotential were sufficiently weak, compared to the applied forces,
no diffraction would occur. In terms of bands such as those in Fig. 13.6 this
would mean that the electron jumped to another band as the wavenumber
crossed the Brillouin-Zone face. When this occurs as the wavenumber
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changes due to a magnetic field, the jump between bands is called magnetic
breakdown of the band gap. In order to discuss that we must consider
magnetic forces.

As we indicated, Eq. (14.2) remains true for all forces, whether or not
they are parallel to the direction of motion, so they apply to the forces due to
a magnetic field F = (-e/c)rxH given in Eq. (3.13). Inserting this into Eq.
(14.2) we have

dk _ (oF o e Vi
ﬁdt_ - xH= ¢k x H. (14.3)

From the final form we see that the wavenumber changes are
perpendicular to the gradient of the energy with respect to wavenumber, so
the energy of an electron in a magnetic field does not change with time. The
change in wavenumber 1is also seen to be perpendicular to the magnetic field
so the trajectory of an electron in wavenumber space is the intersection of a
constant energy surface in a band with a plane perpendicular to the magnetic
field. This is consistent with the motion we expect for free electrons, but
also when the Fermi surface in a metal has a complicated shape, electrons at
the Fermi energy move along the intersection of that Fermi surface and such
a plane perpendicular to the magnetic field. From the first form in Eq. (14.3)
we see that T is proportional to k (with a constant ratio eh/eH and a 90°
rotation) so that the shape of the electron orbit in real space (projected on a
plane perpendicular to the magnetic field) is exactly the same as the shape in
wavenumber space. Thus experimental studies of the electron orbits in real
space reveal the exact shape of the Fermi surfaces in metals (e. g., Harrison
and Webb (1960)).

For simple metals, where the effects of the pseudopotential can be
described as a simple diffraction, the electron orbits in a uniform magnetic
field correspond to motion along circular paths between discontinuous
changes in momentum at the diffraction, providing for example lens-shaped
orbits when there are two diffractions, which correspond to cross-sections of
the nearly-free-electron Fermi surface.

When the fields are very large and the pseudopotentials very weak, the
diffraction does not occur and we have magnetic breakdown. This is a
special case of the general problem in which two states |i> and |/>, coupled
by a matrix element Hij, change their relative energies such that they cross
(€j - &i goes through zero and changes sign as a function of time). The
probability that a particle in state |i> makes a transition to the state |j> during
such a level crossing is given by
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Pttt | i L
Pij= h d(Ej— €)/dt (14.4)

when that probability is small so that we may use perturbation theory. This
may be derived from Eq. (7.9) by multiplying and dividing by the time-
derivative of the energy difference and integrating over time. For magnetic
breakdown in a simple metal, Hj; would be the pseudopotential matrix
element between two free-electron states and 1 - Pjj would be the probability
of breakdown occurring.

14.2 Effective Masses and Donor States

In semiconductors, we have seen that there may be small numbers of
electrons, concentrated within an energy k7T of the bottom of the
conduction band. In this small energy range we may expand the energy as a
function of the wavenumber measured from the conduction-band minimum
at kg. The first derivative of €k is zero at the minimum and we obtain a
quadratic form in the components of k - k. If the conduction-band
minimum is at k = 0 as to the right in Fig. 13.9, in the tetrahedral structure
(for which x-, y-, and z-axes are equivalent) the result to second-order in K is

1 %k h2k2
ek:eo+§§k7k2+... =€0+5, % + - (14.5)

This defines the effective mass m*, which is adjusted to fit the band
curvature at the minimum. Clearly from the discussion in the preceding
section we can see that electrons with energies near the minimum of this
conduction band have the dynamics of a particle with mass m* , rather than
the true electron mass. The velocity is given by v = (1/h)dek/ok = hk/m*
and the change of its momentum p = hk with time will equal any applied
force, or m*dv/dt = F. Further, it will carry current as -ev and give rise to a
potential in the semiconductor given by -e/re , with € the relative dielectric
constant for the semiconductor and r measured from the position of the
carrier, or its packet. This allows us to carry over all of our intuition about
free particles to electrons moving in such a band.

If the conduction band minimum occurs at some kg away from the k = 0,
as in silicon where it occurs some 9/7ths of the way to the Zone face in a
[100] direction, the variation d2ex/0kx2 along that axis will be different from
the variation 02ek/dky2 = 02ex/0kz2 transverse to that axis. Then the
corresponding mass tensor is not isotropic, but the dynamics are correctly
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given in terms of the corresponding longitudinal and transverse effective
masses. In silicon these are of the order of m, and 0.19m respectively.

It is an important quantum-mechanical point that these electron packets
which behave as a particle of mass m*, also behave as a wave, just as the
center of gravity of any object behaves as a wave. We have found the
corresponding Hamiltonian in the preceding section and for the simplest case
of an isotropic mass, the corresponding Hamiltonian of p2/2m* + V(r)
relative to the conduction-band minimum leads to the effective mass
equation,

2 _.
- V—zym(,,f—”) + VO (r) = %";(5’—), (14.6)

the Schroedinger Equation for the packet. It applies whenever the potentials
vary slowly enough with position to be applicable to packets. It may seem
strange to have worked through the Schroedinger Equation to obtain the
behavior of electrons in an energy band as classical particles and then to
reform Schroedinger's Equation for that particle. However, it may not be so
different from solving the eigenvalue equation to obtain the electronic
structure of the molecule and then applying quantum mechanics to the
dynamics of the center of gravity of the resulting molecule.

We may apply this equation to an electron moving in the presence of a
charged impurity, such as a germanium atom substituted for a gallium atom
in GaAs. The extra proton in the germanium nucleus, relative to that of
gallium, produces a potential energy -¢2/(r€) and its extra electron is placed
in the conduction band since the valence band was full; the atom is thus
called a donor. We predict that its ground state will be a hydrogenic 1s-

state, Y u3/me M as in Eq. (4.5), but with its "Bohr radius”

1 h2e

U e2m*

(14.7)

larger by a factor em/m* than the 0.529 A of hydrogen. In GaAs, with € =
11 and m*m = 0.07 this radius is over 80 A. This would seem large enough
for the packet-like description and we expect the state to be approximately
correct. Using the same parameters, the ground-state energy is e4m*/
(2€2h2) = 0.008 eV relative to the conduction-band minimum. The electrons
are so weakly bound that at room temperature almost all donors will be
ionized, with the conduction electrons free to conduct.

If this were a donor in silicon, such as phosphorus, we would obtain a
state which was spread out a similar distance in the two transverse
directions, for which the effective mass is small, but the larger longitudinal
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mass would contract it in that direction, giving a pancake-shaped orbital.
(One might construct it with a variational form, analogous to our treatment
of the hydrogen orbital in Problem 4.1.) We would obtain similar pancake-
shaped states from the conduction-band valleys in the other five [100]
directions. There is coupling between the states from different valleys and
the real ground state is a combination of orbitals from all valleys, with equal
coefficients.

14.3 The Dynamics of Holes

It is well known that an electron in an empty state at the top of a valence
band behaves dynamically as a positively charged particle. However, to
demonstrate it we must associate a wavenumber k' with the particle which is
the negative of the wavenumber of the hole, as indicated in Fig. 14.1. We
consider the simplest case of a single isotropic band with maximum energy
at k = 0 so that

h2k2
EK ~EV - 5% » (14.8)

with €y the energy at the valence-band maximum, and m* a positive
number. [The true bands at the valence-band maximum are more
complicated because of the three-fold degeneracy seen to the right in Fig.
13.9. Then one band drops rapidly with k in a [100] direction (a light hole
with small m*), while the other two are called heavy holes. The sharp
curvature of the light-hole band comes principally from coupling Vsps with
the conduction band and may produce a rather isotropic band as in Eq.
(14.8), but there may be major anisotropies for the heavy holes, as discussed
for example in Harrison (1999), Chapter 6.]

The energy to create a hole, according to Eq. (14.8), increases with
increasing wavenumber (as the energy of a bubble in water increases with
depth) since carrying the corresponding electron to the conduction band, or
elsewhere, takes more energy. Thus we may associate positive kinetic
energy with the hole. It is a missing electron so the charge to be associated
with it is positive. We may make a packet of valence-band states, as we
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Fig. 14.1. An empty state at wavenumber k near the top of the valence
band behaves as a positively charged particle of wavenumber k' = -k




14.3 The Dynamics of Holes 195

made packets of free-particle states in Section 1.2, and that localized hole
will produce an electrostatic potential e/r, with r measured from the packet
location.

The packet will have a velocity again given by

dex  hk hk'

1
VEL Ok = T m* S omEo (14.9)

and the associated positive charge will move with that velocity. Here we
have introduced the wavenumber k' in the direction in which the packet
moves, the negative of the wavenumber of the valence-band packet we
constructed. The hole then contributes to the current as a positive charge e
moving with this velocity. If an electric field E is applied, we found that the
wavenumber of the packet (made in this case of valence-band states)
changes as h dk/df = -eE and this remains true. However, when we
associate the wavenumber k' = -k with the hole that wavenumber changes
as

dk'
h @ +eE (14.10)

and similarly we may see that in changing to k' the deflection in a magnetic
field is given by

dk' ¢
h =t vxH (14.11)

as for a positively charged particle.

In all regards the hole is behaving as a positively charged particle of
wavenumber k'. The electron which was removed from the valence band
will be attracted to the hole left behind and can form a bound state just as the
donated electron could be bound to the donor atom, but the two particles are
now similar to the bound positron-electron pair. Such a bound electron and
hole are called an exciton. When it moves through a crystal it carries no
current, but it carries an energy comparable to the band gap. Like a
positron-electron pair, the electron and hole can annihilate each other, in this
case it is just an electron dropping into the hole state, perhaps emitting a
photon. We indicated that the Dirac theory of the electron led also to
positrons and the physical interpretation of that theory is very close to this
semiconductor band picture.

When a semiconductor is dilated (expanded), the valence-band
maximum ordinarily will go up in energy since it corresponds to p-states in a
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bonding relationship to their neighbors. (The antibonding state, among the
conduction bands, will move down in energy.) One may follow the
argument we made in deriving Eq. (14.2) to see that if the dilation varies
with position hk' changes with time corresponding to accelerating the hole
toward the dilated region, where the valence band is higher . For the same
reason an electron tends also to be accelerated toward this dilated region and
clearly an exciton will be attracted to that region, where the band gap is
smaller and the exciton has lower energy. For the same reason an exciton
will tend to expand the lattice in the region where it is, and this expansion
can attract any other exciton which is present. Clearly an intricate theory of
the dynamics of such a system can be constructed.

Finally, we should note that the simple intuitive behavior of a hole as a
positive particle, with positive inertial mass, only applies at the top of the
valence band where the bands are curve downward. Empty states near the
bottom of the valence bands, where the bands curve upward, do not behave
in this intuitive manner.



Chapter 15. Lattice Vibrations

We introduced sound waves in Section 1.8, and obtained their velocity in
terms of the bulk modulus and density of the medium. We used the
corresponding frequency, equal to the speed of sound times the
wavenumber, to discuss the vibrational specific heat of a solid in Section
10.2. We needed there to restrict the total number of modes to the number
of degrees of freedom of the vibrating solid, limiting the range of
wavenumbers just as the wavenumbers for electron states were limited to a
Brillouin Zone in solids. A more complete calculation of the vibrations,
analogous to the tight-binding theory of electron states, makes that more
natural. We do that here by calculating the vibrations in a chain of atoms,
analogous to the electron states in such a chain in Section 6.1. We then
generalize the result to three dimensions and introduce the electron
potentials which such vibrations give rise to, the electron-phonon
interaction, in preparation for a quantum treatment of the vibrations in the
following chapter, and of interacting electrons and photons in Chapter 17.

15.1 The Spectrum

We may imagine a chain of atoms as masses M, each coupled to its
neighbors by springs, of spring constant K , as illustrated in Fig. 15.1,
analogous to the chain of atoms considered in Section 6.1. We allow a
displacement Xy for the »n'th atom along the chain axis, and write force equals

O @O OGO OO

Fig. 15.1. A row of masses, representing atoms, connected by springs of
spring constant K. Vibrations are represented by displacements x;, of each
atom, shown for the #'th atom.
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mass times acceleration for each, obtaining the forces from the relative
displacements of the neighboring atoms as Fr, = K(Xp+1 - Xp) or K(Xp-1 - Xp).
The resulting equations are

d?
Mﬁ Xp = K(Xn+1 - Xn + Xn-1 - Xn) - (15.1)

We seek normal modes, vibrations where every atom moves in phase as
cosm? or sinw? or even more conveniently as a complex form, e-i®t . For
each n the left side of Eq. (15.1) becomes -M®2xy. This is a set of
equations closely analogous to Eq. (6-1) for electron states in a chain, and
indeed we may again apply periodic boundary conditions on the chain, as if
it were bent into a circle, and seek solutions of these equations of the form
Xp = uqeiqdn/\/]_\/ in analogy with the solutions of Eq. (6.1) , using notation
which will be convenient as we proceed further. In particular, we use ¢ for
the wavenumber, rather than the k¥ which we use for electron wavenumbers.
We could take the real part of this expression to obtain real displacements,
but here and in what follows it is convenient to use the complex expressions
as is commonly done for alternating electric currents. With this form we
have

—M(nz\/%% ei(qdn - 0t) = k(eiqd - 1 + ¢-iqd - l%ei(qdn - o) (15.2)

The factors ugei(qdn - @A/N cancel so all N equations are identical and
satisfied if

K 4€ . ,qd
02 =y, (2cosqd -2)=", sm292— . (15.3)

The frequency depends upon the wavenumber ¢ we have chosen, and
w(q) is called a dispersion curve and is illustrated in Fig. 15.2. With
periodic boundary conditions ¢ is limited such that gNd equals an integral
multiple of 2. The points shown are for N equal to twenty. Wavenumbers
satisfying this condition, but lying outside the Brillouin Zone shown,
produce identical displacements to those for some mode inside, so the
points represent all of the twenty normal modes of the system. Each mode
corresponds to an independent harmonic oscillator with displacement ugq and
frequency wq. The mode at ¢ = 7/d has alternate atoms displaced in opposite
directions and is the highest-frequency mode. In the Debye approximation
discussed in Section 10.2 this dispersion curve was approximated by straight



15.1 The Spectrum

0.8 0 ° ]
L 3 i

3 i

0.6 - 7
04 _
0.2 N =
0 [ | o 1 ]
-1 -0.5 0 0.5 1

kd/m

Fig. 15.2. The vibration spectrum for the one-dimensional chain of Fig.
15.1. wg is the peak frequency. The points represent allowed
wavenumbers for a chain of 20 atoms.

lines tangent to these curves at ¢ = 0, but cut off at the same ¢ = tn/d . In
both cases the thermal energy approaches kBT per mode at high
temperatures.

The generalization of this calculation to three dimensions is very direct.
For this problem the simple-cubic solid which we have used to illustrate
solids is not the simplest case since with nearest-neighbor, central-force
interactions, the structure is not stable against a shear of the lattice, so we
consider the face-centered-cubic lattice (of copper and aluminum, for
example) which we showed in Fig. 13.3, and redraw in Fig. 15.3. It contains
a simple-cubic array of atoms, but in addition has one atom at the center of
every face of every cube. We see that each atom has twelve nearest-
neighbors at equal distance. The many triangles of three nearest neighbors
stabilize the structure under any distortion.

The displacement of an atom initially at position rj is written Orj and the

form of the displacements is written as
Srj= b eiar, 15.4
rj= Jy €4l (15.4)

as in the one-dimensional case. We may carry out the calculation for a
longitudinal mode with q along a cube edge, as shown in Fig. 15.3. We
focus upon one neighbor to the upper right of the central atom, letting the
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origin of our coordinates lie at the central atom. The relative displacement
of the neighbor atom, drj+1 - 8rj = ug(eldFj+1 - eldr YN =
ugeid-rj (€i93/2 - 1)/VN. Only the component of that relative displacement
along the internuclear axis stretches the spring, so we multiply by cosf to
obtain that component and multiply by the spring constant K to obtain the
force along the spring axis. Only the component along the x-direction
survives when we add forces from all neighbors, and the component of the
force is obtained by multiplying again by cos8. We add the force for each of
the other three neighbors to the right, with each contribution the same, and
the four to the left. (The four in the same plane of constant x have no
relative motion and give no force.) The resulting force is 8k cos26 ugeld-r
(cos(ga/2) - 1). We set this equal to the mass of the central atom times its
acceleration, -Mwq2ugeld-Fj . The ugeld-fj cancels, so the result applies to
every atom, and we obtain

0q2 = %sinﬂf . (15.5)

A plot of this looks exactly like Fig. 15.2, but in this case the Brillouin Zone
face comes at 27/, .

( a’s E i
*%%«w#m#%é cost = 1A2
> Cs 3
a7
i’w %
é’x@ "M:%; o Y
s, Tyms e g R
> Cs > }w

0 i}, i dr. 0 %% 1

Fig. 15.3. The face-centered-cubic lattice is based upon a simple-cubic
lattice with cubes of edge a , but with additional atoms at the center of
each cube face. Shaded atoms lie t+a/2 above or below the plane of the
figure. Here a longitudinal vibrational mode has wavenumber q along the
x-axis, parallel to a horizontal cube edge, so displacements are also along
the x-direction. The force, along the x-direction, on the central atom is
calculated in terms of radial springs coupling the central atom to its twelve
nearest neighbors.
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We redo this calculation in Problem 15.1 for a transverse mode, the
same direction of q as in Fig. 15.3, but with the displacements in the y-
direction. The calculation of the y-component of the force from the
neighbor to the upper right is essentially the same, but now all four
neighbors to the right do not contribute the same and different frequencies
are obtained. Another transverse mode, with displacements in the z-
direction, gives identical frequencies to the transverse mode with
displacements in the y-direction. The calculation is formally the same for
any wavenumber in the Brillouin Zone, but when ¢ does not lie along such a
symmetry direction, we do not know initially what the three directions of the
three uq are; we must write forces in all three directions, solve three
simultaneous equations, and obtain three modes which will turn out to have
uq perpendicular to each other. One may be approximately longitudinal and
two approximately transverse. Since there are N wavenumbers in the
Brillouin Zone allowed by periodic boundary conditions, we obtain 3N
frequencies as we expect.

In Problem 15.2 we write an expression for the total vibrational energy
for a face-centered cubic crystal in thermal equilibrium in terms of such
frequencies and obtain the specific heat per atom at high temperatures.

15.2 The Classical-Vibration Hamiltonian

We wrote displacements in Eq. (15.4) for a single mode in terms of a
complex amplitude, with the idea that we could take the real part to obtain
real displacements. It will be useful to retain such complex amplitudes and
simply change variables from the 3N displacement components of the N
atoms to 3N complex amplitudes, called normal coordinates,

A
8rj= T b €io; (15.6)

where now the index A has three values, representing the three modes at each
wavenumber. This has introduced two independent parameters for each
mode, the real and the imaginary part of uqk, but we now must require that
u.q7L = uq)‘* (the complex conjugate) in order that the displacements be real
so that there are still only 3NV independent parameters, the mathematics will
take care of any difficulties, and we may think of uqk as the amplitude of the
mode propagating in the direction of q. It will be a little simpler, and easier
to follow, if we proceed with the one-dimensional chain of the preceding
section, and then write the result for three dimensions.
Then the displacement of the j'th atom along the line of the chain is



202 Chapter 15. Lattice Vibrations

8xj = T g eiddi . (15.7)
The total kinetic energy 7', with each atom having mass M, can then be
written as

T = UoME8x2 = 2L 5 g ug @9y cigd 15.8

= oMZjoxje =5 B q.q Uq €'9%uq' € (15.8)

with the sums over g and g’ running over the Brillouin Zone. However, the
sum over j 1is performed first, and gives zero unless q¢' = -q , seen by
proceeding exactly as for the sum in Eq. (13.11), in which case it gives N.
Thus Eq. (15.8) becomes

This is the only term in the energy depending upon the uq and therefore the

only term contributing to the derivative of the Lagrangian in Eq. (3.3). Thus
the momentum conjugate to the normal coordinate uq is

Pq =i'T~ = Mujy (15.10)
auq

Note that it is the u.q which enters. A second contribution has come from
the term in the sum for wavenumber equal to -g.

The corresponding calculation of the potential energy gives a sum over
1/2uqu_q times the effective spring constant for the mode, obtained as
8ksin2(ga/4) from Eq. (15.5), which can also be written Mwg2 . Thus
rewriting the kinetic energy in terms of the canonical momentum and adding
the potential energy we obtain a Hamiltonian for the vibrational modes of

(15.11)

PqP_q M(l)qzuqbi_q

This can be directly generalized to the three-dimensional case as we
generalized the calculation of the spectrum. The result is exactly what we
would anticipate,
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P,P. Mu) 2ugu.
H=Y ;( 4°-q “2“““), (15.12)

with Pq = M ﬁ-q. The vector notation is schematic; if we have obtained the
three vibrational modes at any wavenumber, we associate an amplitude uqg
with each, which is really a scalar quantity, and each has a conjugate
momentum Pg which is really a scalar quantity. However we shall need the
direction of the displacements in constructing the electron-phonon
interaction so we keep the bold-face notation for vectors. The sum over A is
a reminder that all three of the modes at each wavenumber need be added.
Using this with the classical Hamilton's Equations, Eq. (3.5), gives the
dynamics of the vibrations. We could also replace Pq by (#/i )0/duq and
construct a Schroedinger Equation, or an energy eigenvalue equation. We
shall not do that, but in Chapter 16 shall use the properties of the momentum
operator to obtain all the results we shall need.

15.3 The Electron-Phonon Interaction

There is one more classical derivation we need to perform before
proceeding to the quantum-mechanical treatment of lattice vibrations (and
electromagnetic waves). The presence of a lattice vibration (or a light wave)
introduces changes in the Hamiltonian for electrons, and therefore coupling
between electronic states. For vibrations in solids this coupling is called the
electron-phonon interaction , though it is ultimately of classical origin. It is
simplest to obtain it from pseudopotential theory, though one can also derive
it for tight-binding theory (e. g., Harrison (1999)). Here we use
pseudopotentials.

There are matrix elements of the pseudopotential between free-electron
states only if

S(@) = UNZj e -19-1j (15.13)

differs from zero, which in the perfect lattice occurs only at lattice
wavenumbers, o, as we saw in Section 13.1. Now we displace each atom
from its position in the perfect lattice according to Eq. (15.6). We may add
these drj to the rj of Eq. (15.13), which represent positions in the undistorted
lattice, to find the new couplings which the drj introduce. For a vibrational
mode with wavenumber which we write Q, in the Brillouin Zone, we obtain
a term in Jrj given by

drj=uQeiQrj NN (15.14)
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and of course the complex conjugate term, which we shall denote by c.c.,
must be present also. We have used a capital Q for the mode to avoid
confusion with the q in Eq. (15.13). If we add this dr;j to the rj in Eq.
(15.13), and expand the exponential for small uQ , we obtain

1 , 1 _ iq - .
S(@) =y Zjeit (o =y Fyeiar (1 -2 6@ n et (15.15)

The first term in the final form gives the result for the perfect lattice,
nonzero only at lattice wavenumbers qg, the dots in Fig. 15.4. The second
term contains a similar sum over positions in the perfect lattice, and is
nonzero only if q - Q is such a lattice wavenumber. The complex conjugate
term is similarly nonzero if q + Q is a lattice wavenumber. Thus these two
terms give nonzero structure factor at "satellites” to the lattice wavenumbers,
indicated by x's in Fig. 15.4. This new structure factor at q = qo + Q is
-iq - uQ/\/ N . It is multiplied by the pseudopotential form factor w, for this
system,

X X X
X X x.
X X
X X
X X
x x*
X X
x" :
q
X X X
X X <

Fig. 15.4. The solid dots represent lattice wavenumbers ¢g for which the
structure factors, and therefore matrix elements of the pseudopotential, are
nonzero for the undistorted crystal. In the presence of a lattice vibration
of wavenumber Q, there arise nonzero structure factors at satellite points,
q = qo £ Q, to each lattice wavenumber (including qg = 0) indicated by
X's. The circle might represent the Fermi sphere in wavenumber space for
a metal. Then scattering can occur between states on the sphere (if we
neglect hw in comparison to the Fermi energy €g) which differ in
wavenumber by any such q.
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<k+q|Wlk> = S(q)wy = W—Q_lq v 2w, (15.16)

to obtain the matrix element between any state of wavenumber k and the
state of wavenumber k + q. For q = qg - Q, the complex conjugate of this
expression gives the corresponding matrix element.

These matrix elements are exactly what is called the electron-phonon
interaction. Regarding these lattice distortions as static (we go beyond this
approximation in Chapter 16), the new structure factor can produce
scattering between any two states on a surface of constant energy, such as
the metal Fermi surface indicated in Fig. 15.4, which differ by the
corresponding q. We may distinguish normal processes as those that arise
from the satellites to qo = 0, for which q = £Q. Then the change in electron
wavenumber is equal to the phonon wavenumber, corresponding to
conservation of momentum with, as we shall see, the absorption or emission
of one quantum of vibrational energy. We note from Eq. (15.16) that if the
modes are purely longitudinal (uQ parallel to Q) or transverse (uQ
perpendicular to Q), only longitudinal modes have nonzero structure factors.
This is the case we shall treat in our analysis. We see, however, there are
also Umklapp processes from satellites to nonzero qp . Then the change in
wavenumber of the electron differs from that of the phonon by a lattice
wavenumber as if the electron diffracted from the perfect lattice at the same
time that it emitted or absorbed a phonon. Both longitudinal and transverse
modes give Umklapp processes. They are important in solids, but in Chapter
16 we treat only the simpler case of normal processes.

If we had kept terms of second order in u( in Eq. (15.15), we would
have found some terms at q = qg, which lead to second-order terms in
S*(qo)S(qo). They reduce the strength of the diffraction at each lattice
wavenumber by an amount corresponding to the diffraction added,
2¢S*(q)S(q), by the satellites. The reduction factor at each qo is called the
Debye-Waller factor (discussed for example in Harrison (1970), p. 426). We
will not need it here. The remarkable fact is that the thermal vibrations of
the lattice do not blur the diffraction spot, only weaken it and add a cloud of
satellite diffractions.
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VI. Quantum Optics

We discussed quantum transitions between electron states due to a
classical light field in Section 9.4. Similarly we could calculate electron
scattering by classical vibrations of a crystal lattice using the matrix
elements in terms of the vibrational amplitudes which we derived in the
preceding section. However, it is often important to treat both the electrons
and the fields quantum-mechanically. When the fields, or vibration
amplitudes, are very large the quantum effects are not so important but they
become essential when the fields are small. The treatment of
electromagnetic waves and vibrational modes quantum-mechanically is
called field theory and we now need to introduce the operators of field
theory, both for these waves and modes, and for electrons. This formulation
is often called second quantization. Their application in quantum optics is
perhaps the most important for us, and the focus for this section of the book.
However, it will be best to introduce the operators for electrons first, and to
make the first application to phonons, quantized lattice vibrations.

In principle we already have the basic results we need. We have treated
the harmonic oscillator quantum-mechanically, and have indicated that all of
the findings apply to vibrational modes and to optical excitations. However,
in field theory we use only a part of what we developed, the fact that the
momentum operator (h/i)d/dx does not commute with the coordinate x
(changing the order of the product of two "commuting operators” does not
change the product). In this case, (1/i)d/0x (xy)= (W/i)y + x(h/i)oy/ox so
interchanging (h/i)d/0x and x leaves a remainder,h/i . This turns out to be
the feature essential to defining field-theoretical annihilation and creation
operators for excitations and particles. This is closely related to the point
we made in Section 1.1 that it is possible to develop quantum theory without
the waves which we have used throughout. Since we can obtain all of the
information about the eigenstates of a harmonic oscillator, and its coupling
to external fields, from the corresponding commutation relation, we did not
really need the waves. Heisenberg represented the observables by matrices,
rather than operators on waves. They had the same commutation relations
so they led to the same results. For most contemporary physicists and
engineers, the procedure with waves is much more comfortable.



Chapter 16. Operators

We begin by defining annihilation and creation operators for electrons,
which is possible without introducing the field theoretical basis. This makes
clear what our goals and approach should be for the harmonic oscillator,
phonons, and photons. Further, we shall need both for our study of quantum
optics. For electrons we simply give these as definitions for describing
many-electron states, though they are derivable from a field theory in much
the same way we shall derive them for oscillators.

16.1 Annihilation and Creation Operators for Electrons

We saw in Section 10.5 that when more than one electron is present, the
electron state must be antisymmetric with respect to interchange of the
electrons. This could be accomplished for noninteracting electrons by
writing a Slater Determinant for the many electron state as we did in Eq.
(10.22),

Vi(r)yi(rz) yi(rs)

Ay L w2(ry) wa(rz) wa(r3)
kI"({l'l})—\/’IWDe ya(ry) .. : (16.1)

WN(rN)

The index i specifies the spin as well as the orbital for each electron and we
use the capital ¥ for the many-electron state. This provides a solution of the
many-electron Schroedinger Equation if the electron-electron interactions,
e2/|rj - rj|, are neglected. This is a very cumbersome form, and really to
specify the state we only need to designate which states Y, Y2, ...yN are
occupied, and the order in which we have placed them. We may introduce
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creation operators as an intuitive shortcut for specifying the many-electron
state. We define the vacuum state [0> and the creation operator ¢;T which
places an electron in the j'th state. (The "{" represents a complex conjugate,
and the operator is often called " c-j-dagger".) Then the state in Eq. (16.1) is
written

[P({ri})>=enfen-1t... cafer7|0>. (16.2)

We imagine successively creating electrons in the states yj, Y2, etc. If we
interchange two states, corresponding to interchanging ri and rj in Eq.
(16.1), this interchanges two columns in the determinant and changes the
sign of the state. This is written in terms of creation operators as the
commutation relation,

cifeit +¢5teit = 0. (16.3)

Eq. (16.3) applies to the interchange of any pair, holding the others fixed,
but we shall make only nearest-neighbor interchanges.

The Pauli exclusion principle follows immediately from this
commutation relation, since if any index j appears twice in the state Eq.
(16.2), we could commute neighboring operators until the two were
neighbors and from Eq. (16.3) CjTCjT = 0. As throughout our study, a state
equal to zero is no state.

We may similarly define the complex conjugate of the many-electron
state,

<¥{ri})| = <Olc1c2...cN. (16.4)

The complex conjugate operators cj clearly have the same commutation
relations, cicj +¢jci = 0, as the creation operators.

We wish to have normalized states, so <0|0> = 1 and <OjcjcjT|0> =1 and
we wish to have orthogonality of different states, e. g., <0|cjl0> = 0. This
requires commutation relations between the two kinds of operators and the
choice which accomplishes the orthonormality of the many-electron states is

cicit +¢jfei =8y, (16.5)

if we also take ¢;{0> =0, and <0|¢jT = 0.
This completes the definition of the operators and shows that we may
think of the cj as the annihilation operator for the state yj . For example ;
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operating on a state CchiT|O> containing electrons in states i and j gives,
after using Eq. (16.5), (1 - ¢jT¢jkiT|0>. We again use Eq. (16.5) for the
second term to obtain CjTCi-f]Cj,O> which is zero because of the ¢j|0> = 0
condition. The first term is just the initial state with the electron in the j'th
state annihilated. In these terms we would say that ¢j|0> equals zero because
no state can be obtained by annihilating an electron from the vacuum.

We may confirm that each many-electron state is normalized by using
Eq. (16.5) on the central pair of operators,

<0|c1c2...cN-1eNeNTen-1 T... e2Ter T|0>

(16.6)
= <0|c1c2...cN-1(1-eNTeN)en-1T... eaterT]0>.

Then the second term is shown to be zero by commuting the ¢N to the right
till we obtain ¢N|0> = 0. The first term equals the <P|'¥> for the state with
the last electron removed. We may successively eliminate each electron the
same way until we obtain <0|0> which is one, proving the normalization. In
Problem 16.1 we see that the same analysis shows that any two many-body
states with different one-electron states occupied are orthogonal to each
other.

This notation with annihilation and creation operators can also be used to
express the operators for any observables for the system. We note first that
the number operator is

n= Ej cifej. (16.7)

We show this by operating with it on a state such as Eq. (16.2). For each
term in the sum over j we commute the cj and then the Cj’f successively past
each ckT in the state. If we never come to a state with k =, we come finally
to ¢jf¢jl0> = 0 and no contribution to n]¥">. If we do come to a state k = ,
we obtain an extra term in commuting the ¢j, which gives ¢jf(1 - ¢jTej). This
extra term with the 1 is just the starting state [¥>, while the second vanishes
as before. Thus for every state included in the list 1, 2, 3, ...N for the state
|¥> we obtain a term. The N terms give us n|¥> = N|'¥> , which defines n
as the number operator.

In the same way, if the states yj are one-electron eigenstates of the
Hamiltonian with energy €; , the operator

H = Zjg ¢l (16.8)
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operating on the state [\> gives a sum of €j over the occupied states and can
be considered the one-electron Hamiltonian. For free-electron states Eq.
(16.8), with €x = h2k?/(2m), is the kinetic-energy operator. If we add a
potential V(r) seen by all of the electrons, it is represented by an operator

V(r) = 2k,q <k+qV(r)k>ckaqlek (16.9)

which couples each one-electron state |k> to other plane-wave states [k+q>
(as in Eq. (13.5)). Of course <k+q|V(r)jk> = (I/Q)J.e'i‘l rV(r) d3r. The
sum in Eq. (16.9) will include a sum over spin, but the matrix element

<k+q|V(r)|k> is nonzero only if both states have the same spin.
Finally, the electron-electron interaction can be written

eZekrr| 4me?
Cler| 7 22Kk () Qcka kgl . (16.10)

Again, [k> and [k+q> must correspond to the same spin and [k'> and |k'-q>
must correspond to the same spin. The matrix element 47e2/((g2+x2)Q) was
evaluated as in Eq. (13.9). We have included a convergence factor, e-Xr-rf,
as we did in Eq. (13.9). As we noted then, we could take ¥ = 0 at the end but
we shall see in Section 20.2 that such a factor is a suitable approximation to
the effect of the screening of the interaction between any particular electron
pair through the motion of the other electrons present. This last operator,
with or without the x, is central to the study of the effects of electron-
electron interaction on the properties of solids. Field theory provides
systematic ways to approximate the effects of this term which contains four
operators, though that is not our goal here

We may illustrate the subject by evaluating the energy for a pair of free
electrons, with opposite spin, in the k = 0 state, to second order in the
electron-electron interaction. We write our starting, zero-order, state [¥o>
= ¢04Tco17]0> and the perturbation as H; given in Eq. (16.10). We proceed
using the perturbation theory of Section 5.4 to obtain the first- and second-
order shifts in the energy,

Z <WolH1|¥n><¥n|H1|{V0>
EO En ’

SE= <¥o|H1|¥o> + (16.11)

where |Wo> is the two-electron ground state with energy Ep = 0 without the
electron-electron interaction Hj. The |¥> are excited two-electron states
which "can be reached" by that interaction. We see what this means by
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operating upon |'Y o> with the H; given in Eq. (16.10). The final ck
operating on cplTco?T]0> will give zero unless k is one of the k= 0 states,
say spin up, and then the state |k+q> will have wavenumber q and the same
spin up. Then ck' will give zero except for k' = 0 corresponding to spin
down. In this case, with k as spin up, ck+q7ck'-chk'ck operating on
colTeo1t]0> gives -cqTTe.ql 70> with the matrix element 47e?/((g2+x2)Q),
where we have kept track of the sign changes in the successive use of the
commutation relation, Eq. (16.5). The other term, with k as spin down,
leads to cqlfcq1T|0> with the same matrix element, but this is the same
state but with the wavenumber q reversed. Thus we may combine them in
the sum, as c_qlTcq?T|0> canceling the factor of 1/2 in front, so that

1 4me?
Hy|¥o> = §Zk,k',q (2reD)0ck+a ck-gTeickeol TeoTTI0>

(16.12)

4mel
= Zq m c-qlTeqT|0>.

The states appearing in the final sum are those which can be reached by the
electron-electron interaction.

This is a very important conceptual point, and one which we shall use
frequently. The interaction term in the Hamiltonian annihilates electrons in
some states and creates them in others to produce intermediate states in the
perturbation theory. The various combinations of interactions which enter in
higher-order perturbation theory are represented by Feynman diagrams
which give a visual representation of the terms which are being included,
and keep track of the matrix elements which are to be used. We will not
need them here. For the first-order term, the term <W¥o|Hi|¥o> in Eq.
(16.11), we note all of the terms in H1|*¥g> are orthogonal to o> , and thus
give zero, except the term q = 0. Thus, only that term contributes and gives
<Wo|H1[WPo> = 4me2/(Qk?2). (It was good that we kept the K.)

For the second-order term in Eq. (16.11) we see that each term in
Hi|¥o> produces a different intermediate state c¢_qlTcg?7|0>, one with the
spin-up electron excited into the state with wavenumber q and the spin-
down electron excited into the state with wavenumber -q, conserving
momentum. The energy of this intermediate state is Ep = 2h2¢2/(2m). In
completing the evaluation we do not even need to include the |¥n><'¥y|
which appears in the expression except to note in passing that the energy
denominator is -2h2¢g2/(2m). The Xq provides the sum over intermediate
states and we simply operate again with H1 . In this case, the only
contributing terms in the new sum over q' will be those which "return” the



212 Chapter 16. Operators

system to the ground state |W¢>, the term with q' = - q, and they contribute
another factor of 4ne2/((g2+x2)Q2). We may complete the calculation of the
energy shift by evaluating the sum as we have done before,

4mel 4me? 1
OF = Qx2 - Zq ((q2+K2)Q 26242
2m
4me? 4me?
T Qk2 (27‘[)3J‘4nq d (q2+K2)Q F12q2 (16.13)

_ 4me? 8me4J‘d 1 _ 4me2 2mmet
QK2 TR0 q(q2+1<2 T Qk2 TRA3QT

The first term represents the interaction between these two electrons,
each spread out over the volume Q. The second represents a reduction in
that energy as the electrons modify their states to avoid each other. This is
exactly what is called correlation energy for electron gases, the shift in
energy due to the correlated motion of the electrons. In the chemical
literature, when it is calculated for atoms or molecules, it is called
configuration interaction. Egq. (16.13) would give a good value for the shift
for the electron pair if K were large enough that the second term was small
compared to the first, and then presumably the terms of higher order were
still smaller.

This same formulation could have been used to calculate the van-der-
Waals interaction which we calculated for two coupled oscillators in Section
12.2 and for coupled atoms in Problem 12.2. The coupling e2/|r - r'| couples
electrons on different atoms, taking them from the ground state to a state
with one electron on each atom in an excited state, as seen in Problem 12.2.
The resulting shift in energy is proportional to e from the squared matrix
element and to the reciprocal of the excitation energy as we found there.

The same formulation can be used directly with Fermi's Golden Rule to
calculate scattering of electrons by each other. The treatment of matrix
elements as in Eq. (16.12) is exactly the same, but instead of the energy
differences appearing in the denominator they appear in a delta function for
the total energy before and after. The calculations are straightforward, and
just as simple as those which led to Eq. (16.13)

16.2 Stepping Operators

We return to the simple harmonic oscillator, which we treated in Section
2.5, but now seek to understand it in a form analogous to what we have just
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used for many-electron systems. In Section 2.5 we wrote the energy of a
Harmonic oscillator with displacement coordinate x as 1/2M x 2 + 1/5kx2.
Using the procedure for obtaining a Hamiltonian we find a momentum
operator, conjugate to x , of

P=0L/dx =Mx (16.14)
in terms of which the Hamiltonian is

2 2
H=§—M+%. (16.15)

We found the energy eigenvalues of € = hwg(n + 1/2) in terms of the

classical vibrational frequency mwg =V«/M , and found also the eigenstates
On(x).

We wish here to define a stepping operator, which when operating on
the n'th eigenstate gives the n+1st eigenstate, just as the creation operator for
electrons added an electron to some state. The essential feature there was
the commutation relation, Eq. (16.5), and by deriving analogous
commutation relations here we shall find the corresponding stepping
operators. When we generalize this to lattice vibrations we shall see that
these stepping operators are the annihilation and creation operators for
phonons, and when we generalize it to light modes we shall see that the
stepping operators become annihilation and creation operators for photons.

The fact that the ground-state wavefunction, which we wrote in Eq.
(2.40), is of the form y(x) = A exp(—xz/(2L2)), and the first excited state is
of the same form with an additional factor of x, would suggest that either the
factor x or the momentum operator, (1/i)d/dx, might serve as a stepping
operator. In fact these two operators do not commute, since

ho h
Px = ox = lT+xP. (16.16)

This would suggest that we define some combination of the x and P to
obtain operators with commutation relations such as Eq. (16.5), which do not
have the imaginary result of Eq. (16.16). Trying of = wox - iP/M and o =
wox + iP/M so that both terms have the same units gives, using Eq. (16.16),
ofo - oot = -2hwo/M . Finally then we try the definitions
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hwo

oA M (P
a = \2hn @0+ 7 |

Again using Eq. (16.16) we obtain the commutation relations for the
operators we have defined,

t=A\) -2 (g -
at=1/; WX - 37

(16.17)

aa’ - ata =1. (16.18)

In Problem 16.2 we evaluate ata from Eq. (16.17), using Eq. (16.16) to
obtain canceling terms, to find that the Hamiltonian

P2 kx2

H=2y+ 2

=hoo( ata +1/7) . (16.19)

For an eigenstate of the Hamiltonian for which the energy is hwo(n + 1/2),
we have thus shown that ata is the number operator for excitations of the
oscillator.

We can now easily show that at increases the excitation energy one step:
We imagine the system in the n'th eigenstate, afaln> = njn>. We then
operate on the state [n> with a’ and again apply the number operator,

ata atln> = at(1 + ata)|n> = (n+1)at|n>, (16.20)

so that indeed af|n> is in the n+lst state of excitation. We similarly find
that afa aln> = (n-1)ajn> so a lowers the excitation by one unit. It follows
also that <0lafa|0> = 0, so there is no state a|0>. Because of these
properties, at and a are also called "raising" and "lowering" operators and
their counterparts will become the creation and annihilation operators for
phonons and photons.

There is an odd feature of these operators which did not arise for
electrons. If the state [n> is normalized, the state af|n> is not. We see this
by evaluating the normalization integral , using the commutation relation,

<n|a af|n> = <n|(1+ata)|n> = (1+n)<njn>. (16.21)

We can however write a normalized state as
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[n>= '\/ ;ll“, (a™njo>, (16.22)

and it will always be appropriate to use normalized eigenstates. The more
useful expressions will be

afln>=Vn+1 |n+1>, and
(16.23)

aln>=\n|n-1>

in terms of the normalized eigenstates, |n>.

It may be helpful to make one application which illustrates the use of
this formalism, and then to see how stepping operators are used for angular-
momentum eigenstates, before moving to phonon operators. We imagine a
harmonic oscillator to which we apply a classical oscillating force, Hi =

-Fx €9t + c.c.. We may directly apply the time-dependent perturbation
theory of Eq. (9.9) which becomes

%: 2% Em <n|-Fx|m><ml|-Fx|[n>[8(en - €m + hw) + 8(€n - €m - hw)]. (16.24)

Proceeding as in Chapter 9, we would calculate the matrix elements from
harmonic oscillator wavefunctions as -F J. dxyrm(x)xyn(x). We now have an
alternative way using the definitions of atand @ in Egs. (16.17). We may
add the two equations and divide both sides by \ 2Mmo/h to obtain

x= 21;0)0 (at+a). (16.25)

Then we obtain

/ h
=-F M) vn+l if m=n+1
F = _h_ i < 16.26
<m|-Fxjn>= - 2Mg <mlaT+ aln> (16.26)
= F\l g\ i m= ]
=N 2M VP L
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and zero otherwise. Thus the product of matrix elements in Eq. (16.24) is
<n|-Fxlm><m|-Fx|n> = [AF2/(2Mwo)](n+1) if the final state is m =n +1 and
[AF2/(2Mox)]n if the final state is m = n -1. It is interesting that these matrix
elements were obtained using only the commutation relations, without the
wavefunctions we would have used earlier. To complete the evaluation we
would need a distribution of forces, F2(®) dw as a function of ® , and we
shall make such evaluations later. It leads to a rate 1/t = [TF2(w)/(Mhwg)]
(n+1) for raising the energy of the oscillator and a rate 1/t =
[RF2(w)/(Mhwo)]n for lowering the energy. If we considered the case of
large forces, corresponding to F2(w) very large, this would approach the
classical limit with a raising rate greater than the lowering rate and a
continual heating up of the oscillator.

16.3 Angular Momentum

Finally, we shall indicate briefly how stepping operators are used with
angular-momentum eigenstates, though we shall have little occasion to use
them except for the treatment of spin-orbit coupling in Section 22.5. We
described angular-momentum eigenstates in terms of the spherical
harmonics Y; m(0,0) in Section 2.4. [ was the total-angular-momentum

quantum number and m the quantum number for the component along the z-
axis, -l < m < l. As in the two-dimensional angular-momentum operator of
Eq. (2.24) we may write the three-dimensional operator,

L =rxp = (Opz -zpy)&+ (@px ~xp2)§ + (xpy -ypx)2
B3 3. 9 3. 3 9
=3 ((y 9z "2 8y)x +(z I x az)y +(x Jy -y ax)zj (16.27)
= l‘Xﬁ + Lyf’ + in N
where the X, ¥, and Z are unit vectors in the three cube directions. Then the

Y/m(8,0), in terms of the coordinate system given in Fig. 2.7 shown again in
Fig. 16.1, are eigenstates of the two operators,

Jd d h . d
L,= ?(xg; Yax ] = rsin® <inb 90 3" (16.28)

with eigenvalue him, and
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<

X

Fig. 16.1. Polar and rectangular coordinate systems.

with eigenvalue h2/(/+1).
We consider how these operators commute. We can see that the
commutator is

[L2,1;)=L2L, - L,12=0. (16.30)

They commute, since we could expand any function of angle in spherical
harmonics and operating successively with the two operators simply gives
the product of the two eigenvalues for that term and the commutator cancels
term by term. When two operators commute, it can be seen that states can
be chosen to be eigenfunctions of both. Similarly [L2, Lx] = [L2, Ly] = 0
since we could pick polar axes along either of these axes and make the same
argument. However, by writing out the terms we may see that the different
components do not commute, but give

LxLy - Lny = ll'/lLZ s (1631)
and the corresponding expressions with indices rotated ( e. g., x—=y, y—z,
z—x ). These are a little like stepping operators and in fact we can construct
operators which have the stepping property as
Li=Lx +iLy,

(16.32)
L-=Lx-iLy.

We may check using Eq. (16.31), and the rotated expressions, that the
commutation relations for L, and L+ are

LLy -LiL, =+ hl+. (16.33)

With a little more operator algebra we see that
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LiL.=(Lx +iLy)(Lx - iLy)
(16.34)
= Lx2 "l(LxLy - Lny) + Ly2 =Lx2 + flLZ + Ly2 = L2 - LZ(LZ - ﬁ)

and similarly that L.Ly = L2 - Lz(Lz + h) so that the principal commutation
relation becomes

Lyl -LLy =2RL;. (16.35)

From Eq. (16.33) we can see that L. lowers the component of angular
momentum along the z-axis by one unit,

Lz(L|Lm>) = L_Lg|l,m> - AL.

Lm> =Hh(m -1) (L.|l,m>). (16.36)

Similarly, L4 raises the component by one unit. As with harmonic-oscillator
raising and lowering operators, L+ on a normalized state does not
necessarily lead to a normalized state. We may evaluate the normalization

integral for the state L.|/,m> using Eq. (16.34),
<LmlLeL )L m> = <bm|L2 - L(Ly- W|Lm> = [I(+1) -m(m -DJR2. (16.37)

From this, and the counterpart for Ly|/,m>, in terms of normalized states
|, m> we have

Lillm> = WI(I+1) -m(m+1) |, m+1>,
(16.38)

L|Lm> =&VI({I+1) -m(m -1) |, m-1>.

There are many relations which can be derived, relations between states
with different axes, and formulae for addition of different contributions to
the total angular momentum in complex systems. These can be found in
almost any standard text when they are needed. We shall introduce the only
one we need, that involving the addition of orbital and spin angular
momentum, in Section 22.5 when we discuss spin-orbit coupling. However,
here we should note the selection rules which these operators lead to, which
we made use of following Eq. (9.13).
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We return to the angular coordinate system of Fig. 16.1 and write states
as spherical harmonics, Y;M(8,0) = PjM(cosB)eimd, so that <I’,m'lel®|l,m> =
<, m'|e+iy)rll,m> =1 if I’ =1, m" = m+1, and zero otherwise due to the
orthogonality of the states. Similarly x - iy only has nonzero matrix
elements for m'=m - 1. It follows that perturbations proportional to x or to
v, such as electric fields in the xy-plane, only couple states which differ in
z-component of angular momentum by one unit, as we indicated in Section
9.4.
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Chapter 17. Phonons

The generalization of these stepping operators to lattice vibrations and to
light modes is quite direct. We carry it out first for lattice vibrations which
may be easier to visualize. We make applications to the emission and
absorption of phonons by electrons in semiconductors and then to the
formation of polarons in semiconductors.

17.1 Annihilation and Creation Operators for Phonons

We begin with the Hamiltonian for the vibrational modes in Eq. (15.12)
as

(17.1)

HeY {Pqp-q quz“q“-q)
2 .

It can be confirmed that if we define annihilation and creation operators as in
Eq. (16.17) by

+ M iPq
“a’ ="\ 2h0 (‘”‘1“‘1 M)

A[M iPq
aq = m[wquq+ M ),

and evaluate

(17.2)
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H =24 (agtaq + 12)hog (17.3)

we obtain Eq. (17.1). We obtain an additional term in doing this but it sums
to zero in the sum over all wavenumbers (e. g., Harrison (1970) p. 408).
Finally, we may replace q by -q in the first of Eq. (17.2), add it to the second
and solve for ugq to obtain the counterpart of Eq. (16.25) as

h
uq = m (a-gT +aq) . (17.4)

The commutation relations for the operators,

aqaqT - aqTaq =1 (175)

carry over from Eq. (16.18) as well as the operator properties,
aqfln>= \/nq +1 |ng+1>,
agln>=\ngq |ng- 1>,

from Eq. (16.23).
We saw in Eq. (16.9) that potentials V(r) seen by the electrons are

(17.6)

incorporated in the Hamiltonian as Zk,q <k+q| V(r)|k>ck+chk. W e
obtained the corresponding matrix elements between electronic states which
arise from classical lattice vibrations in Eq. (15.16) and here we consider
only normal process, those for which the change in electron wavenumber is
equal to the vibrational wavenumber, so that these matrix elements become

-iq-u
<krqWik> = 9wy (17.7)

We used plane waves and pseudopotentials which are appropriate for metals,
but in a semiconductor the wq in Eq. (17.7) can be replaced by a
deformation-potential constant D (e. g., Harrison (1999)). If a dilatation of
the lattice 6€/Q shifts a band minimum by -D3£2/Q, one assumes that the
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displacements for a phonon 3r = ugeld r/\N , giving a local dilatation V-8r,
will produce a potential V(r) = -DV-8r. This leads to exactly Eq. (17.7) with
wqreplaced by D. In either case, only longitudinal modes enter and ug can

be taken parallel to q so the vector notation and the sum over A become
irrelevant, q - ug = quq. We write the term in the Hamiltonian for the

interaction between electrons and classical lattice vibrations as

-iqu,
H| = Zk,q VCINQ Wq Ck+qlck - (17.8)

We incorporate the quantum description of the lattice vibrations by
substituting from Eq. (17.4) for ugq. This gives the electron-phonon
interaction,

, ’ h
Hep = Zk,q -ig wq m ckqlek(a-qT +aq) . (17.9)

For convenience in using the electron-phonon interaction we may collect the
factors in front as

, / h
Vq=-igwq M (17.10)

(or with wq replaced by a deformation-potential constant D for
semiconductors) so that the electron-phonon interaction becomes simply

I
Hep =\ § ki Vackeqlek(a-q +aq) - (17.11)

Once we have obtained the form it is seen to make perfect physical
sense. Electrons can be taken from a state of wavenumber k to one of
wavenumber k + ¢ either by the absorption of a phonon of wavenumber q or
by the emission of a phonon of wavenumber -q. As always, momentum
conservation is enforced by the matrix element and any energy conservation
will come from the energy delta function in the Golden Rule. The form of
the interaction constant, Eq. (17.10), is not so obvious except that it is
proportional to the pseudopotential. In metals g will be of the order of the
Fermi wavenumber so that the interaction constant Vq is of order

wq mEF/Ml"qu. We think of the form factor as being typically a tenth of
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the Fermi energy and hwq being of order Vm/M EF so that Vg = -i Vm/M wq
is small at some 1% of EF, perhaps a few tenths of an electron volt. Similar
values are appropriate for semiconductors. It is much better form to keep the
dependence upon N explicit as in Eq. (17.11) rather than absorb it in the
interaction constant of (17.10), which now does not depend upon the size of
the system.

17.2 Phonon Emission and Absorption

Our first application is the emission and absorption of phonons by
electrons. We begin by reducing the operators and obtain a form for the rate
in terms of the occupation of electron states and phonon numbers. There is
no explicit time dependence in the electron-phonon interaction so we can use
the Golden Rule of Eq. (7.9) directly.

1 2n . .
<= —F;Zf<1| Heglf><f|Heoli>8(Ef - Ey), (17.12)

with [i> the initial state and |f> the final state. We first operate on the initial
state with the electron-phonon interaction,

) 1 )
Hegli> = IN Zq,k Vq (aq + a.qMckeqlokli>, (17.13)

which gives two terms for each q, one with one less phonon than the initial
state and one with one more phonon. Also, one electron has been transferred
from a state k to a state k + g (of the same spin). Exactly as we noted for
Eq. (16.12) the operation produces a final state, with some factors such as
the V. Each such term is a final state, so we do not need to multiply by <f],
which would just give the constant, and then insert |f> again. The |f><f] in
Eq. (17.12) is simply a reminder to notice what to insert for Ef in the delta
function. We already have included a sum over the final states in the sum
givenin Eq. (17.13). We simply operate again by the Heg for the first matrix
element. This will give us many more states, but out of those we select only
the one corresponding to the initial state. That is, we select only the term in
He¢He¢|i> which restores the initial phonon numbers and returns the electron
to its initial state |i> which matches the <i| in Eq. (17.12). [What we have
done is to ignore a Xf [f><f] which, mathematically, is the identity operator.
Operating on any function with <f] gives the expansion coefficient for that
function, for an expansion in the complete set of states |f>. Multiplying that
coefficient by |f> and summing over f reexpands the function, giving the
initial function.] The result is
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1 2n 1 , _
T- h YN gk <ilHepVq(a-qT + aq)ckeq ckli>d(Es - E;)

(17.14)
2n 1 ) .
= ”ﬁ‘ N Zq,k V_qVq<1|(a_qa_qT + aqTaq)ckTCk+qu+qTCk|l>8(Ef - El )

Now, as always with calculations based upon annihilation and creation
operators, we evaluate all expressions containing these operators. We may
commute ckt two steps to the right to obtain ckfck, which is the number
operator for the state, and we may write the result of operation on the initial
state as giving a factor of f(k), a distribution such as we introduced in
Chapter 10. Using the commutation relation, Eq. (16.5), the combination
Ck+qCk+q’ becomes (1-flk+q)). The operator pair aqfagq is the number
operator for phonons in the mode of wavenumber q, which we replace by
that number, nq, and a-qa-qt becomes n.q + 1, using the commutation
relation, Eq. (17.5).

The term with the a.qa qf represents a final state with an additional
phonon, and with the electron transferred from state k to state k+¢, so that
Er - E; =I'10)q + €k+q - €k. For the term with aqTaq the final state has one
less phonon and Ef - Ej = - l’l(nq + €k+q - €k- Thus our expression for the
transition rate has become

1 2nl
T = 2N Zak ViqVq (1A Q)K) (g + DS(hdg + Ekcag - €K)

(17.15)
+ Qia_n % Zq’k V'qVq (l“f(k'ﬂl))f(k)nq O(- Fl(Dq + €k+q - €k).

The physics of both contributions is quite clear. The first line represents
electron transitions in which a phonon of wavenumber -q is emitted, so to
conserve momentum the electron must gain momentum hq, and must lose
energy (according to the delta function) to make up for the phonon energy.
The rate is of course proportional to the probability f(k) that the initial state
was occupied, and to the probability, 1 - flk+q), that the final state was
previously empty since the Pauli Principle does not allow double occupation
of the state. The second of the two terms in the first line, the 1 in n.q + 1, is
called spontaneous emission, which can occur even if no phonons were
initially present, if there were electrons with enough energy to create that
phonon. The first term, n-qin n.q + 1, is the additional stimulated emission,
which can be caused by phonons already present. The second line is
similarly interpreted as representing electron transitions for which a phonon
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is absorbed and the electron energy increases. They cannot occur without
phonons present, and the rate is proportional to nq. It is impressive that
these three distinct physical processes are all incorporated in the same
analysis and described by the same parameters.

We did not yet need to specify whether we were discussing metals or
semiconductors; the difference enters through the distribution functions in
Eq. (17.15), the form of Vq which is used, and whether the mass is replaced
by an effective mass. It may be helpful for understanding this important
process to redo the analysis for a specific case, as in Problem 17.1. That
problem parallels the analysis we now give of the shift in the energy of an
isolated electron in a semiconductor due to the electron-phonon interaction.
We shall outline the calculation for Problem 17.1 as we proceed, and plot the
resulting 1/t at the end.

17.3 Polaron Self-Energy

We again use perturbation theory, but now for the shift in energy due to
Hep, which couples an ordinary electronic band state, with no phonons
present, to higher-energy electronic states with also an emitted phonon. The
coupling to higher-energy states always lowers the energy and the resulting
combination of electron and lattice distortion, when it occurs in a polar
crystal such as gallium arsenide, is called a polaron. The effect is physically
analogous to the lowering in energy of a heavy ball rolling on a mattress.

We begin with a well-defined initial state, with a single electron in the
state k = 0, and no phonons present. [In Problem 17.1 k is not zero, but
there are no phonons.] We are seeking a shift in the energy,

Epol= Xt <1lHe¢,!if>_<nge¢|l> 7 (17.16)
rather than the Golden Rule formula, Eq. (17.12) which we used before and
which is used in Problem 17.1.

Only one term in the sum over K in the electron-phonon interaction of
Eq. (17.13) contributes when we evaluate He¢|i>, the ck for the single
occupied state k = 0, and only the term a.q' enters if there are no phonons in
the initial state. Thus we have only a sum over . We again need not write
Zff><f], but note the energy change in going from the initial to the final
state, in our case h2g2/2m* + hwyg if the electron energies are written in terms
of an effective mass as € =h2k2/2m*. In Problem 17.1 there is a difference
in two kinetic energies, €k and €k+q. Then with the second application of
Hegy we keep only the term which returns us to the initial state. Then Eq.
(17.16) becomes
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Eool L1y V4V_g<ila-qa-o'|i>
POITNTY _p2g2m* - hog

(17.17)

and using the commutation relation, Eq. (17.5), we have <i|a.qa-qT|i> = 1.
We have then eliminated all of the operators, as we must, and can complete
the evaluation.

The remainder of the calculation depends upon the system we wish to
treat and the approximations we wish to make. In polar crystals the
strongest interaction is with a high-frequency set of modes called "optical
modes", for which Eq. (17.7) is replaced by (Harrison (1999), p. 280)

k+q|Heolk> = 313 melertuq 17.18
<K+q|feplk> = Zﬁgﬁq\/l—v , (17.18)

with eT* an effective charge and € the dielectric constant. The interesting
point is that the corresponding Vg is proportional to 1/g , and the
corresponding wq is essentially independent of g, which makes the
evaluation of Eq. (17.17) quite simple. We write Vq = Voqo/q and og = wp
and note that the terms in Eq. (17.17) are independent of the direction of q
so we can replace the Zq by (Q/(Zn)3)f47cq2dq (as in Eq. (2.9)) to obtain

Q Vo2q0? dq
Epol=-n op2 202/2m* :
h2g2/2m* + hwg

(17.19)

Because of the form of the polar interaction in Eq. (17.18) this integral
converges if we extend the integration to infinity. In such cases, in which
the integral converges, it is ordinarily a good approximation to extend it to
infinity. [Otherwise we might introduce a cut-off gp which conserves the
appropriate number of modes as in Eq. (10.14).] The result is

QVo%q0? _ [2m* dx
Ep()]: N 21'52 }’13(1)0 J.(),oo ;2—:_—1 (1720)

with the final integral equal to 7t/2.

This lowering of the energy of the electron due to the deformation of the
lattice around it turns out to be numerically rather small. Of more interest is
the change in this energy with the wavenumber k of the electron, which
could be calculated in the same way. Epol increases in magnitude with the
energy of the electron, giving an increase in the effective mass of the
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Fig. 17.1 The coordinate system for calculating phonon emission and
absorption of optical phonons

resulting "polaron". It can be useful to have a means of estimating such
effects.

The same approximation for the interaction Vg = Voqo/q and wq = 0o
also makes the evaluation of the integrals for scattering analytically doable
in Problem 17.1. For that problem it is convenient to sum over final-state
wavenumbers k' rather than (, an exactly equivalent sum. Then the sum is
converted to an integral as q — Xk' = (Q/(Zn)3)f2nk'2dk’ JsinB dB as in Fig.
17.1. Using the cosine rule we can write g2 = k2 + k2 - 2kk’ cos0.

It is usually best to utilize the delta function, 8(62%k2/(2m*) + hwo -
h2k2/(2m*)), first in cases such as Problem 17.1. This is accomplished by
carrying out the integration over k', which fixes k' in terms of k, both of

1/t

| L L 1 L I

4 8 10
e /o ©
kK o0

Fig. 17.2. The rate of spontaneous optical phonon (frequency wg)
emission in a polar semiconductor as a function of electron energy &,
from Problem 17.1.
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which still appear in the equation. The remaining integral over angle can be
performed analytically. The result is plotted in Fig. 17.2.

We may note from the diagram of Fig. 17.1 that there can be no
emission unless the initial energy is high enough to allow for the creation of
a phonon, and that is reflected in Fig. 17.2

17.4 Electron-Electron and Nucleon-Nucleon Interactions

The electron-phonon coupling also leads to an electron-electron
interaction responsible for ordinary superconductivity. Only electrons with
energies very near the Fermi energy in the metal are important and their
interaction is treated as a second-order coupling as in Section 9.1. The
electron-phonon interaction couples the ground state of the metal to a
(higher-energy) state with one electron wavenumber deflected by q and a
phonon of wavenumber -q created. This state is in turn coupled to a state in
which the phonon is absorbed and a second electron's wavenumber is
deflected by -q. This has the effect of a "collision" between the two
electrons arising from the exchange of a virfual phonon, called virtual since
energy is not conserved in this intermediate state. The second-order matrix
element contains a Vq*Vq and a negative energy denominator, so it acts as an
attractive interaction, which is responsible for the pairing of electrons in
superconductivity.

The physical origin of this attraction can be understood in the same way
we understood the polaron energy at the beginning of the preceding section.
A ball rolling on a mattress has its energy lowered by deforming the mattress
to lower its energy in the gravitational field. A second ball rolling on the
mattress will be attracted to the depression from the first ball and they will
tend to cluster, as illustrated in Fig. 17.3. We shall use that concept when
we discuss the nature of the superconducting state in Section 21.4 though
with these high-energy electrons and the slow-moving atoms this low-
frequency concept is not as appropriate as the description given in the last
paragraph. The low-frequency view can be appropriate in semiconductors
and we carry it further here, first for a single electron and then for two. It

R AYE

Fig. 17.3. Two polarons, arising from the electron-phonon coupling,
attract each other. Similarly two balls rolling on a mattress lower their
energy by deforming the mattress, and are attracted by the depression
made by the other. As a consequence they tend to move closer together .
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will also enable us to understand the origin of the nucleon-nucleon
interaction which we introduced in Section 4.4.

We noted following Eq. (17.7) that atom displacements 8r =
uqeiQ"‘/\/N , give a local dilatation V-Or and in a semiconductor may produce
a deformation potential V(r) = -DV-dr = -iq-UqDeiqT/\/N with q-ug= quq
for a longitudinal mode (and zero for a transverse mode). If we think of an
electron at a position r this gives us a perturbation to the phonon
Hamiltonian and we may calculate a shift in the energy as we did for an
electron in a plane-wave state in the preceding section. We are treating the
electron classically at this stage of the analysis by leaving the electron
position r in the equations. We again use Eq. (17.4) to write uq in terms of
annihilation and creation operators and if the zero-order state contains no
phonons we obtain contributions only from a_qa-qT = 1. With an energy
denominator of hwg we sum over q to write

h D22 e-iqreiqr
Epol = 2q g o g (17.21)
the counterpart of Eq. (17.17) without the shift in electron energy in the
denominator. We also kept the two phase factors which of course cancel in
this case. This would be a suitable approximation if the phonon frequencies
were high enough that the change in electron energy h2¢2?/(2m*) were
negligible. This high-frequency approximation corresponds to the physical
assumption that the lattice response is effectively instantaneous.

If we do make this assumption, we may generalize Eq. (17.21) to an
electron at rq and a second at r3 so that ¢i9T is replaced by €!4T1 + ¢l9T2 and
the numerator in the final factor becomes 2 + ¢ i@(r1-12) + ¢iq-(r;-r2). The
first term gives twice Eq. (17.21), the polaron shift for the two electrons.
However, the other terms give the interaction between the two polarons.
The two terms add to give the interaction in terms of the distance between
the two electrons r = r; - rj as

2 2
Vpol(r) = - == %Zq 6?(,”2 elgr (17.22)
The same result could have been obtained with a classical calculation based
upon the same electron-vibration interaction; note that no h appears in the
answer.
It would be easy to make a bad approximation at this point. We might
make the Debye approximation which we used for the specific heat in

Section 10.23 to write wq = vsq and integrate to the Debye wavenumber gp
with (4ngp3/3)(Q/(2n)3)=N. The sum multiplied by 1/N would then
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become (3/vs2)(singpr/(qpr)? -cosqpr /(gpr)?). This might be meaningful
as r goes to 0, but the oscillations as a function of » come from the artificial
cut-off at gp. We may note a particular case for which this r-dependent
result is quite wrong, the case with ¢2/wq2 = 1/vs2. Then that factor may be
taken out of the sum, and the sum over the exact Brillouin Zone is zero
unless r = 0. The result we obtain with the Debye integral is completely
wrong for this case, and for other forms of wq as well.

There are different ways to proceed, including a numerical sum over the
Brillouin Zone, though then one should reconsider the small-q form which
we used for the coupling, -DV-8r . One approximate way is to replace the
summand by (1/vs2)e~92¢19° T and integrate over all g , with a chosen such
that the sum is N/vs2 with r = 0 . This yields

D2 i
"M (1+(#3)23gpn2)? -

Vpol(r) = (17.23)

This is an attractive interaction which drops off in a few interatomic
distances, each of order 1/qp. Though it is classical, we may think of the
interaction as arising from the exchange of phonons between the two
electrons just as we can think of the ¢2/r Coulomb interaction as arising
from the exchange of photons. In fact every interaction between particles is
thought of as arising from the exchange of some kind of particle.

When the exchanged particles are massless, the interaction has an
algebraic dependence upon separation, as in Eq. (17.23). The short-range
interaction between nucleons, suggested by the liquid-drop model (Section
4.4), indicated to Yukawa (1935) that the particles exchanged must have
mass. We may see why by going back to the form we obtained from
exchange of phonons, Eq. (17.22). We had taken the energy denominator
}‘m)q as the energy to create a phonon. With the phonon replaced by a
particle with nonzero mass we may use the relativistic form for the energy
from Problem 1.1 (including the mc? to create the particle). It is simplest to
use it for both factors ofl'l(uq, which is assuming the same form for the
coupling as the electron-phonon coupling, and we have

D2 1 242

Vin(r) = - M N“<4 (mc2)2 + (heg)? e,

(17.24)

with m and ¢ being the mass and wavenumber of the particle exchanged.
We may again replace the sum by an integral, (Q/(2m)3)[2ng2dg sin® do,
perform the angular integral, and obtain
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D2 Qo h2q3dg  singr
M 2120 (1e2)2 4 (heq)2 ¢

Vint(r) = -
(17.25)

M An2027 0% (mefh)2 + g2

This integral is easily done by contour integration (or from tables),
closing the contour in the upper complex plane, where e1qT makes the
integral around the large semicircle zero. The integral along the axis is then
equal to the residue of the pole at ¢ = im ¢/h, with magnitude of g equal to
27 divided by the Compton wavelength Ac = 2nth/mc of a particle with mass
m. (see Problem 1.1). The result is

e—OLr
Vin®) =-Vo 5 (17.26)

with o = mc/h and Vo = 2n2D2Q0/(Mc2Ac3) for the same coupling we used
for phonons. This was the form, Eq. (17.26), obtained by Yukawa for the
nucleon-nucleon interaction. Knowing that the interaction had a range of the
order of the nuclear size, 10-13 cm, which he equated to Ac/(2m) =h/mc , he
predicted that the meson exchanged had a mass about a fifth of the proton
mass. This was confirmed by the observation of m-mesons, pions, with an
energy of a sixth or seventh the proton mass. Yukawa (1935) could also
estimate Vg from the known binding of the proton and neutron in the
deuteron. It turned out that there were positive, negative, and neutral pions
so the interaction is considerably more complicated, but there is no question
that the strong interaction between nucleons arises from such mesons as
proposed by Yukawa.
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Chapter 18. Photons

We have completed an analysis of the quantization of lattice vibrations
in solids, which came as a very natural application of our theory of harmonic
oscillators to the normal modes of a solid. With our starting postulate that
everything is both a particle and a wave, and all theory deriving from that
one assertion, it comes as no surprise that we can directly generalize our
analysis from sound waves to light waves. We shall be able to define the
creation and annihilation operators exactly in parallel to those for phonons,
and to write the electron-photon interaction in terms of those operators just
as we did for phonons. Indeed the concept of the photon as a light-particle is
more familiar than the concept of a phonon.

18.1 Photons and the Electron-Photon Interaction

Vibrations in solids were described in terms of the displacements drj(r)
of each atom at a starting position rj. We saw in Section 1.3 that
electromagnetic waves can be described in terms of a vector potential A(r,f)
at the position r, the position being a continuum as in the continuum
treatment of sound waves in Section 1.8. This generalization is nothing new
for us, corresponding for lattice vibrations to a small-g limit where ® is
proportional to g, but for light it extends to arbitrarily large g. We follow
our analysis of lattice vibrations, first constructing a Hamiltonian for the
light.

We begin with a transformation to "normal coordinates", as in Eq.
(15.6),

ArH = 45“ T ugltreiar, (18.1)
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The factor in front of the sum, like V1/N , is inversely proportional to the
volume of the system, and the V47 was included to simplify the forms which
arise later. The electric field from this potential is obtained from Eq. (1.17)
as

10A

4n . .
Exn=-3, =-\ o2 Zg) ug(Heiar. (18.2)

Then we may obtain the total electric-field energy as T = (1/871)_[ d3r E2(r),
integrated over the volume Q. The result, in analogy with Eq. (15.9), is

1 .

with the integral over all other products of uq(f)*¢id-T integrating to zero if
periodic boundary conditions are satisfied on the surface of the volume Q.
Similarly, the magnetic-field energy (1/8m)[d3r H2(r) based upon the
magnetic field from Eq. (1.17), H = VXA, is 1/2¢?Zqugtu.g*. Only the
electric-field energy depends upon fqu, so we may define a momentum
conjugate to ug as

Pyt =0T /g :(}—2 ugt (18.4)

as in Eq. (15.10) and the total energy written in terms of the coordinates uq7L
and momenta Pg? is the Hamiltonian for the light,

2 2

This is a sum over wavenumbers of the light and the two directions A of
polarization of the light. With no charge distributions present there is no
longitudinal component. Hamilton's Equations applied to this Hamiltonian
give Maxwell's Equations, or Eq. (1.20), in the absence of charges and
currents. Our starting assumption of wave-particle duality (as generalized in
Chapter 3) states that any system described by a Hamiltonian can be
described as a particle or a wave. We could construct a Schroedinger
Equation for this Hamiltonian, with a product of wavefunctions Ilg lu(uqk)
However, as for the quantum treatment of lattice vibrations in Chapter 16,
we shall instead only to use the properties deriving from the commutation
relations Pgtug? - ug?Pg* =Hi.
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We may seek raising and lowering operators as we did for the harmonic
oscillator and for lattice vibrations. The two terms must have the same units,
so we may add quq7L and ic P.q7L , which by Eq. (18.5) are seen to have the
same units, and scale them so that the commutator is

aq}\’aq}\'T - aq}\’Taq)\’ =1 (18.6)

as for phonons. A definition of the annihilation operator and creation
operator which achieves this is

1
A=Al —— Ay
aq 2},10)(1 (qug + icP.qg),

’ 1
AMzA—— Ao
aght = Zﬁwq (qug™ - icPgq).

q and (g are magnitudes. We had a choice for the phase of the definitions,
and we have made the conventional choice, the same as that for the case of
phonons.

With these definitions (and any choice of phase) it can be confirmed that
as for phonons the total field energy from Eq. (18.5) is

(18.7)

H = X hoglaghagh + 1/2) (18.8)

and using Eqgs. (18.1) for the vector potential, and solving Eqgs. (18.7) for
uq}\, we obtain

2nho )
A=Zqa\ %‘ (agh +a M) eiar gk (18.9)

with ﬁql a unit vector in the direction of the vector potential (and electric-
field polarization) for the mode {q,A}. Each of these steps can be readily
confirmed, as can a requirement that ﬁ.qk = ﬁqx so that the coefficients of
e19- T can be the complex conjugate of that of eid- r. In Problem 18.1 we
obtain the electric field as -(1/c)0A/0t =(iwq/c)A=igA, square the magnitude,
multiply by 1/87, and integrate over all volume, to obtain an expression for
the energy quadratic in the annihilation and creation operators. Taking the
expectation value for a state with nq7L photons in a single mode yields half
the expectation value which would be obtained for the Hamiltonian H in Eq.
(18.8), the other half coming from the magnetic-field energy.
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In Chapter 9 we discussed the interaction between electric fields and
electrons, based upon the replacement of the momentum p in the classical
Hamiltonian by p - (-e)A/c , which gives a term in the Hamiltonian of
ep-A/mc. This term involving both the vector potential A representing the
field and the electron momentum p =K V /i is the interaction between light
and the electon. For a quanturn description of the light we substitute for A
from Eq. (18.9), and note that cq = wgq, to obtain the electron-photon
coupling in the form,

Hel= 2Zg ) imivg o d9%agh +aqrh (18.10)

with the gradient operating on the electronic wavefunction; since the unit
vector ilq}‘ is perpendicular to q the gradient operating on ¢l4-T gives zero.

If we look for the effect of the resulting coupling between free electron,
as we did for the electron-phonon interaction, €14-T becomes Zka+qTCk, and
the V becomes i k , but there is no coupling between states of the same
energy, as we saw in Problem 1.1. There are only higher-order processes in
which a photon is absorbed and another emitted, with the electron changing
its wavenumber by a vector equal to the difference in the two photon
wavenumbers. This was because we could not simultaneously conserve
momentum and energy with an electron which moves at less than the speed
of light, while both could be conserved for phonons if the electron moved
faster than the speed of sound. However, when the electron interacts with
some other system which can take up the needed momentum difference,
processes involving the emission or absorption of photons become possible.
Using the form, Eq. (18.10), with the gradient and eid-T allows us to treat
such processes.

18.2 Excitation of Atoms

One of the most important applications of the electron-photon interaction
is the transition between electronic states caused by light. In Chapter 9 we
treated the ionization of atoms by light, treating the light classically as an
applied alternating electric field. For transitions between atomic states
within an atom, it is more appropriate to use the electron-photon interaction
of Eq. (18.10) and the resulting quantum transitions. We shall treat photon
absorption and emission at the same time, and this will lead us naturally into
the description of lasers.

The first step will be to obtain the magnitude of the matrix element, the
coetficient which accompanies the annihilation and creation operators of Eq.
(18.10). To be specific, we consider an atom of beryllium, which has a
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ground-state configuration of 1s22s2, the 1s-states being the core states. We
consider transitions between this ground-state configuration and an excited
configuration 1s22s2p which arise from the coupling from Eq. (18.10)
between the atomic 2s and 2p-states of the same spin. (States of different
spin are orthogonal and since the perturbation contains no spin-dependence,
the matrix element contains a factor from the spin states of <+|->=0.) The
wavelength of the light with photon energies equal to €2p - €25 is thousands
of Angstroms, so in the matrix element between two atomic states which are
only appreciable over the spread of a few Angstroms we may set ¢4 T equal
to the value for r at the nucleus.

If we choose p-states with zero angular momentum along the three
Cartesian axes, x, y, and z (Eq. (2.29)), the only coupling between an s-state
and a p-state from the z-component of the gradient is with the pz-state, etc.
Correspondingly the matrix element of ﬁq}t-V between such a p-state and
the s-state is <2p,|9/9z|2s> times the cosine of the angle between fig* and

the axis of the p-state, which we write as cosﬁqk . Then for each spin the
coupling between the s-state and a p-state with a particular axis is written

Hq,
<2p|Hel|25> = Zq,)\v—& capfeasagh + a.gh) (18.11)
with
h e cosBgheid-r
S e VWV e

for a nucleus at r. There is similarly a matrix element of the same form as
Eq. (18.11) but with 2s and 2p; interchanged. We note that <2s|0/dz|2p,> =
-<2pz|0/dz|2s>. It is best for this second term to change to a sum over -q so

that the final operators are replaced by c2sfcop@ght + a.¢*) and Hgh is

replaced by H-q7~ = Hq}\*. Combining the two, we write the electron-
photon, or electron-light, interaction coupling these two states as

1
Hej= Zq,xvﬁ [qucszczs(aqK + a-qM) + H_chstczp(aqM + a.gM).
(18.13)
The final factor in Eq. (18.12), with units of one over length, can be

evaluated using atomic wavefunctions. We shall not do that, but we carry
the analysis of Eq. (18.12) a little further. Measuring angles from the z-axis
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as usual, and using the description of states of spherical systems from
Section 2.4, <2p,|d/0z|2s> becomes

<2p7|0/9z)2s> =\ / é% \ / ﬁ J. 2nr2dr J- sinBd0 R1(r)cosH 8% Ro(»)

(18.14)
—T_‘.drrle(r) a(r) = L_

ra

In the first form we took the constant factors from the spherical harmonics
Y/M out in front. In obtaining the second form we wrote 0/dz = d/dr dr/dz =

0/dr cosO and integrated over angle. The integral in the final form could be
obtained numerically from tabulated wavefunctions, or from approximate
hydrogen-like forms for the wavefunctions e -Hr and re -1T fit to the atomic
energies (as carried out in Problem 18.2), and will inevitably be of the order
of the reciprocal of the size of the atom [/r, , comparable to interatomic
spacings, and we proceed here by defining r, to be the reciprocal of the
matrix element as written in Eq. (18.14). For our initial study it will be
sufficient to use the general form with qu as in Eq. (18.13).

We now have the parameters needed to evaluate transition rates between

atomic states arising from the electron-photon interaction using the Golden
Rule,

2n ) .
Pit="7" If <i|Heilf> <f|Hel|i> &(Es - Ej). (18.15)

The initial state |i> could be the ground state (or it could be an excited state
with an electron in a 2p-state but we proceed first with the electronic ground
state). As for phonon absorption and emission, the various terms in the
operation of Hej on the initial states produce various final states - times

constants - from which we identify the energy change appearing in the delta
function. We then select the terms from the operation of Hej on this final
state which take it back to the initial state. Thus the aq7\ term in Eq. (18.13),
operating on the electronic ground state, reduces the number of photons in
the corresponding mode, while taking the electron from the 2s-state to the
2p-state, so that for that term Ef - Ej = €2p - ﬁ(oq - €25. The term with a_qM
operating on the electronic ground state adds a photon, while taking the
electron to the 2p-state. Both steps require energy, so the delta function will
never be satisfied and that term does not contribute.

Similarly, the term with aqwf operating on the excited electronic state
adds a photon while dropping the electron from the 2p- to the 2s-state for an
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Ef- Ei= ¢€pg +l’1(oq - €2p , and the term with the a_qx never satisfies the
energy delta function. Only two terms from Hp] operating on the initial state
survive, and when we operate again, only one of the terms in each case will
take the state back to |i>.

For the first of these transitions, in which a photon is absorbed, the
operators which appear are cstczpaqMcszczsaq7b . We can commute the
aqM to the right where it becomes part of the number operator, which we

write as the number nq7\ of phonons in the mode. We may also commute the
c2sT to the right to obtain the number operator for the 2s-state, which we
write as the probability of its occupation, f25, and the remaining pair of
operators becomes, using the commutation relation, 1 - fzp. For this class of
processes involving photon absorption we obtain

om H o AHoA
Pifabsorb: ? Zq, spin,k Q f28(1 “pr)nq}‘S(gzs - SZP 'H‘l(l)q) N (1816)

We make the corresponding evaluation for the second transition, in which a
photon is emitted, to obtain

. 2; HoMH_ g
Pifemit="7"Fq spind g S2p(1 - f2s)ngh + D(e2s - £2p Hing). (18.17)

As for phonons, the term in Eq. (18.17) with nq}» is stimulated emission and
the term with 1 is spontaneous emission. For each of these evaluations, the
sum over wavenumbers is to be replaced by an integral as in our other
transition-rate calculations, q — (Q/(2m)3)/d3g and the energy delta-
function fixes the wavenumber for each mode. Such an evaluation is carried
out in Problem 18.3.

We may confirm that if the system is in equilibrium, so there is one
temperature 7' and one Fermi energy W, the absorption and emission rates
are the same. We do this by writing the statistical factors, with each of the
two energy levels written relative to the Fermi energy,

1 e€2p/kpT 1
e€2dkT + 1 e8op/kpT + 1 havkgT-{

Rate absorb e

(18.18)
1 et2/kpT  chw/kgT

etpkBT + 1 ef2dkpT + 1 ehw/kgT-y

Rate emit o<
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The delta functions in Eqgs. (18.16) and (18.17) are only satisfied if €2p = €25
+ho , in which case the numerators in the two Eqgs. (8.18) are the same, as
are the products in the denominators. It is interesting that the +1 terms
which arose from the different statistics for Fermions and photons match
with the different commutation relations in the evaluation of Eq. (18.15)
making this true. It had to come out that way, as guaranteed by the detailed-
balance which we discussed in Section 11.1, which always applies to
equilibrium systems. In Problem 18.3 we obtain the relative occupations of
the two electronic states which arise as a function of light intensity for a
system in a steady-state condition, but not equilibrium.

If light coupling two levels is very intense, corresponding to very large
nqk in Eqgs. (18.16) and (18.17), the additional 1 in the second of these,
giving spontaneous emission, is negligible. Since in steady state the
absorption rate is equal to the emission rate, the factors fas(1 - f2p) and
f2p(1 - f25) must also be equal, corresponding to f2s = f2p . This is called
saturating the transition. It is a feature of optical transitions which becomes
important in lasers.

18.3 The Three-Level Laser

We may see how laser action arises by considering the energy levels of
helium, a slightly simpler system than the beryllium discussed above. In the
ground state the atomic configuration is 1s2 and there are excited 2s- and 2p-
states. These may be obtained from Moore's (1949, 1952) tables as
described in Chapter 4, in connection with Table 4.1. This gives an energy
-24.6 eV for the 1s-state, -4.0 eV for the 2s-state, and -3.6 eV for the 2p-

821) ‘N
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1s

Fig. 18.1. A schematic energy-level diagram for a helium laser. In the
ground state both electrons occupy the 1s-state. Light athw = £2p - Els
pumps the electrons to the 2p state, approaching half occupation of the
corresponding p-state for strong pumping. The population is then higher
than that of the 2s-state, so light is emitted at hw = g2p - €25, at first by
spontaneous emission, but as the intensity of the light at this frequency
grows, stimulated emission is dominant. The electrons must return to the
Is-state by some other process, such as by atomic collisions.
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state. These last two would both have equaled the -e4m/ 8h2 = -3.4 eV of the
hydrogen 2s- and 2p-states, except for the effect of the second proton in the
nucleus and the second electron in a 1s-state which lowers the energy of the
2s-state more than the 2p-state. These numbers may not be the most
convenient for practical lasers, but illustrate the mechanism of the laser.
They are shown schematically in Fig. 18.1.

In equilibrium the occupation fo(€2p) << fo(€2s) << fl€ls) and, as we
have seen, there are transitions up and down (as in Eq. (18.18)). If we now
impose strong light at a pump frequency ®p such that ﬁu)p = €2p - Els,
electrons will be pumped to the higher level, approaching equal
concentration for the p-state which is coupled by light of this polarization
and for the ground state. At the same time, the occupation of the 2s-level
remains low and we have an inverted population of the 2p-state relative to
the 2s-state. With the excess number of electrons in the 2p-state, there will
be spontaneous emission into modes with frequency ] with hm) = €2p - €2s.
Then if there are parallel mirrors which capture some of that light as a
standing wave, the intensity in one mode will build up; with more electrons
in the 2p-state than in the 2s-state, the stimulated emission will also be
greater than the absorption, and the energy in that mode will grow to a very
high level. This is the laser action, and with one mirror with less than 100%
reflectivity intense light will emerge from exactly this mode. There must be
a way for the electrons which are thus transferred to the 2s-state to return to
the 1s-state if the process is to continue. There is no direct optical transition
between such s-states, but the transfer can occur by collisions between
helium atoms or with the wall. In other systems a fourth level between the
two lower levels can provide a path of allowed transitions (i. e., if it was a p-
state). There may be more than one mode in the mirror system (more than
one wavelength of light) which could support lasing action, but ordinarily
one will dominate. Helium, as described here, would be a gas laser. Similar
systems can be constructed in solids using impurity states in an insulator to
provide the counterpart of the levels of Fig. 18.1. More importantly, lasers
can be made using the band states. In order to discuss them we must first
consider interband transitions.

q d

— A E—
P P P LI

§)

Fig. 18.2. A chain of atoms, as in Section 6.1, but with a p-state as well
as an s-state on each atom. Light of wavenumber q and polarization p
couples the states on each atom.
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18.4. Interband Transitions

We treat only the simplest meaningful case, again electrons moving in a
chain of atoms, and generalize the result to three-dimensional systems. We
shall need two bands, so a second state for each atom is introduced as
indicated in Fig. 18.2. We form s-bands

ExC = €5 + 2 V555 cosk'd (18.19)

which we think of as empty conduction bands in Fig. 18.3, and p-bands,

€xY =€p + 2Vppocoskd . (18.20)

at a lower energy, which we think of as filled valence bands. We do not
include for the present any effects of the coupling Vspe.

We consider the coupling between a valence-band state |kv> =
(1NN)Zi|pi>etkdi and a conduction band state |k'c> = (1/\/N)Zj|Sj>elk'dJ due
to the electron-light coupling from Eq. (18.13), which is

1 H g e
<k'¢|Heylk V> = N 2 Zq,xﬁ <sjlcsiTepi@agt + ag)|pie-itk'di-kdi),
(18.21)

If we include only the coupling between orbitals on the same atom,
discussed in Section 18.2, then only terms with i = j will enter, each with the

phase of the light on that atom, e-iq)di from H_g*, with g|| the component of
q along the chain. Then the sum over j will give zero unless k' =k + g||, in

which case it will give N. We designate those terms in the sum by
q|| = k'- k. Only the mode polarized in the plane of the figure contributes so

we drop the sum over A and eqk becomes the 0 in Fig. 18.2 . This gives then

€
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Fig. 18.3. Bands for the one-dimensional chain of Fig. 18.2. The upper
band is s-like, the lower, p-like. The photon wavenumber g is ordinarily
very small so a transition, indicated by the upward arrow, is almost
vertical.
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H.
<k'|Hellk V> = Zqeg=k'- k) Jg @q" +a-g)- (18.22)
with
-he cos6
Ha= Spgr, V20 (18.23)

from Eq. (18.12) and (18.14), analogous to the qu of Eq. (18.12), but

without the factor ei9T. There are of course also complex conjugate matrix
elements <kV|He(lk'c>. In semiconductors the interatomic matrix elements,
i #j, actually dominate, which follows already from the fact that the
dielectric susceptibilities of semiconductors are much higher than would be
obtained as a sum of atomic polarizabilities. The needed matrix elements of
the gradient in Eq. (18.10) can be obtained approximately from the
corresponding tight-binding matrix elements (Harrison (1999), p. 219) as

dVi'm
<l,m|V|1',m>=-m fe = 'ml'mgz—» (18.24)

with the M'm the same coefficients as given in Eq. (6.6). However, it will be
simpler to proceed here with the intraatomic form.

We may generalize to matrix elements between band states in three-
dimensional crystals. We must then retain the sum over polarization A , the
cosO again is COSGq}‘, and k' is k + q. In semiconductor systems one is often
interested in transitions between states in quantum slabs, discussed in
Section 2.3. Then the formulation has similarity both to the one-dimensional
and three-dimensional cases discussed here. It will be adequate for the
limited discussion we make to leave the matrix element as Hq ,which we
obtained with intra-atomic coupling for the chain in Eq. (18.23).

We consider first a bulk crystal, or a region in a crystal which can be
regarded as bulk. Of most interest will be the transitions near the threshold
energy, equal to the band gap, as illustrated in Fig. 18.3. The photon
wavenumber can be obtained from g = ®/c to find that it is very small, or
we can note that the photon energy required to cross the gap is in the optical
range, with thousands of Angstroms wavelength, so ¢ will be of the order of
one thousandth of the Zone dimensions 2n/d. The transitions are almost
exactly vertical on a diagram such as Fig. 18.3. In fact, ¢ is smaller by a
factor of one hundred than shown there.

If we now imagine a semiconductor as shown in Fig. 18.3 in thermal
equilibrium, there will be a low density of electrons in the conduction band
and (if there is no doping) an equal concentration of holes in the valence
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band as we saw in Section 10.5, and Problem 10.3 in particular.
Occasionally an electron can drop into an empty state of very nearly the
same wavenumber in the valence band, emitting a photon. Exactly as often
the reverse transition is made in which the same hole is remade and initial
conduction band state occupied through the absorption of a photon of the
same wavenumber. This is guaranteed for equilibrium systems by detailed
balance (Section 11.1) and shown in detail for two discrete levels in Eq.
(18.18). Such a detailed treatment would be more intricate for this case, but
the result is guaranteed.

If we now increase the electron and hole density, without increasing the
number of photons - this is taking the system out of equilibrium - photons
will be created at a greater rate than they are absorbed. (This is the reverse
of what was done in Problem 18.3, where the light intensity was increased
over equilibrium values, leading to steady-state absorption.) This increased
emission will be in proportion to both increases in carrier density. Exactly
this effect is accomplished in a light-emitting diode as illustrated in Fig.
18.4. A confinement region, with reduced gap to hold the carriers, is
surrounded by an n-type region (with excess electrons due to doping) on one
side and a p-type region (with excess holes due to doping) on the other side.
In equilibrium, carriers will redistribute and bands shift relative to an overall
Fermi energy for the system such that again detailed balance will prevail.
However, if a voltage is applied raising the potential of the electrons on the
left relative to the right, the flow shown will enhance the electron density in
the center. The same potential will drive holes from the right, enhancing the
hole density in the central region and producing excess light at a frequency
corresponding to ho slightly greater than the gap. The greater the applied
voltage, the greater the intensity of the light produced.

Fig. 18.4. A light emitting diode. Applying a voltage which drives the
carriers in the direction given by the arrows will increase the concentration
of both types of carriers in the confinement region (the region with a
narrower gap) above thermal equilibrium and produce excess light at the
energy of the gap, as indicated.
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It is often true that the distribution of the electrons in the confinement
region remains a Fermi distribution at some temperature, such as the
temperature of the thermal phonon distribution (Section 10.2), but with a
Fermi energy WUc¢ (called a quasi-Fermi level since there is no overall
equilibrium) which is high, in accord with the high carrier concentration.
Similarly the Fermi energy wy associated with the holes is low in accord
with their high concentration. A convenient way to calculate the output of a
light-emitting diode is to evaluate each contributing rate, or the factors
corresponding to Eq. (18.18) which determine that rate, for equilibrium, but
use the relevant Fermi energy which can be shifted out of equilibrium in the
end.

For any pair of coupled levels, the absorption is proportional to the
probability fy = 1 that the valence-band state is occupied, times the
probability 1 - fc = 1 that the conduction-band state is empty times the <ng>
for the photon. For the light-emitting diode we imagine an equilibrium
distribution of photons, so the absorption is proportional to the number of
thermal photons in the modes involved, <ng> = 1/(eBhog - 1) = eEg/kpT
according to Eq. (10.10), with Eg the gap. We write the total absorption rate
per unit volume of material as

Rabsorb = RT e'Eg/ksT, (18.25)

where RT could be estimated as in Problem 18.3.

Calculation of the corresponding emission rate is simplest if the carrier
densities are low enough that we can approximate the Fermi distribution by a
Boltzmann distribution. Then, the emission is proportional to the probability
fv = e-(€c -UkpT that the conduction-band state is occupied, times the
probability 1 - fo = e-(#hv - &) that the valence-band state is empty times <7g>
+1 for the photon. However again <ng> = eEg/kgT <<1 so spontaneous
emission, the second term in ng + 1, dominates and the rate is proportional to
e(€c Uc)/kpTe-(y - €)kpT= e-Eg/kpT e(lc -1y)/kpT, In thermal equilibrium p
= Wy and this rate must equal the absorption rate so the proportionality

constant must be the same as in Eq. (18.25). Thus the emission rate per unit
volume, whether or not pc = Uy, is given by

Remit = Rr eEg/kpT e (e 10)/kpT, (18.26)
By introducing a current as in Fig. 18.4 we increase L relative to py and

increase the rate exponentially above the thermal rate, RT e-Eg/kT. We
might mention that there are "Sommerfeld corrections” to the emission (and
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absorption) from Coulomb attraction between electrons and holes. They are
apparently large, but not often included.

In the light-emitting diode we envisage excess carriers in comparison to
thermal equilibrium. If we can actually achieve an inverted population,
higher electron occupation probability f. for states at the conduction-band
edge than the corresponding fy at the valence-band edge as illustrated in Fig.
18.5a, we may have lasing action just as in the three-level laser of Section
18.3. This would be a solid-state laser. It is accomplished by adding mirrors
(often Bragg mirrors consisting of alternate layers of different refractive
indices which can reflect light of a particular wavelength). Then a particular
light mode can grow in intensity until stimulated emission is dominant, just
as described for the three-level laser.

Accomplishing this is made difficult by the decreasing joint density of
states for AE(k) near the band gap, as indicated in Fig. 18.5b. Various
techniques may be used to alleviate this difficulty. One is to insert quantum
wells as illustrated in Fig. 18.6a, so that subbands are formed in the quantum
wells, with a density of states which is constant, as was seen for electrons
moving in two dimensions in Problem 2.2. Multiple wells can be
introduced. Such wells considerably enhance the behavior as seen in Fig.
18.6. An additional difficulty arises in real systems such as gallium
arsenide, which has bands analogous to those shown to the right in Fig. 13.9.
The conduction band mass is small, as shown, so that the electrons are
concentrated near k = 0 and so also is the light-hole mass small. However,
most holes will be in the heavy-hole band, with heavier mass and therefore
higher density of states. These range to larger £ and thus to wavenumbers
which do not contribute to the lasing. One of these heavy-hole bands is

0 - £,6)
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Fig. 18.5. In Part a, at small k, the occupation of conduction-band states
is higher than that of valence-band states, positive fc(k) - f,(k) as shown in
Part b, and lasing can occur between such states. However, the joint
density of states n(A(k)) = nc(e(k))ny(e(k)) is small in that region. Mirrors
are chosen to select a AE(k) = hwq which will optimize the emission.
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Fig. 18.6. Quantum wells are introduced in the system of Fig. 18.4 for a
solid-state laser. Then the density of states for the resulting subbands rises
abruptly at the minimum energy, as shown in Part b. It also concentrates
the carriers where the electric fields for the lasing mode, shown as the
curve above in Part a, are largest.

pushed deeper in energy by spin-orbit coupling as we shall see in Section
22.5, and the other can be shifted with a "strain-layer superlattice" system in
which the layers serving as quantum wells are compressed, or made thinner
(and expanded parallel to the planes) so that the p-states which are oriented
perpendicular to the layers are shifted down in energy as illustrated in Fig.
18.7. (It was seen in Section 13.5 that the top of each valence band
corresponds to one p-state.) These are the p-states which form the heavy-
hole subbands for motion in the plane of the figure so only the light-hole
subband is present at the top of the valence band, an important

improvement.
€ l
k

Fig. 18.7 A strain-layer superlattice can shift the heavy-hole band
downward so that almost all electrons and holes are concentrated near k =
0 and contribute to laser action.
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We saw after Eq. (2.46) that a harmonic oscillator wave packet oscillated
back and forth like a classical oscillator. Such a packet state of the
oscillator is called a coherent state. The light which emerges from a laser is
also such a coherent state and the concept is very important in quantum
theory, though it is essentially a classical effect. It is interesting to consider
it further now that we have quantized the phonon and photon fields. We
begin with the quantum description of the simple harmonic oscillator, but
return to a classical description of the driven oscillator before continuing the
quantum description. We finally relate the results to coherent light.

19.1 Coherence in a Harmonic Oscillator

Any wavefunction ¢(x) for a harmonic oscillator can be expanded in
eigenstates ZpApdn(x) and we may use the time-dependence of each
eigenstate, with £y =hwo(n + 1/2) in terms of the classical frequency wg, to
obtain the time-dependence of ¢ as

O(x,1) = Zn ApOn(x)eio(n+1/2)t (19.1)

We noted in Section 2.5 that it is a consequence of this equal spacing of
levels that any ¢(x) must return to the same function every period, 2m/mg. It
also follows that half-way between these returns the wavefunction will be
0(-x), the classical behavior of an oscillator. In order to have this classical
behavior, we must have a linear combination of different states of
excitation; a single eigenstate has a probability distribution symmetric in x
at all times. If it is a combination of many states of excitation, we must also

247
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have coherent phases for the coefficients of the states of adjacent quantum
numbers. We may see this be evaluating the expectation value of x using
Egs. (16.23) and (16.25)

h

<Olx|p> = Moo 2 mAm*An<m|(al + a )|n> e 1@o(n-m)t
(19.2)

h
2Mwg

20 [Vn+1Ane1*Anei®ot + \]HAn_l*An e-imgt],

If the Ay , and in particular the phase, varies randomly from Ap to Ap+1
the various terms will average to a small value. If they are coherent, varying
for example from one n to another as €100, then the terms will have the same
phase and lead to a large value. Coherence refers to such relations between
the A, which can make the expectation value for the coordinate large. If
only one A, were nonzero (¢(x) would be an energy eigenstate) <d|x|o>
would be zero as we noted before. If two adjacent A were nonzero at 1/\/2,
the sum of Ap+1An would be /2. If the magnitude of Ap is peaked at ng but

varies slowly with n (and varies in phase as el®n), we may replace the sum
by an integral XpAn4+1*A n= Idn An*Ap €% = €l® | the maximum magnitude.
Then Eq. (19.2) becomes

2hng
<O(x,Hx|d(x,0)> = Moo cos(wot + o). (19.3)

This is exactly the classical limit for a harmonic oscillator with amplitude xp
such that the energy is 1/2M®o2x02 = nohwo, with o the phase at time ¢ = 0.
We see that the coherent state is the classical state. A classical oscillator has
a value of x and of P at time ¢ = 0, and its future position and momentum
are determined for all times in terms of these values. Thus a classical
oscillator cannot be incoherent. Incoherence is a quantum effect, in this case
arising because an oscillator may be in a single eigenstate, with completely
uncertain phase, or may be in a combination of many eigenstates, again with
uncertain phase unless the relative phases of each of the combinations are
specially related.

This is a subtle point, and physicists often think of coherence - as
opposed to incoherence - as a quantum effect. That is not correct from our
point of view. We will attempt to keep this clear when we discuss coherence
in terms of light modes in Section 19.4, but it may be desirable to treat the
coherent state of the classical harmonic oscillator slightly further.
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19.2 A Driven Classical Oscillator

We study the behavior of a classical oscillator in order to understand the
quantum system more clearly. We will in fact be able to identify the classical
response with that we have calculated quantum-mechanically using time-
dependent perturbation theory, and to identify the energy loss with the
transitions which we have calculated quantum-mechanically using the
Golden Rule.

Let x be the classical coordinate of a mass M which feels a spring force
F = -xx, corresponding to spring constant X, and has a normal-mode
frequency mg = VK/M . It will be convenient to write the driving force as
-eE 10t (as for a negative charge -e), or the real part of that. In fact the
equations of motion are linear so that we may proceed with a complex force
and complex displacement and take real parts at the end if we wish. If -eE
is complex, the phase may be different from zero at # = 0. The classical
equation of motion is

Mx =-kx - ux - eEeiot, (19.4)

where we have included also a small viscous term -pux which would damp
out any initial vibrations, leaving only the driven motion proportional to
ellot, Substituting that form, the time derivatives become factors of -iwy and
we may solve for x as

_eEe-i(,l)t
M (wp? - 2 - iow/M) -

X = (19.5)

The real part of 1/[M (09?2 - ®2 - iouw/M)] gives displacements exactly
in phase with the applied force, -eEcoswt if -eE is real. However, there is
also an imaginary part of 1/[M (wo2 - ®2 - iouw/M)] which gives
displacements out of phase with the force, proportional to -eEsin®t if -eFE is
real. This is also just like a complex impedance in an ac electrical circuit in
which there are in-phase and out-of-phase components of the current
response to an applied ac voltage.

Thus we may define a complex frequency-dependent polarizability o)
for this system by associating a dipole p = -ex with the oscillator, and

p = A(W)E elot, (19.6)

Then if we write the small viscous term wp/M as J this polarizability is
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e 1
o) = M wp2-w2-id8
(19.7)
e2 w2 - w2 ez 8

- = 47 =
T M (002 - 22 +82 M (w02 - 022 +82°

The real and imaginary parts are plotted in Fig. 19.1.

The real part, which is all that is left if 8 is very small, is in tune with
our physical experience. If we drive a classical oscillator at low frequency,
it moves in phase with our push. If we drive it well above its natural
frequency it is furthest from us, and accelerating toward us, as we pull
hardest, a reverse in the displacement relative to the force. And, if we drive
it near the resonant frequency the response becomes very large. The
imaginary part only becomes large near the resonant frequency. It
corresponds to a velocity in phase with the force rather than displacement in
phase with the force, and work is done by this force in phase with the
velocity. The energy is dissipated by the viscous term. Such a classical
solution is very complete, and can therefore be preferable to a quantum
solution when a classical approximation is appropriate.

a(w)
M (Bz

Fig. 19.1. A plot of the real part (heavy line) and the imaginary part (light
line) of the polarizability based upon a harmonic dipole oscillator, from
Eq. (19.7) with § taken as 0.2wq2.
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19.3 A Driven Quantum Oscillator

It is of interest to compare this classical result with the two limiting
cases which we have treated quantum-mechanically. We calculated a
polarizability for a static applied field using perturbation theory already in
Problems 5.2 and 5.3. We can redo this for a time-dependent field by
generalizing Eq. (5.28) to time-dependent fields. Using this first-order
theory for the state will retain equations of first order in the field, as in the
preceding section. We carry it out first generally, and then apply it to the
harmonic oscillator. We again expand the state of the system in eigenstates
|/> of the unperturbed Hamiltonian, as in Eq. (5.8), but now we let the
coefficients depend upon time and include a specific time-dependent factor
for the zero-order energy,

N> = 2 uj(n)e-igth |j>, (19.8)

We then seek corrections to a state |j> due to a time-dependent perturbation
which has matrix elements <i|H!|j>e-10t, with <i|H1|j> independent of time.
Thus we substitute Eq. (19.8) in the Schroedinger Equation, Eq. (1.16), and
multiply on the left by <i| to obtain

i(Z) . . . . .
- ﬁ ul—()e‘lsit/ﬁ + g (Ne &R = X wi(n<il H1|j>e10te-igith 4 giu(r)e-i&t/h,
i ot 17
(19.9)

The second terms on both sides cancel. To first order in the perturbation, u;
= 1 for the unperturbed starting state |j> and the others can be neglected in
the sum on the right which already has a first-order matrix element. We see

that u; varies as e i(& - & -ho)Vh so we can differentiate and solve for u; as

e i(Ei - 8j —ﬁ(,l))t/fl

. — 'FEatF
ui(y = <i|Hl|j> .

(19.10)

This is the time-dependent counterpart of Eq. (5.28) which we shall use
again in Section 19.5. If we add a perturbing term proportional to ei®t it
gives the corresponding expression with @ replaced by -®. Combined with
Eq. (19.8) this gives a dressed state |j> containing corrections to the
unperturbed state.

We now apply this result to a driven harmonic oscillator. The force
-eEe-10t which we have introduced corresponds to a term in the Hamiltonian



252 Chapter 19. Coherent States

of H! = eExei®tand we can write x in terms of raising and lowering
operators for the harmonic-oscillator states as in Eq. (16.25). Using these
we obtain

h

I Wn+ 1 n+1> + Vn n-1>]e-iot, (19.11)

Hln> =eE

Thus there are two corrections to a zero-order state |n> , the first is higher in
energy by &; - €j =Rwg and the second lower by the same amount. The first-

order state becomes

_ E\/ h {\/n+le-i(00-030)t gt
[w>=|n> +e Mo ho-og ¢ oljn+1>

(19.12)
\n e-i(@+ ot

f(® +00) eHogtlp-1> }

+

The factors e*i®ot preceding |nt1> in the final two terms are factors
appearing in Eq. (19.8) if energies are measured relative to that of |n>, so no
factor appears with the first term, |r>. To obtain the polarizability from this
we evaluate <y|-ex|y> using again Eq. (16.25) . All time-dependent phase
factors eti®ot cancel in these first-order terms and we obtain

ezEe-i(Dt eZ(Dn Ee-i(Dt
<Yl-exy> = Moo(® - ®0)  Mag®? - ©g2)

(19.13)

There is an important lesson from this result. We have used a complex
perturbation eEe-1®t and should add its complex conjugate, to correspond to
a real perturbation. This will give a term equal to Eq. (19.13) with ®
replaced by -w. However, the sum for the two second terms is purely
imaginary, proportional to isinws . If we proceed more carefully, as with the
small viscous term which we introduced with the classical equations, this
term will lead to the absorptive term which we shall treat separately in a
moment. Similarly, the sum of the two first terms will lead to one term
which is purely imaginary and a second which leads to a real
2¢2Ecosot/[M(wo? - ®2)]. This corresponds exactly to the real part of the
classical result, Eq. (19.7), if d is taken equal to zero. Perturbation theory
which led to Eq. (19.10) correctly gives the dressing of the state, and the
polarization of the state, as long as the frequency w is far enough from
resonance that absorption is not occurring and the denominator ®g?2 - ©2 is
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not becoming so small that the corrections are large. It is the direct
generalization of the perturbation theory of Eq. (5.28) to time-dependent
fields.

For the absorptive term alone, the imaginary part, we can return to the
simple time-dependent perturbation theory of Eq. (9.9), using the matrix
elements obtained from Eq. (19.11)

% = 2% ijm Hoj(@)Hjo(w) 3(eo - € + ho)
(19.14)
2
= %ZTO ZoEw2((n + Do - hop) + nd(ho + hoo)].

The first term represents excitation of the oscillator and the second de-
excitation (with negative ), with n the initial quantum number of the
oscillator. This is still treating the alternating field as a classical field, rather
than as the quantized field of Chapter 16.

To compare with the classical result we would multiply the first term by
hoo and the second by - hmg to obtain the net quantum rate of energy
absorption,

2
Rapauant =Ef\7ﬁ 3 wEw28(ho - hog) . (19.15)

We can now identify this absorption with the imaginary part of the
classical polarizability in Eq. (19.7). We must allow a distribution of light
fields E, with frequencies in the range of ® = wgin Eq. (19.7). Then for
each there is a dipole induced equal to ou(w)E, and work done by the field
equal to the field times the rate of change of the dipole, -i®C(W)Ew2. We
should sum this over all frequencies to obtain a classical rate of energy
absorption,

e? w3
RabC]aSS = ﬁZwszm . (1916)

For small 32 this function of frequency is seen to be strongly peaked at
® = o such that an integral over ® (from -oo to oo) of the final factor is 71/2.
Thus the final factor in Eq.(19.16) can be written nd(w-wg)/2 =
nh8(how - hwp))/2 and if we add an equal contribution for the complex
conjugate fields we obtain exactly the quantum result, Eq. (19.15). An
interesting aspect of this comparison is that the energy delta function which
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appears in the Golden Rule is present also in the classical result. It is not
original with quantum theory.

To treat both the real and imaginary part correctly at the same time, as
we did for the classical case, we might introduce the quantum-mechanical
density matrix, with a small imaginary term as in the classical treatment.
There are also Green's-function formulations which accomplish this, but
both go beyond the scope of this text.

It may be useful to be reminded of these classical results, which are just
the counterpart of the quantum effects we have been treating. All we have
added to classical physics is our starting assertion of wave-like, as well as
particle-like, characteristics of everything. When we work in a large-
quantum-number limit, where the wave aspects become unimportant, we
must obtain the classical results. This is called the correspondence
principle.

19.4 Coherent Light

In Chapter 18 we introduced normal coordinates for the photon field and
noted that each mode, wavenumber and polarization, behaved as a harmonic
oscillator. When we talk of coherent states of light we are talking about the
states of a single mode. We are constructing states of the system which are
sums of different excitation levels (or numbers of photons) and coherent
amplitudes of the different excitation levels in that single mode. We should
not get this concept mixed with a wave packet which is a combination of
amplitudes in different modes.

For the mode in question, with a particular wavenumber ¢, we construct
combinations of states with different excitation levels,

[W> = Znq AngeiNg®qt |ng> (19.17)

again with a time-dependent factor for the energy of each harmonic-
oscillator state. If we let the magnitude of Apq be slowly varying with ng,
but peaked at some large value np, and we let the phase vary as ei®q then
we obtain coherent light. Most results from the preceding section carry over.

We wrote the vector potential in terms of annihilation and creation operators
in Eq. (18.9) as

2nho .
A=Zqa %—“(aqk +a M) ear iigh . (19.18)
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We obtain a vector potential <y|A|y> varying as V 2mnohwg/q2Q expli(q-r -
wot - )] from the first term, aqk, in analogy with Eq. (19.3). We obtain a
complex-conjugate expression from the second term, a-qM, for the opposite
q. This is a coherent state in which the vector potential and the electric field
vary in a well-prescribed way as a function of position and time, cos(q-r -
gt - o). This is simply a classical light wave propagating with a
wavenumber ¢, exactly as the coherent state of the harmonic oscillator in
Section 19.1 oscillated in a prescribed way.

It should be no surprise that lasers, in which the light is produced from
stimulated emission, produce coherent light. However, it does not seem
simple to show it from our equations. The inverted population of electrons
in the atoms apparently behaves as a highly excited charged harmonic
oscillator. Once there is light present, the light stimulates emission in phase
with itself and this oscillating dipole radiates according to Maxwell's
equations, producing coherent radiation with a dependence upon position
and time corresponding to the phase of the starting radiation. In just this way
a radio transmitter produces coherent radiation, with well-determined
variation of the field corresponding to the current in the antena.

Again, we have been discussing only the coherence between the phases
of different excitation levels for a single optical mode. If we wish to discuss
pulses of light, light packets in real space, we must match the phase of
neighboring modes relative to each other. This is a different kind of
coherence, but requires that the state within each of the modes is also
coherent between excitation levels. Otherwise we cannot associate a phase
with that mode, needed to construct the packet.

19.5 Electromagnetically-Induced Transparency

We discuss one further aspect of coherent light, closely related to our
treatment of the harmonic oscillator in Section 19.1. It has been discussed
much more completely by Harris (1997) and we follow a part of his analysis.
We treat the simplest case first, the hydrogen atom with an applied static, or
dc, field. We shall then return to the more interesting case with this dc field
replaced by a light field. In neither case is the quantization of the light
essential so we can proceed with coherent classical light.

We have sketched the hydrogen levels in Fig. 19.2, with the states |2s>
and |2p> having the same energy, as we saw in Section 4.1, and the state
|1s> at lower energy. The dc field E. is called the "coupling field" and it
splits the energies of the 2s- and 2p-states in hydrogen. Such splitting of
degenerate levels by an electric field is called the Stark Effect, and the
splitting is usually of second-order in the field, but for 2s- and 2p-states we
can see that it is first order. The coupling can be written eEc<2pp[2s>,
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€

ho

&s

Fig. 19.2. The energy levels of the hydrogen atom, with an electric field
E. applied which produces a Stark splitting of the 2s- and 2p-levels into
levels at €, and €.. The system then responds to a probe beam of
frequency  according to a polarizability as shown in Fig. 19.3

which turns out for these states to be 3eEc02/(me2)). Two such coupled
degenerate states form "bonding” and "antibonding" combinations |[y+> =
(|2s> * 2p>)N2 with energies

€+ = €25 T eEc<2pl|2s>, (19.19)

as we saw already in Section 5.1. We now apply a "probe field", an optical

field Epe-i®t (we could take the real part afterward) also indicated in Fig.
19.2, which couples the 1s to the 2p-orbital, and therefore to the |yt .
We may use first-order perturbation theory to correct the occupied 1s-state
to |1s>(1). For time-dependent perturbations we may write the first-order
state using Eqs. (19.8) and (19.10). We measure energies from €15 in writing

the phase factors e-i€z/h . We obtain

[W> <y_|exEp |1s>e-iot . [W+> <y|exEp|ls>e-iot

[1s>(1) = |1s> +

€1s + ho - . €1s + ho - €4
(19.20)
B |y > lwy> <2p|x|1s>eEyp ot
_lls>+(els+l'm)-s-_ 815+}’1m-e+j V2 e

In the last step we noted that the 2s-state is not coupled to the 1s-state and
the p-states in the two terms enter with opposite sign. We may proceed in
the same way to obtain the dipole associated with this state, <1s|(1)-ex|1s>(1),
and equate it to Oc((l))eEpe‘i(Dt to first order in the field to obtain the real part
of the polarizability a(®) as

1
+
€ls- &+ ho ' g5 - &4 Hh®

ow) = ( )<1s|x[2p><2p|x|1s>e2 . (19.21)
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This is plotted in Fig. 19.3. We see that midway between the two levels the
polarizability vanishes. One can examine the state at that frequency to see
that only the 2s-state is contained in the first-order state, so there is no
dipole. Correspondingly a medium made of such systems will have no
refraction, and there is no loss in the system because there is no coupling
between the 1s- and 2s-states. This is called an electromagnetically induced
transparency at this intermediate frequency.

For any atom but hydrogen the two states €25 and €2p would not be
degenerate. We might guess that electromagnetically-induced transparency
could be produced if instead of applying a dc electric field to the two states
of the same energy we applied a coupling field Ece-i®t (or the real part of
this) with hoe = €2p - €2¢ much as we coupled harmonic oscillator states
with an ac field in Section 19.3. This speculation turns out to be correct, and
it can be understood by treating the coupling field exactly as we treated the
driving field in Section 19.3. We expand our state now in only two states in
Eq. (19.8), which we label i = 2p and j=2s Then Eq. (19.9) becomes

- ? u_2a;¥) = up4(1)<2p|H1|2s>e- (€25 E2p - hed /R (19.22)

and the corresponding equation with 2s and 2p interchanged. In both cases
the phase factor on the right becomes one when the coupling field is tuned

A

()

ho

Fig. 19.3. The polarizability of the Stark-split hydrogen atom, Fig. 19.2,
as given in Eq. (19.21).
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appropriately. The two equations can be combined as - h202up¢/0f2

<2s|H1|2p><2p|H1[2s>uzs with solutions up = uzs = e-1Qrt and u2p = -Us
e 1Qrt | Here QR called the Rabi frequency,

_ <2s|H'2p><2p|H!|2s>
= 2 .

QRr?2 (19.23)

Just as the perturbation-theory correction to the states could be generalized
to time-dependent potentials in Eq. (19.10), two nondegenerate states can be
coupled by an appropriate time-dependent field to form bonding and
antibonding dynamic states. These two dynamic states play exactly the role
played by the Stark-split 2s and 2p states in hydrogen. They are peculiar
states, and not eigenstates as we have discussed extensively, in that the two
terms in the wavefunction, [y> = (upse-iesth 25> iuzpe-ispt/ﬁ [2p>)etirt, do
not change phase at the same rate. However, they respond to a probe ficld
much as did the Stark-split hydrogen states.

If we now introduce a probe light wave at a frequency wp near (€2p -
€1s)/h (note that this is the energy difference between the Is-state and the 2p-
state) it will couple an occupied electronic 1s-state to an upper dynamic state
at €2p +hQR and a lower dynamic state at €2p - hQR , just as the probe in
the degenerate case coupled the 1s-state to states split by + <2p|exEc|2s>.
For probe frequencies between these dynamic levels raised and lowered by
the Rabi frequency, the two modes enter the response with opposite signs,
just as they did for the degenerate case in Eq. (19.21). With vanishing
polarizability at the midpoint between the states, the system is completely
transparent. There is no absorption nor refraction. Again this is
accomplished with a state with only 1s- and 2s-occupation. Absorption rises
with the square of the frequency difference from the crossing point.

The range of quantum-optic effects, of which this is an example, is
enormous. Our object here is only to introduce the concepts and methods by
which they are understood, not to explore the many possibilities.



VII. Many-Body Effects

The step which made electronic structure understandable was the one-
electron approximation, which we introduced in Section 4.2. In looking at
the state of one electron, the effects of other electrons were included in an
average way by including an averaged potential from those electrons. This
one-electron picture provided us with states in terms of which we could
discuss transitions and tunneling and optical absorption and emission. They
also proved the basis for statistical analysis when many particles were
present and could be used to estimate total-energy changes when atoms
were rearranged or moved. We turn finally to some cases in which this one-
particle picture is inadequate and see how we can proceed to understand
such systems.

259
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Chapter 20. Coulomb Effects

The principal interaction between electrons is the Coulomb interaction,
and it is the basis of most of the effects we shall discuss. When we discuss
superconductivity in Chapter 23, the important interaction between
electrons will arise indirectly through the phonons. In particle and nuclear
physics the interactions come from fundamentally different sources as we
saw in Section 17.4. There are many qualitatively different effects arising
from the interaction between particles. .If we understand the physical nature
of any effect, we can ordinarily frame the problem in terms of that
understanding, much as we took variational wavefunctions to correspond to
bonding states in molecules, or propagating states in solids. Including
many-body effects is not a straight-forward addition of another term to the
one-particle Hamiltonian; it is an asking of new questions. We begin with a
discussion of Coulomb shifts, which arise because the charge on an
individual electron is not infinitesimal.

20.1 Coulomb Shifts

We made a one-electron approximation in constructing electronic states
in atoms in Chapter 4. This was a seeking of approximate many-electron
states in the form of a product wavefunction, or an antisymmetric
combination of product wavefunctions, of the form y1(r)y2(r2)...wN(rN)
for the N electrons present. This led to a one-electron eigenvalue equation
with a potential based upon which states were occupied, and the solution of
that equation gave a set of energy eigenstates €;, the lowest of which were
occupied in the ground state, corresponding for example to a 1s22s22p2
configuration for carbon. We indicated that these eigenvalues were
approximately equal to the removal energy of an electron from the
corresponding state. It is also true that the energy required to transfer an
electron in the atom to an excited state of the atom is given approximately by
the difference in the eigenvalues corresponding to the states between which
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the electron is transferred. For example, changing from a 1s22s22p2to a
1s22s2p3 configuration for carbon requires approximately €2p - €2s. The
new configuration actually corresponds to a slightly different charge
distribution and potential which should be used to obtain new eigenvalues,
but we have neglected such small corrections, which are many-body effects.

However, if we were to remove a second electron from an atom, going
from 1s522s22p to 1s22s2 for carbon, it is clear that much more energy would
be required to remove that second electron than the €2p which was required
for the first, It would be working against the extra -e2/r from the doubly-
charged atom as it was removed. Similarly, adding an electron to a neutral
carbon atom, going to a 1s22s22p3 configuration would not gain the energy
€2p. An electron returning to the ionized atom to make it neutral gains &2p,
but that coming to a neutral atom gains less by an energy equal to the
Coulomb interaction U between two p-electrons. It is of order seven
electron volts for silicon and the heavier elements but over eleven eV for
carbon (estimates are given for all the elements in Harrison (1999), p. 9).
This corresponds to e2/r with r of the order of 2A as expected for charge
distributions of atomic size. This is all in accord with the familiar fact that
the electron affinity of an atom, the binding energy of the additional electron
in a negatively charged atom, is much smaller than the ionization energy of
the neutral atom. The difference is this Coulomb interaction U which is
also approximately equal to the difference in the first and second ionization
energies of the same atom (assuming both removals are from the same state,
e. g., a 2p-state).

One might have thought that this Coulomb effect would spoil the
prediction of cohesive energy of an alkali halide which we made in Section
6.3. We took the energy gained in forming the solid as the energy gained in
adding an electron to the halogen atom, minus the energy required to remove
it from the alkali atom. Here we would say that an energy U should be
added to the free-atom term value we used for the halogen. That is true, but
the energy of that added electron is also lowered by the presence of the six
positive alkali ions surrounding it, raised by the twelve nearest halogen ions,
etc. The sum over neighbors is called the Madelung energy, equal to
-1.8¢2/d (see, for example, Harrison (1999) 326ff), and approximately
cancels the Coulomb U. The cancellation is no accident. The atoms in the
ionic crystal select a spacing such that the transfer of electrons between
states on different atoms does not greatly change their proximity to the
nuclei. Such cancellations have made many of the simplified one-electron
estimates meaningful in spite of real Coulomb shifts.

One might also have thought that such Coulomb shifts did not apply to
the transfer of an electron from the valence band in a semiconductor to the
conduction band in the semiconductor since we think of both states as spread
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throughout the entire crystal. This would be misguided since the crystal is in
fact made of atoms and an atomic description is also meaningful for the
crystal. Thus we may think of the transfer of an electron to the conduction
band as a transfer from a bonding state (for which the energy eigenvalue
applies) to an antibonding state in a site where the bond levels are both
occupied. Thus we might expect the eigenvalues - the results of a band
calculation - to underestimate the gap by an energy of the order of the U for
the constituent atoms. That is true, but we may also see that this
enhancement of the gap is reduced by a factor of 1/¢, with € the dielectric
constant equal to 12 for silicon,

U

This is not because the dielectric medium intervenes between the interacting
electrons, but because an extra electron in a bond polarizes the surrounding
medium so that the potential is +e2/(€r) and reduced by a factor of 1/¢ at the
surface of the atom or bond. This enhancement of the gap, of order 7 eV/12
= (.5 eV for silicon, relative to band calculations, is seen experimentally. It
can be calculated more completely by the mathematical methods of many-
body theory, as by Hybertsen and Louie (1985), but it is given rather well by
Eq. (20.1) for all semiconductors and insulators (Harrison (1999), 207ff).

Adolph, Gavrilenko, Tenelsen, Bechstedt and Del Sol (1996) have made
a rather complete study of the effect of this enhancement on various
properties. It is found that the enhancements tend to be rather independent
of wavenumber in the bands, as suggested by the Eq. (20.1), so that the
correction is approximately a displacement of the entire band, without
changing the dependence upon wavenumber. This is sometimes called a
"scissors” operation, like cutting a page on which the calculated bands are
plotted, and shifting the conduction bands upward in energy by U/ in order
to describe the real excitations to conducting states. For calculating energy
shifts by perturbation theory, as for the dielectric response in Problem 5.3, or
band curvatures in the so-called k-p method, one should again use the
enhanced band gap, including the contribution from Eq. (20.1), in the energy
denominators. This is not completely obvious, and would not be the case if
the perturbation-theory shifts corresponded essentially to excitation within
each bond site, as would be the case if the excitons discussed briefly in
Section 14.3 were localized to a bond site and had binding energy (relative
to a separated electron and hole) given by Eq. (20.1). Excitons are in fact
spread over many bonds in semiconductors and much more weakly bound
relative to a separated electron and hole.
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We note finally that in a metal, for which we think of € = =, no
enhancement is expected and the metallic conductivity associated with a
finite density of excited states per unit energy at the Fermi energy is
retained. As we go from a semiconducting state to a metallic state by
shifting the conduction bands downward, the dielectric constant € increases
and the real excitation energies become closer to those from the band
calculation until they coincide exactly as the gap becomes zero.

20.2 Screening

Asserting an infinite dielectric constant for a metal is an
oversimplification which really applies only to fields constant in time and
constant in space. In this section we consider the effects of space-dependent
and time-dependent applied fields which redistribute the electronic charge
and modify the applied potential, an effect called screening. The problem
requires a self-consistent solution : in order to calculate the potential which
is present in the system we need to know the charge distribution, and to
calculate the charge distribution we need to know the potential. There are
two ways in which such self-consistent solutions are often obtained. For
numerical solution one guesses the potential, perhaps as a superposition of
free-atom potentials, and then calculates the wavefunctions and charge
distribution From this charge distribution one recalculates the potential, and
repeats - or iterates - the process until both potential and charge distribution
have settled down at the self-consistent solution. The second, which we
shall use here, is to linearize the response to the potential, allowing an
expansion in independent components. Then the response equation and
Poisson's Equation can be solved together self-consistently.

The simplest basic formulation is the Fermi-Thomas method, a
semiclassical theory which we discuss here. We shall then outline the
quantum treatment of the same effects and give the results.  The Fermi-
Thomas approximation envisages a net potential V(r) (including any
modifications from charge redistribution) which varies slowly over distances
of the order of the electron wavelength, a few Angstroms in metals. Then
we imagine the system of electrons in equilibrium, with a single Fermi
energy as described in Section 10.5. Since the potential is varying slowly in
space, we may consider a region at r where the potential is essentially
constant and the electronic energies given by h2k2/(2m) + V(r). The states
will be filled to the Fermi energy, an energy h2kp2/(2m) + V(r) with a Fermi
wavenumber related to the electron density in that region n(r), given in Eq.
(2.10) as kp3(r) = 3n2n(r). However, the Fermi energy to which we fill is
the statistical Fermi energy W which we introduced in Section 10.5. and is a
constant of the system. Therefore,
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h2kp2(r) N

B ﬁz(3n2n(r))2/3
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+ V() =p (20.2)

at all r. We see that if the net potential, V(r), varies slowly with position, so
also must the electron density. Through Poisson's Equation we know that
there must be a contribution Vg(r), called the screening potential, to this net
potential V(r) satisfying -V2V(r) = 4ne2n(r). The net potential V(r) also
contains other applied contributions Vo(r), such as the potential from the
nuclei, which we ordinarily know at the outset. The Fermi-Thomas method
solves these two equations together. It can even be applied to an atom with
Z electrons and an applied potential Vo(r) = -Ze2/r , solving for n(r) rather
than for the wavefunction as in the more complete quantum calculation. Itis
called semiclassical because it retains the Pauli principle but not the full
wave mechanics. The method has not proven very useful for such systems
for which the real electron density varies as rapidly with position as in atoms
and molecules.

Of much greater interest is the application to metals for which the
electron density is rather uniform. It is then appropriate to linearize Eq.
(20.2) and the equations can be solved analytically. We in fact see from Eq.
(20.2) that the change in electron density due to a small change in net
potential is

1/3
Sn(r) = - (3%[’121)%73@ V(r) = - n(e)dV(r), (20.3)

with the density of states n(€) per unit energy and per unit volume given in
Eq. (2.11) and evaluated at the Fermi energy. We may understand the final
form by noting that as the potential fluctuates from point to point the filling
varies much as the depth in a swimming pool varies as the floor fluctuates up
and down. This is illustrated in Fig. 20.1 for the electron gas.

Once we have linearized the equations it becomes appropriate to Fourier
transform any applied potential as VO(r) = 2qVq0elq T and treat each Fourier
component separately to obtain a dielectric function which describes the
modification of each term in the potential by the redistribution of the
electron gas. The screening potential for each component will have the same
dependence €14' T and the coefficient is written Vg®, so the coefficient for the
net potential is

In Poisson's Equation, given above, the V2V(r) becomes —qZVqs S0
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Fig. 20.1. In the linearized Fermi-Thomas approximation the statistical
Fermi energy W is a constant of the system, but if the potential fluctuates,
the kinetic energy level to which states are filled, Ef, must fluctuate,
giving an electron-density fluctuation equal to -8V(r) times the density of
states n(€g) per unit energy per unit volume near the Fermi energy.

47e?
Vqs: q2 nqs.

(20.5)

Finally, in terms of Fourier components Eq. (20.3) becomes

ng® = -n(€p)Vq.

(20.6)

We may solve these three equations together by adding V0 to both sides of
Eq. (20.5) so the left side becomes Vq. Then ng® on the right side of Eq.
(20.5) is written in terms of Vg using Eq. (20.6) and the result solved for Vg

as
V.0
_'q
Va=cioy (20.7)
with
4men(ep) K2
Bo=1+— 3 2 (20.8)
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called the wavenumber-dependent dielectric function because any
component of the applied potential, or applied electric field, of wavenumber
g is reduced by a factor of 1/e(g). The Fermi-Thomas screening parameter
K is given by

K2 = dneln(ep) =~ 5, (20.9)

obtained using Eq. (2.11) for n(€p).

Recall that we have linearized the equations so it is really valid only for
small perturbations and we have used the Fermi-Thomas approximation
which assumes perturbations which vary slowly with position, meaning that
q is small compared to kp. In spite of these limitations in principle, the
theory often works well quantitatively even when we go beyond those
limitations. This may be because the self-consistent solution prevents large
unrealistic deviations from the correct solution.

We already made use of this screening in obtaining the matrix elements
of an empty-core pseudopotential in Section 13.1. Because the problem was
linearized, we could calculate the screening of each atomic pseudopotential
in a metal separately. This is a case where the applied potential, wO(r) =
-Ze2r for r > r¢ and zero otherwise, changes abruptly with position, but the
result is a useful one. Our first step was to obtain the Fourier expansion of
this applied potential in Eq. (13.9). [Actually we sought <k + gq|w0(r)|k> =
(1/Q0)[d3r wO(r)eia T | which is the same thing.] The integration required a
convergence factor, e’¥” , but we could take Kk equal to zero afterward to
obtain

2
<k + qwO(r)|k> =- éthe cosgre. (20.10)
0q°

We are to divide this Fourier component by the dielectric function of Eq.
(20.8) to obtain -4t Ze2cosqre/[Qo(g? + k2)], the form which we used.

We noted further at that point that this form, with a g2 + k2 in the
denominator, was exactly what was obtain in the integral <k + q|w0(r)|k>
with the convergence factor, so we know the inverse Fourier transform.
For the simple Coulomb potential with ro = 0 the screened Coulomb
potential becomes

-, - e (20.11)
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[It is best to use the ro = 0 form here because of small terms, proportional to
K, dropped in the integral.] The effect of the screening is very clear in Eq.
(20.11). It simply eliminates in a smooth way the large-distance tale of the
potential, leaving the potential very much the same at small distances.

This makes an extraordinary simplification of the theory of metals (see,
for example, Harrison (1999), Chapters 12-14). In this Fermi-Thomas
theory the interaction energy between metallic atoms must also take this
screened Coulomb form (actually the interaction between two metal atoms,
with valences Z1 and Z2 and core radii rc1 and r¢2 becomes
Z1Zpe2coshkreicoshkreoeX/r ). Much of the dynamics and statics of
interacting metal atoms becomes describable in terms of simple, two-body,
central-force interactions, with additional volume-dependent terms in the
energy. In this case it has been possible to incorporate these many-body
terms arising from the interaction between the electrons in the metal in a
simple self-consistent theory.

The assumption of potentials slowly varying with position, which was
intrinsic to Fermi-Thomas theory, can be eliminated by a full quantum
theory, while still retaining the linearization which is the most essential
aspect. To first order in the potential 3V(r), or its Fourier components <k +
q|dV(r)lk> or <k + q|w(r)|k> , we may calculate the modified free-electron
states in first-order perturbation theory as

|k + q> <k + q| SV(r)|k>
5 .
(2 [k +q2)

[k>(D = k> + (20.12)

We may square this, keep terms linear in dV(r), and sum over occupied
states k < kf to obtain the dn(r) in terms of §V(r), which we obtained in the
Fermi-Thomas approximation in Eq. (20.3). The rest of the analysis
proceeds exactly as above, leading to a more complicated dielectric function
given by (e. g., Harrison (1970)),

- g2 2
Lk Pl ), 0.1

=1+ 242 [ glkr

This is called the Hartree dielectric function, since it is based upon the
Hartree approximation discussed in Section 4.2, or the Lindhard dielectric
function after the first person to derive it. It replaces the less-accurate Eq.
(20.8) and is almost as easy to use.

This quantum dielectric function is plotted in Fig. 20.2, and compared
with the Fermi-Thomas approximation to it. As expected, they approach
each other at small g where the assumptions of Fermi-Thomas theory apply.
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They also both approach one at large ¢ so that indeed the Fermi-Thomas
theory has done quite well. However, if we look closely at the region near
g/kr = 2 we notice a subtle fluctuation in the quantum dielectric function.
Examination of Eq. (20.13) near this point shows that it takes the form
(g-2kp)ln|q - 2kg| and has a negatively infinite de/dg at that point. In spite
of the subtlety of the singularity, it has significant consequences. If we use
this dielectric function to screen a spherically-symmetric potential, as in Eq.
(20.11), we find (e. g., Harrison (1970)) a term which varies at large
distances as cos(2kpr)/(kgr)3, rather than exponentially as in Eq. (20.11).
These large-distance fluctuations, called Friedel oscillations, are real and
interesting, but have turned out to have surprisingly few consequences. At
large g one may also see that the quantum dielectric function approaches
one as 1/g4 rather than as the 1/¢2 in the dielectric function of Eq. (20.8).
We finally consider time-dependent screening. There are many aspects
which can be described in terms of transport theory, as in Chapter 11, with
the addition of a potential which then depends self-consistently upon the
distribution function f{p rf). One of the most important many-body effects,
plasma oscillations, can be understood this way and in fact in the even
simpler approximation described at the end of Section 11.3. It is basically
the same calculation which we made for the speed of sound in Section 1.8
but now for a charged electron gas. We characterized the compressional
wave by a displacement of the medium in the z-direction given by u(z, t) =

3 :
2L Fermi-Thomas Approximation i
=
=
Quantum Dielectric Function
1
0 .
0 1 2 3

q/kF

Fig. 20.2. The quantum dielectric function of Eq. (20.13), with k/kg taken
equal to one and the Fermi-Thomas dielectric function of Eq. (20.8) with
the same parameters.
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upet(qz-ot) (or the real part) which in an electron gas of density ng gives rise
to a density fluctuation -noVu(z, ) = -ignoupe(z-®t), This gives rise to a
potential fluctuation, given by Poisson's Equation, Eq. (20.5), as Vgel(qz-ot)
= -ig(4me2/q2)npupei(@z-0t ). The corresponding force on an electron is -V
V(z) = -4me2nougei(dz-0t) | which we may equate to the electron mass m

times the acceleration of the gas, -w2ugei(dz - ®t), Equating these leads to a
frequency wp, called the plasma frequency, given by

2
2:47Le no.

— (20.14)

Wp

In contrast to sound waves, it has turned out to be independent of
wavenumber because of the long-range nature of the electron-electron
interaction. They are a many-body effect, a direct consequence of the
electron-electron interaction. They show up in any complete treatment,
classical or quantum-mechanical, of the dynamics of an electron gas. Once
they are suggested, they can be understood by the simple argument we have
given. For np corresponding to metallic densities these turn out to have
energies of order ﬁu)p = 10 eV. They are observed in the energy-loss
spectrum of high-energy particles passing through metal foils.

It may be interesting that the same argument could have been made for a
collection of metallic ions, each of mass M and charge Z, if we ignored the
important effect of the electrons present. This gives the ion plasma
frequency as wip?2 = 4mZ2e2/(MQY), with Qg the volume per ion. The effect
of the real compensating electron gas is to screen the interactions, reducing
the force, the acceleration, and therefore the frequency-squared, by a factor of
1/e(g). If we use the Fermi-Thomas dielectric constant, the result at long
wavelengths, small ¢, is

202
w2 :—12%0 2. (20.15)
With the interactions screened, as we have discussed, the frequency becomes
proportional to the wavenumber as for a sound wave in a metal, which is
what this compressional wave is. This prediction of the speed of
longitudinal sound in a metal, called the Bohm-Staver speed of sound, is in
reasonable accord (within 10 or 20%) with experiment for the simple metals.
If we substitute Eq. (20.9) for k2 we see that the speed of sound is given by

NZm/(3M ) times the Fermi velocity hkg/m of the electrons.
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Chapter 21. Cooperative Phenomena

There are systems for which many-body effects make dramatic changes
in the behavior. These ordinarily arise from the cooperative effect of many
particles, like the condensation of vapor into a liquid. Hear we discuss such
cooperative phenomena in the context of quantum theory. One of the most
familiar such cooperative phenomena is ferromagnetism, but we postpone
that discussion till the next chapter after we discuss other magnetic effects.

21.1 Localization and Symmetry Breaking

Another cooperative phenomenon is associated with localization of
electronic states and can be understood already in the simple Lip molecule
which we treated in Section 5.1. We found a ground state, in our one-
electron approximation, with both valence electrons in a bonding orbital, and
consequently with a 50% chance at any moment of being on the same atom.
If we imagine pulling these atoms slowly apart, Vg decreases and
eventually becomes unimportant, but we are retaining a state with a 50%
chance of both electrons on the same atom with a corresponding Coulomb
interaction U. Clearly the energy will be lower if we change to a state with
one electron on each atom. This corresponds to a correlated motion of the
electrons since they tend to avoid each other, rather than each forming a one-
electron state, independent of the other, as we assumed. The correlated state
is also often called a localized state. We proceed to see how the system
changes from a bond-like to a localized state.

We describe each electron in terms of four states, the 2s-state on each
atom with the spin & either up (T) or down ({). The Hamiltonian, in the
operator notation of Section 16.1, would be written
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Ho = Zi,c & Cis I Cic + Vssczc (c1ote2s + c2ste1o). (21.1)

In the context of this formulation, we can add the electron-electron
interaction which describes the increase in Coulomb energy U if two
electrons are on the same atom as opposed to separate atoms, and they would
need to have opposite spin if on the same atom. That electron-electron
contribution to the Hamiltonian is

Hi= UZicitfeiteilfal . (21.2)

As we have indicated, adding the interaction with four operators
tremendously complicates any problem. However, this problem started out
so simple that we can in fact solve it exactly, in the context of this
formulation. This has become a two-electron problem, but there are only six
two-electron states. One basis state is with a spin-up electron on atom one
and a spin-down electron on atom two, which we write ¢11Tc247]0>.
Another is c1}Tcp7t|0>. There are also two basis states with both electrons
on the same atom, ¢117¢1{7|0> and ¢217c201|0> and two basis states with
parallel spin, ¢;17¢2110> and ¢ Tc201]0>.  These six basis states have
energies 2€g, 2€5, 2e5+ U, 2e5+ U, 2¢5, and 2¢&g , respectively, before
introducing the Vg . In addition, the first basis state is coupled to the third
and fourth by Vg (which couples individual electron states of the same
spin on the two atoms) and so also is the second basis state couple to the
third and fourth by Vgso . All other states are uncoupled. The
corresponding six-by-six Hamiltonian matrix can be solved easily. The last
two basis states, with parallel spin, are eigenstates with energy 2€s,
uncoupled to the other basis states or each other. We could think of these
states as having one electron on each atom or one in a bonding state and the
other in an antibonding state of the same spin. (When the state is written
out, terms with both electrons on the same atom cancel as the Pauli Principle
tells us they must.)

The remaining four eigenstates are even and odd combinations of the
remaining four basis states. Of most interest is the ground state, which will
be even. One even combination is: [¢1TTc1T|0> +c21 T2l 70512, with
energy of 265 + U . The other is: [c11T¢247]0> + ¢1lTea1t|051/A2  with
energy 2¢s . We may verify that they are coupled by 2V and solve the
quadratic equation for the two even eigenstates as

£+ = 2¢€ +g + (g T + 4Veso2 . (21.3)
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Use of creation operators for the states assures the appropriate
antisymmetry, which is of no consequence in this simple example. With
only one orbital per atom there are no exchange terms in the model. The
minus sign in Eq. (21.3) gives the ground state. Note that if U is neglected
it gives 2(€s + Vo) , with Vo negative, the solution we obtained in
Chapter 5. If on the other hand, Vg6 becomes very small, the energy
approaches 2¢5 . The electrons indeed separate onto different atoms.
Furthermore, the energy and the state vary smoothly between the two limits
as the atoms are separated from each other. Because of the smooth
variation, over the entire range of Vgo/U |, all states are correlated to some
extent but the correlations only become important when U is of order or
larger than Vs [In passing we note that in addition to the ground state
there is a high-energy state obtained with the plus in Eq. (21.3). There is
also one odd state with energy 2¢s which, with the two parallel-spin states
mentioned before, form a triplet, three states of the same energy, and
corresponding, it turns out, to parallel spins of 1/7 units each totaling one
unit of spin with three orientations. There is also an odd state with energy
2es + U. We are only interested here in the ground state.] This system is
frequently discussed in terms of the exchange interaction which we
introduced in Section 4.2, but we regard that as misleading and confusing.
There is only one orbital per atom and exchange can only enter if we
introduce artificial self-exchange and self-direct interactions as we discussed
in Section 4.2. For the understanding of these systems there is considerable
advantage in not introducing these artificial effects and in retaining only the
real electron-electron interaction.

It is interesting to compare the energy we obtain by an exact solution,
Eq. (21.3), with the one-electron solutions which we have used throughout
the book. Evaluating the expectation value for the Hamiltonian, Egs. (21.1)
and (21.2) with respect to these bonding states yields U/2 - 2|Vgsql,
compared as the curve "HF" (for Hartree-Fock) with Eq. (21.3) plotted as
"Exact" in Fig. 21.1. We imagine this as a plot of energy versus spacing,
since the abscissa, U/|Vsso| , increases with increasing spacing. The exact
energy is lower than the approximate solution (this follows from the
variational argument of Section 4.2), but they become rather close at small
spacings where the real molecules are rather well described by the one-
electron approximation. The large error of U/2 at large spacings, mentioned
above, is apparent.

It is also possible to improve upon the one-electron solution by allowing
the spin-up solution to be of the form sinn|1T> +cosn|2T> and the spin-
down solution to be of the form cosn|1{> + sin 1|2 >, with the coefficients
chosen to retain normalization but allow segregation of the electrons by
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Fig. 21.1. A plot of the exact total energy, Eq. (21.3), for the two-level
model of the Lip molecule, compared with the one-electron approximation
(HF) used in Chapter 5. Also shown is a third solution, UHF, a one-
electron approximation in which the spin-up and spin-down electrons are
allowed to break symmetry and localize, dividing the region into bond-like
and localized regions.

varying 1 , and the total energy expectation value of the Hamiltonian is
minimized with respect to 1. This is another example of selecting a
variational solution which encompasses the physical concept which we think
is important.  This particular choice is called Unrestricted Hartree-Fock
(e. g., Harrison (1999), 595ff), and the result is plotted as UHF in Fig. 21.1.
Indeed it eliminates the U/2 discrepancy at large spacing, but it retains too
small a binding by a factor of two and in fact for U < 2|Vgso| the minimum
energy comes at the symmetric state, giving the energy of the HF solution,
as seen.

This Unrestricted Hartree-Fock approach does incorporate an
appropriate spin segregation on the two atoms, but it is misleading in doing
it in a discontinuous way (the second derivative of the energy with respect to
the abscissa is discontinuous at U = 2|Vsso|). Frequently that is not a serious
drawback. When a condensed-matter system has two qualitatively different
states, such as the localized and the bond-like solutions, the energy of the
localized solution is ordinarily minimum at larger spacing. The bond-like
solution may have a minimum energy at a smaller spacing. This is sketched
in Fig. 21.2, giving the energy of a system as a function of the volume of
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that system. If that minimum for the bond-like state is higher in energy, as
shown there, the stable state is the localized one. However, if a pressure P
is applied, there is an additional term in the energy equal to P(€2 - Qg), also
sketched in Fig. 21.2. Adding it to the Eiot shifts the minimum to a slightly
lower volume and brings the bond-like energy minimum down. The
common tangent, also drawn in Fig. 21.2, is also rotated counterclockwise.
If sufficient pressure is applied that this common tangent has positive slope,
the energy will be lower in the bond-like state and the system will make a
first-order transition (a transition with a discontinuous change in volume) to
the bond-like state. If the approximate descriptions of these two states are
good in the region of their minimum energy, the prediction can be accurate,
and it does not matter than neither description is very good at intermediate
volume. That intermediate volume is not accessed by the experiments.
[See Harrison (1999), Chapter 16, for studies of this aspect for the rare
earths and actinide metals.] There may be cases where the entire range of
states between two limits is accessed, and then a more complete description
such as Eq. (21.3) may be needed.

The most important results from this section are, first, seeing that the
electron-electron interaction can fundamentally change the approximations
which are appropriate for discussing the systems, and, second, that it is not
always necessary to study the most difficult intermediate case. Often
transitions are made between states of condensed matter which are

tot

Fig. 21.2. A schematic plot of total energy versus volume for a system
which has lowest energy with the electrons localized to their atoms at a
large volume Qq. If a pressure P is applied, an additional term is added, a
straight line with a slope equal to P. If the slope of that pressure line
exceeds the negative slope of the common tangent shown, the system will
transform to the bond-like state at the smaller volume.
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fundamentally different, but both may be simply understandable.
21.2 The Hubbard Hamiltonian

The Hubbard Hamiltonian is the direct extension of the Hamiltonian
given in Egs. (21.1) and (21.2) to a long chain of N atoms such as we
discussed in Section 6.1,

H =2 € ciolcic + VssoXio (CioTcitlo + CitloCic)
21.4)
+ UZicitfeiteilfeil ,

usually with one electron per atom and sometimes extended to a square
lattice or simple-cubic lattice. It introduces the essential feature of the
Coulomb interact but eliminates any unnecessary complications, as it did for
the two-atom case discussed in the preceding section. It cannot be solved
analytically, as was the two-atom problem, because the basis contains so
many N-electron states but the approximations introduced there can give
insight into the behavior of such a system and important solid-state systems
which share these features. We discuss here symmetry-breaking and
antiferromagnetic insulators.

With only the first line in Eq. (21.4) we constructed one-electron states
and obtained the simple energy band €x = €5 + 2Vsgcoskd . We can
similarly construct two-electron states

lw(2)> :( \/%Zi eikdiciGTI \[l—vNZj eik'dij'U'Tj|O>

Zl,_] elkdlelk’d}cloTCJGleO> s

(21.5)
_1
N

This approach is used for N = 2 in Problem 21.1. These states are normalized
(except if k' =k and o' = &, in which case the state is zero). Once we have
seen how the normalization has worked out, we can see that the expectation
value of the first sum in Eq. (21.4) with respect to this state is 2&g per atom
and for the second is 2Vgg(coskd + cosk'd). This clearly generalizes to
many-electron product states, which are also antisymmetrized by our use of
creation operators.

Of course it is the second line in Eq. (21.4) which is interesting. For

each atom in a sum over i', <y (2)|Uzi'ci'TTci'Tci'J,Tci'i |w(2)>, the only
contribution from the states of Eq. (21.5) will come when both i and j are
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equal to i'. If the spins are parallel, the ¢i"TTci?T for the state is zero and
there is no contribution. If the spins are antiparallel we obtain U/N2 and
there are N such terms, so the Coulomb energy is U/N , as we obtained in
the last section for N = 2. This also generalizes to the N-electron state, with
the lowest half of the band filled with N/2 electrons of each spin, in that
there is no contribution from states of parallel spin, and the expected
contribution for no correlated motion of the electrons of antiparallel spin.
Each spin-up electron on a given site will see on average a half an electron
of opposite spin, and no electrons of the same spin. We can add this up for
all spin-up electrons to obtain NU/ 4 and all interactions have been included
once. (We mentioned the double counting of interactions if we add shifts for
all electrons in Section 4.2.)

As in the two-atom case, there is reason to correlate the motion. We can
in fact see an instability of the many-electron generalization of Eq. (21.5)
using an Unrestricted Hartree-Fock state with lower symmetry as we did for
the two-atom problem, and see that a lower energy can be obtained. We do
this for one electron per atom and proceed by constructing Bloch sums as in
the first form in Eq. (21.5), but with different coefficients on odd- and even-
numbered atoms, shifting spin-up electrons to one set and spin-down
electrons to the other. This will shift the energy, through the U-term in Eq.
(21.14), for each electron differently upon the different atoms. If we knew
the result, a net average fraction sin2n of up-spin electrons on even atoms
and cos2n on odd atoms, and thus a shift from the final term of (U/2)sin2n
upward for up-spin on even atoms and down-spin on odd atoms, and a shift
of (U/2)cos21 upward for down-spin on even atoms and up-spin on odd
atoms, we could proceed with the one-electron calculation for each set.
However, we do not know 1} so we must proceed self-consistently to guess
1, do a band calculation, and then use the resulting states to estimate the
shift and thus n, as we did for the screening calculation.

The important results can be gotten rather easily. Given a value of 1 we
have a simple band calculation with a Bloch sum of spin-up states on even

atoms V2/N Zi (even)eikdicitT|0> with energy €5 +(U/2)sin2n. It contains no
nearest-neighbor atoms so Vsso does not enter the expectation value of its
energy. It is, however, coupled by 2Vggcoskd to a Bloch sum of spin-up

states on odd atoms, V2/N X; (odd)etkdici1T]0>, and is not coupled to any
other Bloch sum. The variational solution, or band calculation, is carried out
with a state given by ui(k) times the Bloch sum on odd atoms plus up(k)
times the Bloch sum on even atoms. The solution is obtained from the
solution of a quadratic equation as
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U . U cos?m - sin2
Ek=Es+7 (sin2n + cos2n) + \/ [5 MZSI—HY[)Z + (2Vgsgcoskd)2

(21.6)

= &g+ %] + \/ UZCOS22n/16 + 4V5502C052kd

These bands are plotted in Fig. 21.3 choosing the - for kd < 7/2 and the
+ for kd > m/2. We really have doubled the cell size by taking alternate
atoms different and should plot both in a Brillouin Zone with kd < m/2 as
done in the dotted curve to the left, but the scheme we use makes clearer the
effect of breaking the symmetry. We see that it has opened up a gap at 7/2,
just where the Fermi wavenumber comes. Energy is lowered by populating
only states below the gap.

These were the bands for spin-up electrons. Of course the bands for
spin-down electrons are exactly the same, but they correspond to electrons
shifted to the other set of atoms. Spin alternation between atoms is called a
spin-density wave, or an antiferromagnetic state, and in this case with a gap
opened up at the Fermi energy, it is an antiferromagnetic insulator.

To complete the calculation we must calculate, given a particular 1 in
Eqg. (21.6), the charge distribution and the resulting shifts which should equal
(UI2)cos2n and (U/2)sin?n for a self-consistent choice. The solution of two
simultaneous equations leading to Eq. (21.6) is exactly parallel to that

0 /2 kd n

Fig. 21.3. A plot of the bands with broken symmetry. With alternate
atoms different, the primitive cell is larger and the Brillouin Zone is
reduced to 0 < kd < /2 with two bands as shown. They may also be
understood as opening a gap in the original bands for 0 < kd < 7.
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leading to Eq. (5.15) for molecular orbitals, and the states take the same
form. If we define a V = 2Veocoskd and a V3 = Ucos2n/4, then the
coefficients of the two Bloch sums become V(1 + op)2  with op =
V3/\VV22 + V32, Then the fraction of probability density on an even site for
a Bloch state of wavenumber k is (1 * V3A/ V22 + V32 )/2 . We may sum
over the states of one spin, and divide by half the number of atoms to obtain
the charge from that spin on a particular atom as

2 Nd dk
Ze=Won .[—n/zdn/zd 5 (H

Ucos2n/4 ]

\/ U2c0s221/16 + 4Vgsg2cos2kd

(21.7)
a 1

1
- dkd e
2 7 2m _[nlz 2 a2 + cos2kd

with

Ucos2n

= 8| Vssol -

(The integral is for the half-filled band.) But this Z+ is what we have
written cos2n or sin?1 or (1 £ cos2n)/2, so our self-consistency condition is

8| Vssol

1 1 2. 14
U :nJ.—Tt/2,TE/2 dkd \/m :Ttlnla| (21.8)

We related the integral to an elliptic integral, and wrote the final form for
small a . Correction terms are of order a2 In|a| but this form is reasonably
accurate for 0 < a < 2. There is always a solution and a gap since, no matter
how small U is, a cos2n can be chosen small enough that log|4/a| will be
large enough to match the left side. The gap is given by Eg = 1/2Ucos2n =
4|Vgsola. We may exponentiate the first and last forms in Eq. (21.8) to
obtain

Eg = 16|Vgsol € “4Vssol/U. (21.9)

There is always an instability against such a transition in a one-dimensional
case at zero temperature, but these qualifications are important. At finite
temperature there will be some electrons excited across the gap which
contribute to the final term in Eq. (21.7) with opposite sign. We may in fact
repeat the evaluation for finite temperature using a Fermi distribution with
the Fermi energy midgap, €m = & + U/2 as seen from Eq. (21.6). Then the
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integrand in Eq. (2.18) is multiplied by 1/(e(€ - €n)/k8T + 1) and from Eq.
(21.6) we see that €k - £m = 2VsgVa2 + cos2kd . We then subtract a term
for electrons excited above the gap by subtracting a factor 1/(e -(¢k - €m)/kpT
+ 1) so that the integrand in Eq. (21.8) is multiplied by
tanh(2 VssgV a2 + cos?kd /kgT ) and the limits on the integral remain the
same. At low temperature, this tanh approaches a step function at the n/2
limits and the result is unchanged. However, at higher temperatures it
becomes proportional to 2VgsgVa? + cos?kd, cancels the factor in the
integrand which is diverging at small a and eliminates the log|4/a| which
always allowed a solution. The conclusion is that when the zero-temperature
gap becomes small, of the order of 7", the transition cannot occur. In a
similar way, if the system were two- or three-dimensional, the singularity is
fost and the transition is not required. [This can be seen by replacing the
chain by many chains, weakly-coupled to each other, so that the Fermi
wavenumber along the chain varies slightly with transverse wavenumber and
provides the smearing of the cut-off, which temperature provided above.]

We treated the case of the exactly half-filled band, with the net spin
alternating from atom to atom. However, a similar argument can be made
for a one-dimensional system with kg different from half filling. We simply
introduce a spin-density fluctuation varying as cos(2krd) and band splitting,
just as in Eq. (21.6) is produced at the Fermi surface. This is called an
incommensurate spin-density wave since the period of the fluctuation is no
longer locked to multiples of the lattice spacing.

Of course our analysis was based upon Unrestricted Hartree-Fock, not an
exact solution, but the conclusions are believed to apply to real systems:
one-dimensional metals are regarded as unstable with respect to formation of
a spin-density wave, forming a gap and an insulating state. There are
complications concerning phase transitions in lower-dimensional systems,
arising from very large statistical fluctuations. The nature of the transitions
depends upon the order in which limits are taken; for example, the size of
the system becoming infinite or the coupling between an array of one-
dimensional systems becoming small. These questions are too mathematical
to discuss in detail here, but we may note that if such an insulating state is
formed in a three-dimensional system, and the gap is small, the gap will
decrease and finally disappear as the temperature is raised. This occurs
sharply at a transition temperature, but the gap and the energy are a
continuous function of temperature, with a discontinuity only of the second
derivative of the energy with respect to temperature. Such a transition is
called a second-order transition. The disappearance of ferromagnetism at
the Curie temperature and of superconductivity at the critical temperature are
other examples of second-order phase transitions.
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The two-dimensional analog of the transition to an antiferromagnetic
insulating state which we have discussed in detail for one dimension is
important because it is closely related to high-temperature
superconductivity. It concerns a square lattice with a half-filled band. Then
the energy bands generalize t0 €k = €5 + 2Vgso(coskxd + coskyd) and a
square Brillouin Zone. When half-filled, the Fermi surface is at &g = &5 or at
ky = x(m/d - |kx|), as illustrated in Fig. 21.4. Then in the Unrestricted
Hartree-Fock Approximation an antiferromagnetic state with alternate atoms
polarized in opposite direction opens up a gap over the entire Fermi surface
exactly as in one dimension and the analysis which we gave for that case
applies. If a large gap is formed, then adding small second-neighbor terms
which deform the original Fermi surface are of little consequence. This
explains the antiferromagnetic insulating state of the copper-oxide
compounds, which however become metallic if they are doped away from
half-filling and form the high-temperature superconductors.

One way of treating such systems, estimating total energies and spin
densities, is to approximate the integrals over a band by a special point k*, a
wavenumber which seeks to represent an average of the band. (This is also
called a Baldereschi point (Baldereschi (1973)) and discussed in Harrison
(1999) 348ff.) For the one-dimensional band it would be the wavenumber
half-way to the Zone edge, k*= 1/2d, where the leading Fourier component
of the band, coskd , is zero. For a square lattice, the two sets of leading
Fourier components, cos kxd + cos kyd and cos (kx + ky)d + cos (kx - ky)d,
vanish at the point k* = [n/(2d),n/(2d)] half-way from the origin to the
corner of the BZ. In the particular case, shown in Fig. 21.4, the introduction

k
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Brillouin Zone
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| __Fermi Line

< >

2n/d

Fig. 21.4. A two-dimensional square lattice with spacing d gives a square
Brillouin Zone with edge 2n/d. For nearest-neighbor tight-binding bands,
the Fermi line (Fermi surface in two dimensions) is the square shown with
all states occupied inside.
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of the antiferromagnetic order reduces the Brillouin Zone to the small
rotated square, the Fermi line, and we wish to integrate over that portion of
wavenumber space. Then the special point becomes [0,m/(2d)]. The bands
are evaluated at that point and the problem reduces to the two-level problem
we treated in Section 21.1. The magnetism of the cuprates was treated in
exactly this way in Harrison (1987).

21.3 Peierls Distortions

Having found an instability of a system does not mean that it will make a
transition along that path. Sometimes there are other instabilities and a
system will tend to follow the strongest one. In the particular case of a half-
filled band in a one-dimensional metal, a Peierls distortion (see, for example,
Peierls (1979)) always provides an instability. For this distortion we
imagine starting with the undistorted metallic chain and allow alternate
atoms to be displaced to the right and the left by some distance u . This will
cost some elastic energy, proportional to u? if the system was initially at the
equilibrium spacing. However, it will also open up a gap at k = n/2d
through a matrix element proportional to u , as we have seen for the
electron-phonon interaction, whether we were using pseudopotentials or
tight-binding. This produces bands as we found in Eq. (21.6) with Ucos2n/4
replaced by a term proportional to # and a gap opened up as in Fig. 21.3.
The analysis proceeds exactly as for the antiferromagnetic instability and
there is always a solution with some finite distortion u.

There are some important features to notice about this result. First, the
alternate displacement has paired the atoms up, so that if this is a lithium
chain we may think of it having formed Liy molecules with bonding and
antibonding states. There is a residual coupling between them, so they form
bonding and antibonding bands, but this is a completely natural result and
could have been anticipated without the analysis. We may further note, that
there will be electron pairs in each bond site, every 2d along the chain, and
less charge in the sites between. We have produced a charge-density wave
by this distortion, very much like the spin-density wave we produced in the
preceding section. It is a different instability, and which can lower the
energy most will depend upon U , Vg, the electron-phonon coupling, and
the elastic rigidity.

Another feature may be very helpful for understanding cooperative
phenomena in general and superconductivity in particular. The state which
we have found corresponds to a finite amplitude of a phonon mode for the
wavenumber g = m/d. If we wished to discuss this in terms of phonons we
must make a mixture of excitations of different numbers of phonons and



282 Chapter 21. Cooperative Phenomena

these must have coherent phases as we showed in Section 19.1. This order
in the system is sometimes called off-diagonal long-range order, referring to
order in a density matrix which we have not discussed. The coherent state
we have generated is essentially a classical state, as we saw in Chapter 19,
and requires that the number of phonons present be poorly defined. We shall
see that the construction of a superconducting state requires, in a very
similar way, that the number of electrons present be poorly defined, a much
more difficult situation to imagine.

There is a second feature which both the spin-density wave and the
charge-density wave have in common with superconductivity, and that is the
dependence of the gap on the coupling which caused it. In the case of the
spin-density wave, caused by U, it was given in Eq. (21.9) as e-47Vssol/U,
with U appearing in the denominator of the exponent. Similarly, the gap in
the charge-density wave contains the electron-phonon interaction in the
denominator of an exponent. The total energy depends upon the same factor
and we note that e -4MVssol/U cannot be expanded in a series TpanUn. That
means also that it would never be possible to obtain these states proceeding
from the normal state and treating the coupling in perturbation theory, even
if we carried it to all orders in U. 1t was only possible to obtain the state by
proposing a variational solution which reflected the instability in question.
In hindsight, one can see that this was the essence of the theory of
superconductivity by Bardeen, Cooper, and Schrieffer (1957).

21.4 Superconductivity

Superconductivity is a cooperative state in a metal which arises from an
attraction between electrons. The origin of that attraction is the electron-
phonon interaction, which we saw in Section 17.3 causes the lattice to
deform and lower the energy of an electron, as a polaron. A second electron
which happened to be at the same position would also have its energy
lowered by that distortion, which means that there is an attraction between
the two electron arising through the electron-phonon interaction, much as
two heavy balls rolling on a mattress which we illustrated in Fig. 17.3.
There is also a Coulomb repulsion between the electrons, but the
superconducting state manages to take advantage of a net attraction from the
phonons, at least in conventional superconductors predating the cuprates.

This attraction leads to an instability which was pointed out by Cooper
(1956). He addressed the state of a three-dimensional metal, with all states
filled to a Fermi sphere of radius kg and in which there was some attractive
interaction V(rj - rj) between pairs of electrons. He then sought a state
Y(ry.rp) for two electrons which had energy lower than simply placing them
at the Fermi surface; this would be an instability. This state could be written
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in terms of the center-of-mass R and a relative coordinate r, and in fact
factored into functions of those two coordinates separately since there are no
terms in the Hamiltonian coupling them. The center-of-mass factor will be
¢lK- R and the lowest-energy state will have K = 0. The remaining factor is
written y(ry - r) .

This two-electron state was taken to consist of two electron of opposite
spin and must be orthogonal to all of the occupied states for k < kf, so he
sought to expand it in terms of the plane waves outside that surface,

ek (ry-rp)
y(ry-r2) = Zkskr @k Bl (21.10)

This is often referred to as pairing of two electrons moving in opposite
directions but it is just pairing without any drift momentum hK. One may
expect that a spherically-symmetric state is of lowest energy, so the

expansion can be made instead in spherical waves V1/(2nR) sin(k'r )/r , in a
large sphere of radius R, (these are orthonormal eigenstates of -h2VZ/m
based upon the reduced mass, m/2, with pair energy 2ex = h2k%/m) as

1 sink'r
w(r)=2k'>kFak' VZ?R T, (21.11)

with r the distance between electrons. This is a variational solution for the
Hamiltonian, which we write H = 12V2/m + V(r), and the resulting
eigenvalue equation Hy = €y can be rewritten as

-h2v2 / ] sink'r 1 sink'r
( m € )zk'>kFak' R - =—V(r)zk'>kp a« \2.R 5 -

(21.12)

7 )
We multiply by ’\, IR sn;kr and integrate over the volume to obtain
s a2 Jar sinkr s
(2ex - €)ak = -&ik'>kr AK' R dr sink'r sinkr V(r). (21.13)

The matrix element (2/R)_[dr sink'r sinkrV(r) is taken to be negative. We
neglect its variation with k and k' over a small range Ae of states near the
pair Fermi energy where we let the ax be nonzero, and write that matrix
element -V, for an attractive potential.
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We may now obtain a solution, and the method is different from any we
have used before. Again, for V a constant, the right side of Eq. (21.13) is
independent of £ so we may define it to be a constant C and solve for ay =
C/ (2ex - €). Then substituting for akx on both sides in Eq. (21.13), and
canceling the C from both sides, we have

1= VZk'>kF

e (21.14)

To see the solutions, we plot the right side as a function of € as in Fig. 21.5.
The sum diverges wherever € is equal to one of the 2€; in the range over
which we have taken the ay' nonzero, as seen in the figure. The solutions of
Egq. (21.14) come where this sum is equal to 1, also sketched in the figure.
We see that we have a solution just to the right of each 2¢ex' , a state of
slightly larger energy. Much more importantly, we have one solution at very
much lower energy, an energy well below the Fermi energy. This is indeed
the instability Cooper sought. Had the potential not been attractive, V(r) > 0,
the singular solution would have been of higher energy, far to the right in
Fig. 21.5.

We may finally solve for the energy of the Cooper pair from Eq. (21.14).
We see from Fig. 21.5 that € for the Cooper-pair state is well removed from
all of the 2ei' over which we sum so the summand is smooth and we may
replace the sum by an integral, 2 — fdek' n(eg)/2 with n(gx')/2 the number
of one-electron states per unit energy (and per spin; e. g., electron-one with
spin up) in the system, taken as independent of energy over the small one-
electron energy range Ae . Then the integral may be performed to obtain

A

R ittt

I >

2€, €

Fig. 21.5. A plot of V Z 1/(2¢ - €), summed over a set of pair states just
above the Fermi energy, as a function of €. Where that sum equals 1,
there is a solution of Eq. (21.14) and a state.
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Vn(ep) 1n|2A_88- El

l:4

(21.15)

with € measured from the Fermi energy. We divide through by Vn(er)/4 and
exponentiate both sides. The energy of the Cooper-pair state € is small
compared to the energy range 2A¢ so that the result is

€= -2Ac e -“HVn(ep), (21.16)

Note the resemblance to the energy of the antiferromagnetic state given in
Eq. (21.9) in the appearance of the interaction in the denominator of the
exponent. This exponential will ordinarily be very small, as we assumed in
taking € small compared to At.

The next task undertaken by Bardeen, Cooper and Schrieffer was to seek
the ground state. In constructing the single Cooper pair, we used terms from
a range of states and we cannot simply repeat the process for additional
states because of the Pauli Principle. A variational solution was tried in
which the number of pairs of electrons was ill-defined, as was the number of
phonons in the Peierls state. That is, the BCS state was taken to be of the
form,

[¥BCS> = Hk (uk + vike-klTarHj0> . (21.17)

Each factor in this extended product contains one term (uk) with no
electrons and one (vkc-klTcktT) with two electrons.  This was exactly the
key point. A Hamiltonian was taken with electron kinetic energies and with
an electron-electron coupling which could scatter the electron pairs from one
state to another, Zx'kVk'k ck'tTek'tTeklck?, as in Eq. (16.10). Given the
variational state, Eq. (21.17), the calculation is straightforward and followed
the calculation of the Cooper pairs given above. They evaluated
<¥Bcs|H|¥Bcs> and used Lagrange multipliers to fix the expecration value
of the total number of electrons and the normalization conditions ug*uk +
vk*vk = 1. This was minimized with respect to all uk and vk. In place of the
constant C an energy-gap parameter Ak was defined by

Ak = - 20k u* Vi Vick (21.18)

and taken to be A, independent of k, by taking Vk'kx equal to a constant, -V,

as we did for the Cooper-pair calculation. Note that to contribute to A both
uk' and vk' must be nonzero for each k' and for A to be large the phase of
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uk*vik' must be coherent in the sense we discussed in Chapter 19 from one k'
to another. Thus the state is quite analogous to the classical Peierls
distortion discussed in Section 21.3. The counterpart of Eq. (21.15) is called
the energy-gap equation and solved using an energy range A€ within the
Debye energy hop = hvgp of the Fermi energy. This Debye energy is the
range of phonon energies as defined for Eq. (10.14), and believed to be the
range of energy over which that electron-electron interaction is attractive.
The resulting formula for the energy-gap parameter was close to Eq. (21.16)
for the Cooper-pair energy,

A =2hop e -1/Vn(ep), (21.19)

with n(er) as always the number of electron states (including the factor of
two for spin) per unit volume and per unit energy.

The energy gain in forming the superconducting state was found to be
1/4n(ep)A2. A gap of 2A was opened in the excitation spectrum, analogous
to that shown in Fig. 21.3. It is possible to construct a drifting
superconducting state, simply by transforming to a moving coordinate
system, equivalent to shifting the entire superconducting state, and each
electronic wavefunction, by some wavenumber ¢. This can be seen from
Eq. (21.17) and (21.18) to have the effect of multiplying the energy-gap
parameter by €214 ', Then A(r) becomes essentially a superconducting
wavefunction, such as had been introduced earlier (without the factor 2 in
the exponent) by Landau and Ginsburg (1950). This Landau-Ginsburg
theory is a quantum theory of superconductivity, based upon the single
superconducting wavefunction describing the many-electron
superconducting state.

In a superconducting ring A(r) may increase in phase by some integral
number of 2x's, associated with a particular value of the current, and that
number cannot change without forcing A(r) to go through zero somewhere
along the ring, requiring a macroscopic energy. This is the origin of
persistent current: it will not decrease at all over extraordinarily long times.
This is also the origin of quantized flux. Each increase in the number of 27's
produces an additional magnetic flux quantum of he/e. The consequences
of this theory by Bardeen, Cooper and Schrieffer are immense, and very
many of them were obtained in the original paper, possibly the most
extraordinary physics paper of this century.
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We return to a number of aspects of magnetism which have not been
discussed, ending with a discussion of ferromagnetism. Magnetic-field
strengths are most frequently given in units of the gauss, and to evaluate
expressions we will need to go beyond the values for h2/m , and €2 in eV and
A which we gave in Eq. (1.10). When working with magnetic fields, in
gauss, we can substitute e in electrostatic units (esu) and all other values in
centimeter-gram-second (cgs) units,

e =4.8x10-10 esu.

h = 1.054%x10-27 erg-sec. (equivalent to 6.6x10-16 eV-sec.)
me=9.1x10-28 g

¢ = 3x1010 coy/sec.

and our results will be in cgs. In this chapter, as in Section 2.4, we write the
electron mass as me to avoid confusion with the quantum number m for the

z-component of angular momentum.
22.1 Free Electrons in a Magnetic Field

We found in Section 3.3 that the effects of a magnetic field H on the
dynamics of an electron could be included using a vector potential A from
which the field could be derived as H= VXxA. Then in the kinetic energy in
terms of the momentum, p is to be replaced by p - (-¢/c)A. Thus for a free
electron, the Schroedinger Equation becomes

2,111 (ﬁ.v “ A, t)Jz w(rh = ih J’(r—’). 22.1)
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Different choices may be made for the vector potential which will give the
same constant magnetic field H in the z-direction,

JdAy JA
_zay Y4AX
Hy=3" -5 (22.2)

and they will yield different forms of energy eigenstates. The different
choices are called different gauges, and although the wavefunctions are
different for different gauges they are all equivalent and will give the same
properties. For constructing free-electron states the Landau gauge, Ay = Hx,

is the most convenient. Then the eigenvalue equation from Eq. (22.1)
becomes

1 02 (ho - 02
= ( h2g 5+ [l 3" f— Hx JZ ; ﬁZa—sz W(r) = ey(r). (22.3)

2me
We try a solution of the form
W(r) = ¢(x) elkyy eik,z (22.4)

and substitute it in Eq. (22.3) to obtain

2 - , ~ i '
e (-mg—xi k- ijz B2 o0 ey elk= e0(s) el ek

or (22.5)
h2 92 h2k;
Az 0 3 ekl'llky “ Hx jz(»(x) T 000 = £00).

This equation may come as a complete surprise! We have found that
0(x) satisfies the harmonic oscillator equation, for an oscillator centered at

hkyc

o (22.6)

X0 =-

and spring constant K = e2H2/(mec2). This corresponds to a frequency @ =

VK/me or

eH
W = mec (22.7)
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the classical cyclotron frequency, or Larmour frequency. (Note that it may
be obtained in radians per second using the constants from the beginning of
the chapter.) Then the result becomes sensible, though unexpected. A
cyclotron orbit, viewed from along the y-direction, has a motion x = rg
cos®cf , as does a harmonic oscillator and we may think of the state, Eq.
(22.4), as a tight-binding sum X, eikydyn of circular orbits centered at points
(x0,dyn ) as illustrated in Part a of Fig. 2.1. The energy associated with the
harmonic-oscillator state ¢n(x) is hoc(n + 1/2) so from Eq. (22.5) we have
eigenstate energies of

h2k,2
£ =hoen + 1) + 2mz . (22.8)

The energy is independent of the wavenumber ky which determines the
position along x of the orbit through Eq. (22.6). The electron may
propagate freely along the field, as for a classical orbit, contributing the
energy h2k;2/(2me). We may think of the quantization as coming from the
circular orbits [this point is tricky because the states depend upon the gauge
chosen for the vector potential] giving states spaced equally in energy for
motion in the xy-plane, h2k2/(2me) = hoc(n + 1/2), and therefore with equal
spacing in cross-sectional area in the xy-plane of wavenumber space. This is
shown schematically in Part b of Fig. 22.1. There we construct cylinders in
wavenumbers space, with axes parallel to the z-axis, and with cross-sectional
areas differing by 2nmewc/h (from A(h2k2/2me) = hwc) from one to the next.

A
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a. 1 > b.
_Tkye x
eH

Fig. 22.1. In Part a is a schematic sketch of a Landau level for a free
electron in a magnetic field. Part b illustrates the quantization of such
levels in wavenumber space with fixed orbit areas in the xy-plane, and free
propagation along the field in the z-direction. The surrounding sphere
might represent the Fermi surface, containing the occupied states.
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Each cylinder represents an allowed xy-motion, with varying propagation
along the z-axis.

As the field is increased, ¢ increases and the separation of the cylinders
increases. If we imagine a system, as in Part a of Fig. 22.1, with dimensions
Lx, Ly, and L, we may apply periodic boundary conditions for the state, Eq.
(22.4), in the y- and the z-directions. This gives a spacing of the levels along
ky of 21/Ly and the range of wavenumbers ky is limited by Eq. (22.6): if xp
is restricted to a range Lx , then ky is restricted to a range eHLx/ he. Thus the
number of allowed ky-values is eHLxLy/(2n hic), proportional to the cross-
sectional area of the system, as it should be. Further, the number of allowed
ky also increases in proportion to the magnetic field so that the number of
states up to a certain energy, such as that for the Fermi sphere shown in Part
b of Fig. 22.1, remains approximately constant. As the field increases the
cylinders expand but the number of states accommodated on the cylinders
within the sphere remains nearly fixed.

The number of states within a thin shell of energy at that surface does
vary with field. It is proportional to the area of cylinder within the shell and
just as a cylinder becomes tangent to the sphere the area becomes much
larger. Thus the density of states at the Fermi energy fluctuates as the field
is increased. This fluctuation shows up in the diamagnetic susceptibility an
effect called the de Haas-van Alphen Effect. The period of the fluctuation in
1/H gives a direct measure of the cross-sectional area of the Fermi surface
and proved a powerful tool in the study of Fermi surfaces of simple metals,
mentioned in Section 14.1. Generally the number of electrons is kept
exactly fixed, so the Fermi sphere must fluctuate very slightly as the density
of states varies. In addition to these fluctuations there is a small smooth
increase in the total energy as the field increases, describable by a
diamagnetic susceptibility x4, negative, with the energy increase given by
-l/>xaH2. That susceptibility is not so easy to derive, but it is given by (e.
g., Seitz (1940) 583ft)

__Ne2
Xd=- 4kF2meC2 (229)

for a free-electron gas of N electrons per unit volume. This is an important
consequence of quantum theory because one can rigorously show that a
charged classical gas has vanishing diamagnetic susceptibility. The field
simply deflects classical electrons without changing their energy. Only in
quantum theory can there be a magnetic susceptibility. For a quantum gas
the susceptibility can be understood physically in terms of currents due to
edge states, for example harmonic-oscillator wavefunctions ¢n(x - x0) with
x0 adjusted such that the nodes of that wavefunction come at a surface of
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constant x where vanishing boundary conditions are applied. These provide
current in the y-direction at this surface, which is not completely canceled by
states with reversed velocities in this region.

Another important feature of Eq. (22.9) is the appearance in the
denominator of mec?, the rest energy of the electron of a half-million
electron volts. The other factors inevitably lead to an energy (since ) is
dimensionless) which is of the order of electron volts. Thus the magnetic
susceptibilities tend to be very small, of order 10-6, while electric
susceptibilities are of order one. This appearance of rest energy in the
denominator, and also the smallness of the values, signifies that magnetism
is a relativistic correction to classical behavior, as well as a quantum effect.
This is closely associated with the fact, which we shall indicate in the
following section, that when quantum theory was made relativistic by Dirac,
the electron spin, its associated magnetic moment, and the resulting
contributions to the susceptibility seemed to come automaticaily. A
consequence is that it can be dangerous to discuss magnetic phenomena as
we are doing without including other relativistic effects. There seems not to
be any serious error for the properties we discuss here. We return to further
discussion of magnetic susceptibilities in Section 22.3, finding a canceling
paramagnetic contribution.

The motion of electrons in a two-dimensional electron gas, with the
magnetic field perpendicular to the plane, is especially interesting. The
analysis given above is applicable, but there is only a single state associated
with motion in the z-direction, such as\2/d : sin(ntz/d) for a slab of thickness
d. Then the cylinders shown in Fig. 22.1 are reduced to circles, each
accommodating some number of electrons. As the field is increased,
electrons leave the outer-most occupied circle as it expands until it is
completely empty, and then electrons begin to leave the next circle in. One
might expect some peculiar behavior just at the field where one circle is
completely occupied and the next empty state is hoe above it. von Klitzing
and coworkers (1980) in fact found that when strong uniform magnetic
fields in the z-direction were applied to a two-dimensional xy-plane of an
extremely clean, cold semiconductor, the two-dimensional Hall conductivity
Oxy, which gives the current density in the x-direction due to an electric field
in the y-direction, was given very exactly by an integral multiple of ¢2/(27h)
at just these fields. The fields at which such a circumstance arises are
calculated in Problem 22.1. At these same fields the two-dimensional
resistivity measured by the field in the x-direction went to essentially zero.
The values of Hall conductivity, Oxy = ne2/(2mh) with integral n, are so
accurately given that this Quantum Hall Effect can be used as a standard for
determining this combination of the fundamental constants, or the fine-
structure constant €2/ hc = 1/137 using the accurately known speed of light.
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It was subsequently found by Tsui, Stérmer, and Gossard (1982) that
there was also this singular behavior at odd fractions, e. g., 1/3, 1/5, of the
fields at which this filling occurs. Laughlin (1983) explained this behavior
in terms of a collective state, describable by the Laughlin wavefunction,

Y({zj})=A Hj zjile 0z;2, (22.10)

for fraction 1/n, with zj related to the coordinates of the j'th electron by zj =
xj + iyj. For further discussion of integral and fractional Quantum Hall
Effects, see Prange and Girvin (1987).

22.2 Magnetism of Atoms

We turn next to spherically-symmetric systems in a uniform magnetic
field. For such a system a more convenient gauge for the vector potential is
A = 1pHxr, whichis Ay=lpHx , Ax = -12Hy for a magnetic field H in the
z-direction as illustrated in Fig. 22.2. The kinetic-energy term in the
Hamiltonian is again given by Eq. (22.1). We add the potential V(r) and
now we may expand A for small r to obtain

1 -Hxr HZ2e2
H= 2—me (pz +2€%‘ + 402 (x2 +y7-))+ Vi(r). (22.11)

Recalling that A- BXC is the volume of a parallelepiped with edges A, B,
and C, we know that the second term is unchanged by rotating the vectors as
p- Hxr=H: rxp= H-L = HL;, with L the angular-momentum operator as
described in Section 16.3. Thus, this term in the Hamiltonian linear in the
magnetic-field strength is

H, z

© = 3

€ £
X P N\

a. b. -1

Fig. 22.2. a. A uniform magnetic field parallel to the z-axis is applied to a
spherically-symmetric system, such as an atom. b. The three electronic p-
states in such an atom are split into three levels, €p and €, +1/5hm,, called
the Zeeman spitting.
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eH

1
E}*n”; L;= 5 wcly, (22.12)

Hmag. =

with m¢ again the cyclotron frequency given in Eq. (22.7). This is illustrated
for atomic p-states in Fig. 22.2b, and for d-states in the very simple Problem
22.2. It is striking that this splitting is into equal steps in energy, as was the
motion of a free electron in a magnetic field in Eq. (22.8), but the steps are
Jjust half as large as for the free electron. We could understand this factor of
two in detail for the case of the spherical harmonic oscillator discussed in
Section 2.5, but it is in fact a very general result.

We have obtained this splitting as arising from a modification of the
electron dynamics by the electron's deflection in the magnetic field. We can
also think of it as from an interaction -p-H between the magnetic field H
and the magnetic moment W arising from the orbit, analogous to the
interaction between a magnetic field and an ordinary permanent magnet.
From the first form in Eq. (22.12) we see that the magnetic moment to be
associated with the orbit is

-e
- zmeC

L. (22.13)

The ratio -e/(2mec) is called the gyromagnetic ratio. For this orbital
interaction there is no moment for an s-state, and one Bohr magneton

eh

2mec

UB = (22.14)

for a p-state. It is quantized as the L; is quantized, being related by the
gyromagnetic ratio. The d-state has two Bohr magnetons of magnetic
moment.

We expect a similar interaction between a magnetic moment arising
from the electron spin angular momentum, and might have expected the
same gyromagnetic ratio, giving half the splitting for the spin-half electron.
However, the spitting is the same, corresponding to twice as large a
gyromagnetic ratio, -e/(mec). Thus the Bohr magneton of Eq. (22.14) is also
the magnetic moment of the electron due to its spin of one half. It follows
that the energy of an electron in an s-state, as in the hydrogen atom, will also
be split in a magnetic field into levels at

€mag. =+ UBH, (22.15)
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relative to the degenerate level with no field, and there is splitting of the
levels in the p-state in addition to those shown in Fig. 22.2b.

This all follows from the relativistic theory of the electron, Dirac theory,
where the splitting of levels in the magnetic field comes automatically. It is
possible to rationalize the result by thinking of the electron charge as being
distributed on the surface of a sphere while the mass is distributed
uniformly through the bulk of the sphere, but it is not clear what this means
for a point particle.

The magnitude of the gyromagnetic ratio for any system divided by the
value e/(2mec) from Eq. (22.14) is called the g-value. Our discussion here
would indicate a g-value of 2 for the electron spin, but the measured value
can be slightly different. This arises from the interaction between the
electron spin and its environment such that a rotation of the spin causes also
rotation of orbital moment.

These various splittings can be directly detected by observing the
absorption of electromagnetic radiation by the corresponding systems in a
magnetic field. We may substitute values from the beginning of the chapter
into Eq. (22.14) to see that upH is 5.9x10-6 eV for a field of one kilogauss,
of the order of easily attainable fields. We may convert this to a frequency
by equating it to ho and divide it into the speed of light to see that it
corresponds to electromagnetic wavelengths of a few centimeters,
microwave frequencies. Thus the experiment can be done with specimens in
a microwave cavity, varying the magnetic field and looking for fluctuations
in the microwave absorption. These are called spin-resonance experiments.
If a level is occupied by electrons of both spins, as for the 1s-states in
helium, no energy can be absorbed by flipping a spin. That is the usual
circumstance in solids, where all bond-states are occupied and antibonding
states empty in a semiconductor, or all chlorine states filled and sodium
states empty in rock salt. However, in a solid with a defect, such as rock salt
with a chlorine atom missing, resonance can be observed for an electron
attached to that defect. Spin resonance experiments usually ignore the bulk
of the crystal and give direct information about the defects, or about surfaces
if there are unpaired electrons (as opposed for example to electron pairs in a
bond) at the surface. Spin resonance can also be observed it metals, and it
involves only those electrons at the Fermi energy, which can be excited by
flipping their spins.

The gyromagnetic ratio formulae apply also to nucleons, but the mass
which enters is the nucleon mass, larger by a factor of order 105 than the me
of the electron. Thus the spin-splitting of the nuclear levels is very tiny in
comparison to that for electrons. Correspondingly any resonance
experiments on the nuclei such as hydrogen are carried out with radiation of
wavelength some 105 times larger, radio waves. This is called Nuclear
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Magnetic Resonance (NMR) and has turned out to be much more important
than electron spin resonance. It is used in magnetic resonance imaging for
medical purposes by observing with one radio frequency and a magnetic
field which brings protons into resonance only over a plane. The reflected
waves can be used to image the proton density. It is also heavily used in
chemistry, observing subtle differences in the environment of individual
nuclei when their atoms are in different bonding sites.

22.3 Magnetic Susceptibility

We already noted that the diamagnetic susceptibility of a free-electron
gas could be obtained by equating the shift in the energy of an electron gas,
as illustrated in Fig. 22.1, to -1/2¢H?2. This was a positive shift in the energy,
corresponding to diamagnetism so the susceptibility was written x4 and
given in Eq. (22.9) as a negative number. There is another contribution to
the susceptibility which arises from the electron spin moment. It is
considerably simpler to calculate. We found in Eq. (22.15) that the energies
for two different spin orientations were shifted up and down by ugpH. Thus
we may imagine free-electron energies as a function of wavenumber (or
energy bands in solids) separately for spin-up and spin-down electrons, as
illustrated in Fig. 22.3. With a magnetic field parallel to the z-axis the spin-
down electrons may have their energies uniformly lowered by ugH and the
spin-up electrons raised by the same amount, as shown. In equilibrium the
same Fermi energy €F applies to both spins, each with a density of states at
the Fermi energy of n(€g)/2, so there is now an extra density of spin-down
electrons n(ep)uBH /2 and the density is reduced by the same amount for the
spin-up electrons. With each having a magnetic moment along the field of
+uB, the magnetic moment density M = ypH is n(EF)uB2H. It is parallel to
the field, lowering the energy, corresponding to a paramagnetic
susceptibility, positive, and we have written it Xp. This is also called the
Pauli susceptibility and we have found it to be given by

3Ne2
Xp = N(EFUBZ = AkR2mac? (22.16)

where in the final form we wrote the density of states as 3N/(2er) with N the
electron density and substituted for ug from Eq. (22.14). This is three times
as large and of opposite sign to the diamagnetic contribution which we gave
in Eq. (22.9). The combination, two thirds of Eq. (22.16), is in rough accord
with measured values for simple metals. However, there are corrections to
both contributions, a g-value different from two for the spin moment, and
any change from m. in the dynamic mass which enters the diamagnetic



296 Chapter 22. Magnetism

Fig. 22.3. A plot of spin-up and spin-down bands, shifted up and down by
the interaction of the electron spin with an applied magnetic field. With
the same Fermi energy for both spins, n(ep)upH/ 2 per unit volume are
shifted to the spin-down band to give the magnetic susceptibility of Eq.
(22.16)

contribution. In transition metals both corrections are large.

To calculate the magnetic polarizability of atoms, or the resulting
susceptibility, we return to the Hamiltonian of Eq. (22.11). We calculate the
energy to second-order in the magnetic field for each atom, multiply by the
density of atoms, and equate the shift to -1/2¢H? to obtain the susceptibility.
Again there are both diamagnetic and paramagnetic contributions. The
diamagnetic contribution comes from the final term in the kinetic-energy
operator, which is already quadratic in the field and therefore enters only in
first-order perturbation theory for the electronic state . The shift in energy
is

de = <w| m 2 (X2 + y2)|y>. 22.17)

For a spherical system the expectation value for <x?> and for <y2> will be
1/3<r2>, of the order of an atomic radius squared, or internuclear distance
squared, so we multiply by the density N of such electronic states (the atom
density times the number of orbitals per atom of each type) to obtain
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Ne?
Xd = 6—m;:2<r2> , (22.18)

quite similar in form to that for the free-electron gas. A remarkable feature
of this contribution is that it arises even if all states are occupied with both
spins. There is even a contribution from the core electrons in an atom,
though the corresponding <r2> is very small. The contribution of the filled-
d-shell electrons in noble metals is large enough to lead to a net
diamagnetism, in contrast to other simple metals. Such contributes also arise
for molecules, though then the <r2> must be evaluated for bond states. The
calculation for semiconductors also involves a sum over contributions from
bond states (see for example Harrison (1999), 159ff).

The paramagnetic contribution to the susceptibility of atoms and
molecules arises from the term in the Hamiltonian linear in magnetic field,
which we wrote in Eq. (22.12), as eHLz/(2mec), proportional to L. Most
systems in the absence of a field will have no net angular momentum so the
expectation value of L, will vanish and there will be no first-order term,
linear in /. We shall return to systems which do have net angular
momentum, such as the Oy molecule, shortly. In the more usual case, the
shift in the energy must be obtained in second-order perturbation theory and
will again be quadratic in H. Substituting from Eq. (22.12) for the matrix
elements between some starting state |[i> and the states |j> to which it is
coupled, we obtain a second-order shift in energy of the i'th state of

e2H2<j|L,|i>2

6 = 2 e ey (22.19)
For an atom, spherically symmetric, for which the energy eigenstates can
be taken as eigenstates of L, , the orthogonality of |j> and |i> guarantees that
the matrix elements are all zero and there is no contribution. Similarly, if the
magnetic field is applied along the axis of a cylindrically-symmetric
molecule, there will be no contribution. However, in a semiconductor, with
bonds along all cube-diagonal directions, all magnetic fields are guaranteed
to be skewed with respect to some bond axes. States can again be chosen to
be angular momentum eigenstates with respect to the bond axis, but then the
magnetic-field interaction in the Hamiltonian, proportional to H-L as
indicated just before Eq. (22.12), must be written in terms of Lx Ly, and L,
relative to these bond axes, which can in turn be written in terms of raising
and lowering operators as discussed in Section 16.3. Then there is coupling
between the bonding and antibonding states through the matrix elements of
the raising and lowering operators which couple the s- to the p-states on the
same atom. Note that it always gives a lowering in the energy of the
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occupied states and is therefore a paramagnetic contribution, called the Van
Vleck term in the susceptibility. The needed matrix element is an intra-
atomic one, which can be estimated, and gives a reasonable account of
paramagnetism in semiconductors. In particular, the Van Vleck term is seen
to decrease for polar semiconductors with larger gaps, while the diamagnetic
term, called the Langevin term, is quite insensitive, as would be guessed
from Eq. (22.18). (See, for example, Harrison (1999), 159ff.)

We return finally to systems, such as Op, which have net angular
momentum in the absence of fields. If we construct molecular orbitals for
the oxygen molecule, we obtain a set which is qualitatively just like those we
found for N2 and showed in Fig. 5.7. The difference is that each oxygen
atom contributes one less electron than a nitrogen atom so the bonding m-
state, which was the highest-energy occupied state in N2, contains only two
electrons though there are two m-states (x-oriented and y-oriented) and each
could accommodate electrons of two spins. We noted in Section 4.2 that
when a set of degenerate orbitals are only partly occupied, the exchange
interaction favors occupying them with parallel spin to the extent possible
(Hund's rule). Thus one of the m-electrons will be in the x-oriented 7-state
and the other will be in the y-oriented m-state with the same spin. The net
moment of the molecule is two Bohr magnetons from these spins, and there
is no net orbital angular momentum. This is called a paramagnetic molecule
because in an applied magnetic field the moment will tend to align with the
field to lower its energy, a paramagnetic response. In this case the tendency
is inhibited only by statistics. There are states for each molecule with the
spin-angular-momentum components along the magnetic field of k, 0, and
-h. Following just the procedure we used in Chapter 10 we see that the
relative probability of the three states is e -2usH/kT, 1, and e 2upH/kpT,
This leads to a dipole which is proportional to H at small fields, where the
exponentials can be expanded, and corresponds to a susceptibility of

_ SHBZNOQ?‘

A= 3T (22.20)

with No, the number of oxygen molecules per unit volume.

22.4 Ferromagnetism

This same exchange interaction which was responsible for the
paramagnetism of oxygen molecules is responsible for ferromagnetism in
solids. It is in fact rather easily understandable for metals in terms of Fig.
22.3. We noted in Eq. (4.15) that the exchange energy of a free-electron gas,
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arising from the correlated motion of each electron with that of the electrons
of the same spin, is

32
Eex =- %F per electron, 22.21)

If we were to arbitrarily shift some electrons from the spin-up band to the
spin-down band, the exchange energy would become more negative for the
spin-down band, and less negative for the spin-up band, as shown in the
figure, and with more electrons in the spin-down band the total exchange
energy would definitely be more negative. We may ask if this lowering
could ever be greater than the increase in kinetic energy which this transfer
causes. If so we have found an instability of the free-electron gas which
would lead to a spin-polarized - that is to say, a ferromagnetic - state.

We gave in Eq. (2.12) the kinetic energy for electrons in a free-electron
gas as

3h2kR2
in = J0m. OmF per electron. (22.22)
(+3

We now separate the electrons by spin and Eqgs. (22.21) and (22.22) apply to
each set. We gave in Eq. (2.10) kr in terms of the electron density, which
we can rewrite for the number of electrons N+ =N /2 of a given spin

N.
kg3 = 672 ?2; (22.23)

We can substitute for kg in Eq. (22.21) and (22.22) and multiply by N+/Q
to obtain the total energy density for the electrons of each spin,

32 N 3ﬁ N
Eem 2 (o 2)1,3(Q+J4 ° (en 2)2/3(Q+)5 (22.24)

If we increase the spin-down density by on , and decrease the spin-up
density by the same amount, the change in energy to first order in on is
OEH/O(N+/Q) [dn - dn] = 0, but to second order is 1/ 02E+/0(N+/)28n2, so
if the second derivative is negative, the system is unstable against spin
alignment. The condition for an instability is

Wia
(S R

3e2 N+ 2/3 52 3h2
27 6n2y 173
an (6m4) [ j

N
o) 35 om 6 )2/3[ j B 0, @229
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which can be written as

e

2me
= -1
) =0.60 A-1. (22.26)

kp <

When this condition is satisfied, the energy continues to drop as more
electrons are shifted, so it should proceed until all spins are aligned, as in
Hund's rule. The kg of Eq. (22.26) is only slightly less than the smallest
Fermi wavenumber for the simple metals, 0.65 A-1 for cesium. Thus it
correctly suggests that all simple metals should be stable with equal numbers
of both spins. In the transition metals, the density of states at the Fermi
energy is higher, which decreases the kinetic energy term without changing
the exchange term, as if me were increased in Eq. (22.26). Thus it is to be
expected that ferromagnetism could occur in transition metals.

The conclusions are correct, and the physical origin is correct, but the
picture can be misleading. First, it is not certain that this is the greatest
instability. At low density the spin-density wave discussed in Section 21.2
may also be favored. Another instability at low density, the formation of a
lattice of localized electrons, called a Wigner crystal, can also be favored.
To see this we may construct a variational state in which each electron has a
wavefunction which is a Gaussian around an individual lattice site. Then the
Coulomb plus kinetic energy can be minimized with respect to the spread of
the Gaussian. The resulting energy of that crystallized state can then be
compared with the Coulomb plus kinetic energy for the uniform electron
gas. At a spacing similar to that in Eq. (22.26) the Wigner crystal is found to
be favored. There is another complication in our description of the
ferromagnetic state in that the density of states is complicated in a transition
metal, not simply an increased mass. The problem is more appropriately
addressed in tight-binding theory, where it semiquantitatively accounts for
the observed occurrence of ferromagnetism in the transition metals (Harrison
(1999), 5891f).

Another aspect of the free-electron picture is misleading. It would seem
to suggest that as we increased temperature and excited electrons into the
reversed-spin band, the tendency to form the ferromagnetic state would
weaken, as we discussed for the antiferromagnetic insulator in Section 21.2,
and that ferromagnetism would disappear, as is found experimentally. In
fact when ferromagnetism disappears experimentally, at the Curie
temperature, there remains the same magnetic moment on each atom, and it
is only the parallel orientation of the moments on different atoms which
disappears. Thus the magnetic properties above the Curie temperature are
those of a paramagnetic crystal, as we discussed for the Oy crystal in the
preceding section. The ferromagnetic transition metals are more easily
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understood in the atomic picture, with d-state spins aligned according to
Hund's rule, and then weakly coupled between atoms to form the
ferromagnetic state at low temperatures.

22.5 Spin-Orbit Coupling

There are important one-electron effects, as well as many-body effects,
from the coupling between spin moments and orbital magnetic moments.
This is an appropriate place to discuss that coupling. The origin of the
interaction between the electron spin and its orbital motion arises from the
magnetic field due to the relative motion of the electron and the nucleus,
seen then by the electron spin magnetic moment. The interaction follows
directly from the Dirac relativistic theory of the electron. It is not so easy to
derive it from the nonrelativistic theory we have used, but we can understand
the form it takes. If the electron were at rest and a particle of charge Q
passed by, its current, which is proportional to Q and its velocity v, would
produce a magnetic field at the electron proportional to the current, inversely
proportional to the square of the distance r , and to the sine of the angle 0
between r and v . The magnetic field would in fact be given by H =
Orxv/cr3 = Exv/ic where E is the electric field arising from the charge Q.
The factor of the speed of light ¢ makes the units of E and H the same. We
can then make a transformation to the coordinate system of the nucleus (this
should be done using relativistic equations). For a spherical system, the
electric field E can be replaced by (r/er) dV(r)/dr with V(r) the potential
energy of the electron (charge -¢) due to the nucleus and other electrons
present. Then with rxv equal to the angular momentum L divided by me,
the magnetic field is found to be

_ 1 dv()
~ 2emecr dr L. (22-27)

(See, for example Schiff (1968), p. 433.) The factor 1/2 is called the Thomas
precession factor and comes from the use of a relativistic transformation.

The important point is that the magnetic field is proportional to the
angular momentum of the orbit L, and the magnetic moment of the electron
is given by the spin angular momentum S times its gyromagnetic ratio of
-e/(mec), given just before Eq. (22.15). Thus the interaction of the spin
moment with the orbital field is given by L-S times a factor, depending only
upon r,

14
Hso = 2m2c2r or L-S. (22.28)
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For a Coulomb potential the interaction is proportional to Ze? as we would
expect.

If only the interaction of a single electron with its spin is of interest, Hso
does not couple states of different [ , so electronic orbitals of only a single !
are of interest. We shall always use a basis of atomic states, with specific
values of [ and m and the matrix elements between them arising from spin-
orbit coupling are written

, 2<I mL-S|!
<I'm{Hsollm> =M 811 mﬁzs e (22.29)

with
h2 A%
M = e JPRIO? G, dr (22.30)

having the units of energy. They have been calculated by Chadi (1977) for a
number of elements which are important in semiconductors and are listed in
Table 22.1. [In some studies A is defined differently by a factor of two, but
we used Chadi's definition.] We note that they grow rapidly with atomic
number because they are dominated by the potential near the nucleus,
proportional to the nuclear charge, and in fact they grow much more rapidly
due to additional changes in Rj(r).

How we now proceed depends upon the system we consider. For
isolated atoms, spin-orbit coupling modifies the energies of the states, giving
fine structure to the simple spectra we discussed in Chapter 4. We consider
that first for hydrogen, or an alkali metal where only a single electron is
involved in an important way.

When there is an interaction between two contributions to the angular
momentum in a spherically-symmetric system, it is physically clear that

Table 22.1. Spin-orbit coupling parameters A (in eV) for valence p-states,
renormalized for use in solids, compiled by Chadi (1977). The spin-orbit splitting
at the top of the valence band is 34 in elemental semiconductors.

Al Si P S

0.008 0.015 0.022 0.025
Zn Ga Ge As Se
0.025 0.058 0.097 0.140 0.160
Cd In Sn Sb Te

0.076 0.131 0.267 0.324 0.367
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there will not be eigenstates of each individual contribution, but there are
eigenstates of the total angular momentum

J=L+S. (22.31)

For the isolated atom, the eigenstates of the total angular momentum J can
be described just as were the eigenstates of L in Section 16.3. There are
eigenstates of the squared total angular momentum J2? with eigenvalues
j(G + Dh2. The quantum numbers j can only be [ + s depending upon
whether the spin of /5 is parallel or antiparallel with respect to the orbital

angular momentum. Each eigenstate of J2 can be chosen to also be an
eigenstate of the z-component of total angular momentum J, with

eigenvalues hj; and with j; taking values j, j - 1,7 -2, ... - .
Further, we may write

J2)j,j> =j(j + DA2|jj;> = (L2 + 2L-S + S2)}j,j>
(22.32)
= Il + DHh2}jj>*+ 2L-S|j,j> + s(s+ Dh2]j,j>

so that the |j,j,> are also eigenstates of L-S with eigenvalues obtained by
solving Eq. (22.32) for L-S|j,jz>. They are given by [j(Gj + 1) - I(I + 1) -
s(s + 1)Jh2/2. Thus, using Egs. (22.28) through (22.31) a one-electron
eigenstate of energy €; in the absence of spin-orbit coupling, would be split
into levels of quantum number j =/ t s with energies given by

gj=¢ +<lHsol>=¢€ + G+ D -I(1+1)-s(s+ 1)IAs (22.33)

For p-states, [j(j + 1) -I(l+ 1) - s(s + 1)}/2is 1/2 for j = 3/3 and is -1 for j =
1/ so there are four states (j; = 3/2, 1/2, -1/2, -3/2) at €p + A and two (jz =
+1/59) at €p -2A, rather than three states, of two spin orientations each, without
spin-orbit coupling. This splitting is iltustrated in Fig. 22.4.

The values appropriate to the free atom are typically 2/3 of those
renormalized for the solid and given in Table 22.1. The atomic spectra
allow measurement of the energy differences between various spin-orbit-

T @j=32 e

)j=12 §2*

Fig. 22.4. The splitting of the hydrogen p-state by spin-orbit coupling, Eq.
(22.33)
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split states for various I-values. We see from that table that the splittings are
quite small on the scale of the difference between different atomic term
values so the splitting is indeed small, and appropriately called fine
structure. In Problem 22 .4, this same analysis is carried out for d-states.

The analysis is more intricate when more than one electron is included,
so that there is spin-orbit coupling between different electronic states, but the
principle is the same. For example, for carbon, for which we start with a
configuration 1s22s22p2, the lowest state (by Hund's Rule) will be with the
two p-states of parallel spin, so we imagine a two-electron state with spin
quantum number S = 1, using a capital S for the total-spin quantum number.
If we take the total orbital momentum to be approximately conserved, which
is often reasonable since the interaction with the spins is weak, that total
orbital-angular-momentum quantum number can be L= 0, 1, or 2. These
different states will have different Coulomb energy from the electron-
electron interaction. For each choice one can then evaluate the L-S energy.
Other approaches can be taken when the terms which dominate are different
from what was assumed here.

We note briefly an important effect of spin-orbit coupling for the band
structure of semiconductors (Chadi, (1977)). We noted in Section 13.5 that
the states at the top of the valence band are made purely of p-states. We can
expect those bands to be split into two (doubly-degenerate, since there were
four total) bands at slightly higher energy and one (doubly-degenerate) band
at slightly lower energy, and that is the case. The spin-orbit coupling can be
directly included in a tight-binding band calculation, doubling the size of the
Hamiltonian matrix since now the spin-up and spin-down orbitals are
distinguished. Spin-orbit coupling provides intra-atomic matrix elements
from Eq. (22.29), in addition to the interatomic matrix elements arising from
the Vsso, Vspo, etc.  The intra-atomic matrix elements are evaluated by
writing

LyS. + L.Ly
LS =LxSx+LySy+ LzSz == + 148 (22.34)

using Eq. (22.32). Then the procedure is straight-forward and leads to the
expected splitting .

How the bands go away from k = 0 is less obvious, but is shown in Fig.
22.5. In Part a are seen the doubly-degenerate (four-fold, including spin)
heavy-hole bands and light-hole band. The heavy-hole bands can be written
in terms of states which have # angular momentum around the
wavenumber of the state. These are split up and down depending upon
whether the spin is parallel or antiparallel to this orbital angular momentum.
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The light-hole band must match with the upper band since it is the one with
the higher degeneracy as seen in Fig. 22.4. The result would be that the
light-hole band drops rapidly with wavenumber and would cross the lower
heavy-hole band. However, bands can only cross if they are uncoupled to
each other. Any coupling will cause the bands to move apart, sometimes
called an anticrossing. This is precisely what occurred in the formation of
the antiferromagnetic insulator discussed in Section 21.2 . Before the
symmetry was broken we could draw free-electron bands as in Fig. 21.3 in a
reduced zone (0 < kd < ®/2), or in an extended zone (0 < kd < 7), or both,
and they cross because there is no coupling between them. Once the
symmetry is broken, the two crossing bands are coupled and the crossing is
avoided as shown there. In Part b we see that exactly this happens here and
the lowest band switches from heavy to light in the region where they
would have crossed. These are important bands in an important region of
energy so the result is of considerable consequence.
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Fig. 22.5. The top of the valence bands of germanium (a) without spin-
orbit coupling and (b) with spin-orbit coupling. The energies are in units
of hi%2/md? . Note that the light-hole band is at the upper energy at k = 0 in
Part (b). [After Harrison (1999)].
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Chapter 23. Shake-Off Excitations

Shake-off excitations would seem to be a specialized topic, but they
have turned out to be so central to a wide variety of quantum-mechanical
properties, and so central to a number of insights, that they definitely deserve
at least a chapter. They also are very suitable as a concluding chapter. They
concern the behavior of "spectator” systems, such as an electron in an atomic
state, when a second electron is removed. By way of introduction we
discuss two limiting approximations for time-dependent problems.

23.1 Adiabatic and Sudden Approximations

One problem we have not discussed is boundary conditions which
change with time. There are many situations related to this, but we illustrate
it for an electron in a one-dimensional quantum well, as in Section 2.1 and as
shown in Fig. 23.1. The Hamiltonian contains only the kinetic energy, but
the positions at which the vanishing boundary conditions are applied change
with time.

There are two limiting cases for which the answer seems obvious. The
energy levels are discrete and if the boundary conditions change very slowly
it is clear that an electron in the lowest state has no chance to jump to a
higher state. An electron in this state, or in another state, is expected to stay
in the expanding state, called following the state adiabatically, in analogy
with the slow expansion of a gas against a piston, cooling the gas. On the
other hand, if the boundary were very quickly to be expanded, it is clear that
the initial state [y(0)> cannot change quickly; it changes only according to
the Schroedinger Equation, Eq. (1.16). Thus we may neglect its change
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< >
L(0) L(t)

A
Y

Fig. 23.1. If the well in which an electron is bound is increased in size
slowly, the state will follow adiabatically as to the dashed line to the right.
If it is increased suddenly, the state will initially remain as it was, as in the
solid line to the right.

during the boundary shift, expand the original wavefunction in the
eigenstates |yj(t)> appropriate to the new boundary, and can then easily
follow the time evolution of each state. In fact, the squared expansion
coefficients <y(0)|yj(s)> of the original state in each of the new states is
exactly the probability of a transition occurring to that state. This is called
the sudden approximation and is analogous to expanding the chamber
holding a gas so rapidly that the atoms have no chance to do work against
the moving walls.

It is not immediately obvious for the system in Fig. 22.3 what the
criterion for fast or slow is, though we shall show that if the time taken to
change the potential is small compared to h divided by the energy difference
to some excited state, we may regard the change as fast, and if it is large, we
may regard the change as slow. We do this by expanding the wavefunction
in the eigenstates which depend upon the length L(#) which in turn depends
upon time, very much as we did in treating time-dependent perturbations in
Sections 9.3 and 19.3,

(0> = 20 uj(d)e OOt |j> | (23.1)
Here
> = V2IL(®) cos[m(2j +D/L(1)], 23.2)

with x measured from the center of the well and energy

g = W2[n(2j+1)/L(1))2/(2m) = hoj(r) . (23.3)
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There are also states with energy h2[27j/L(£))2/(2m), which are odd around x
= 0, but these are not coupled to the states we consider. They are a separate
problem. We may think of the adiabatic limit where the ug is one initially,
and remains near one. We may see how any other uj grows with time by
substituting Eq. (23.1) into the Schroedinger Equation, multiply on the left
by a particular <j| , dropping the zero-order terms, and keeping only the
largest first-order term, that with ug = 1. This leads to

Juj
llll al; e -iwj(Dt —ﬁ<j| 9 |0> ¢ -ip®t =0 . (23.4)

Note that a term ht dw/dt <j|0> was dropped because <j|0>=0. To evaluate
<jlo/ot |0> we take the derivative of |0> with respect to z, using Eq. (23.2).
The term from 0/0¢ V2/L(?) is again zero because <jj0> = 0, but the other
term gives <jl0/0f0> = (2/L(1))(1/L{£)2)(dL(1)/d1) [ cos[m(2j +1)w/L®)x
sin[mu/L(f)] dx. We write

Aj= cos[(2j + DX/L(D](/L(D)) sin[mv/L(t)] dx

L(t) J.
23.5)
= 2_[_1/2,1/2 cos[n(2j +)ulu sin[7tu] du,

which is independent of ¢+ and of order one. Note again that there is no
coupling to the states which are odd around x = 0. With this form we have

duj P JL(D)
at TL(H) ot

¢ i@j0-wpO . (23.6)

In order to proceed further we must specify L(¢). One way to represent a
small change in length AL taking place in a time 79 is to take L(f) = L +
AL(e Y% - 1). Then (1/L(t))0L(H/0t = -(AL/L)e -Yto/tg. We may substitute
into Eq. (23.6), integrate from zero to a large t, now taking ®j - wo
independent of time since changes are of higher order in AL/L . We obtain
the probability of a transition to the state |j> as

e = [TALAL I 23.7
WHETL) 1+ (0)- 00202 (23.7)

If the time fg taken to change the boundary is small compared to
1/(w;j - o) =Y1/(€j - €0), the final factor is near one and we have a form for
the transition rate which we may associate with abrupt changes. It will tend
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to decrease with increasing j because Aj from Eq. (23.5) will tend to drop as
1/j. If #g is long compared to H/(Ej - €0) , the final factor will become small
and we expect few transitions, associated with an adiabatic following of a
slowly-changing boundary. In Problem 23.1 we treat the other limit, where
the change is rapid, and find explicitly the probability of particular
transitions.

Similar criteria can be derived for a harmonic oscillator when the
parameters, such as the spring constant, change with time. In that case
transitions tend not to occur if the changes in parameters occur over a time
long compared to the period of the oscillator, physically a very natural
criterion. It is in fact closely related to the criterion we just found for the
system in Fig. 23.1 since the energy to the excited states in the oscillator is
of order ho, and that energy divided into h is the period of the oscillator.

23.2 Vibrational Excitations

We turn to the question of vibrational shake-off excitations which may
arise when an electronic transition occurs. Perhaps the simplest case
conceptually is illustrated in Fig. 23.2. We imagine a particle bound in a
state |[0> on a platform, with an energy which varies as Au with the
displacement u of the platform. A would be mg for a particle of mass m in
a gravitational field, or it could be the shift in energy level in a molecule as
the internuclear distance is changed. The Hamiltonian will also contain a
harmonic-oscillator kinetic and potential energy associated with the platform
displacement u. Finally, there will be a set of freely propagating electronic
states |k>, coupled to the local state by a matrix element Vox = <O|H(r)|k>
with H involving only the electronic coordinates. The term Au is absent
from the Hamiltonian when the electron is in a state |k>. This Hamiltonian

u

(a) (b)

Fig. 23.2. In Part (a) a particle is bound in a local state, in which its
energy is shifted by a displacement u of a harmonic oscillator. That state
is coupled to freely propagating states, Part (b), in which there is no
coupling with the displacement.
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can be written, before we treat the vibrational terms quantum-mechanically,
as

H = (g0 +M)cofco + ek ckTek + ViockTeo + VokcoTek + 1oMmP2 + K/ou2,
(23.8)

with M and « the mass and spring constant for the platform oscillator,

Now we imagine the particle bound to the platform, and the spring
compressed to its shifted equilibrium position. If the particle makes a
transition off of the platform, the platform will return to its position,
unshifted by the weight of the particle. The question might arise whether we
should make the sudden, or the adiabatic, approximation: is the platform left
vibrating (called a shake-off excitation), or does it adiabatically shift to its
new equilibrium question. We are left with the question: "How fast does the
transition occur?” The answer is far from obvious, and most people would
guess incorrectly. The correct approach is simply to do the calculation,
including the platform in the quantum-mechanical problem, and we can
interpret the result afterward if we wish. The model captures the physics of
a wide variety of problems in which we feel we should ask how long some
process takes and often the result can be guessed by generalizing the result
we obtain here. In other cases, one can redo the new problem.

We shall use the Golden Rule, with the perturbation Vgg, and the
principal task is finding the initial and final states. In the initial state, with
the particle on the platform, the equilibrium position is shifted to ug such
that (9/0u)(1/axu? + Au ) = 0, or up = -A/K. It is essential to treat the platform
quantum-mechanically (it is always essential to include all parts of the
system in the quantum theory if it makes a difference, or if we cannot see
how to proceed otherwise) so we might let the oscillator be in its ground
state po(u - up), with ¢ the ground-state harmonic-oscillator eigenstate
given in Section 2.5. Then the initial state is |0,0> = ¢o(u - ug)|0>, with the
first zero in |0,0> referring to the electronic state and the second referring to
the vibrational state. The final state |k,n> might also be in a ground state of
the unshifted harmonic oscillator ¢o(u), or it might be an excited state ¢on(u),
with an energy higher by n hw. That is what we wish to learn. It is
important that we use unshifted final states here so that the energy can be
specified.

For the excited state, the matrix element for the transition becomes
<k,n|H(r)|0,0> = Vo < ¢n(10)|do(u-up)>, with the overlap integrals given by

< On(W)|do(u-ug)> = jdu On(u) Oo(u - up). (23.9)
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(The harmonic-oscillator functions are real.) The same forms apply if the
final state of the oscillator is the ground state, n = 0. We may immediately

write the transition rate for each excitation level of the final state from Eq.
7.9,

2
Pon = fn 2k VorVio < 00 (2-10)|0ni)>< O ()| Go(u-10)>S(ek + n hw - €9).
(23.10)

All of the interesting questions can be answered by looking at this result.
First, if there is no coupling, A = 0, then o = 0 and all of the overlap
integrals are zero, except #n = 0, for which the overlap is one. The oscillator
is never excited and the usual formula, (21t/h) Zx VokVko 8(€k - €0) applies,
as it should. When the coupling is nonzero, the probability of a transition
with no excitation is reduced by a factor < ¢o(u)|0o(u-up)>2. This reduction
is compensated for by some probability of transition to a state |n>, with
probability proportional to < On(u)|do(u-ug)>2, with shake-off excitations of
n ho. In fact this compensation is in some sense complete since

2 <00(u-u0)|0n()>< On()|00(u-u0)> = 1, 23.11)

if the sum includes n = 0. This is called a sum rule and it follows from the
fact that the states |On(u)> are a complete set. Thus we may expand
Oo(u - ug) in the dn(u) as |do(u-up)> = Zn |on(u)>< dn(u)|00(-up)> and then
Eq. (23.11) is just the normalization condition on |¢o(u-u0)> There may be
slight differences in the Voi which enter, and the density of states will be
different for different n , so the compensation of lost probability to n = 0 by
probability to other n is only approximate. In that approximation,
<Oo(u-u0)|dn(u)><dn(u)|do(u-ug)> is the conditional probability that the
particle will leave n quanta of excitation when it leaves the platform.

This <do(u-10)|On(u)>< On(u)|do(u-ug)> is in fact just the formula for the
sudden approximation, the squared expansion coefficient of the initial state
in the possible final states. However, now that the oscillator has been
quantized, it describes also the probability of remaining in the ground state -
appropriate to the adiabatic approximation.

We have indeed answered the question as to the probability of different
events occurring and we may learn something by looking at the results. A
convenient way is to plot the probability of the electron emerging from the
system with different energies, € - nHw, illustrated in Fig. 23.3. If the shift
in the equilibrium position ug is small compared to the zero-point fluctuation
ap of the oscillator (defined after Eq. (2.43)) we have a weak-coupling limit.
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The two Gaussian states will only be shifted slightly from each other and
<Oo(u)|po(u-up)> will be near one. The values of <dn(w)|oo(u-up)> will be
small for other n, and decrease rapidly with n as shown in Fig. 23.3 (a). We
may think of the slight reduction in Pg as the probability that the oscillator
makes a large enough zero-point fluctuation to bring the oscillator into the
unshifted position.

If the shift in the equilibrium position ug is large compared to the zero-
point fluctuation ag of the oscillator, the shifted Gaussian will barely
overlap the unshifted Gaussian and there will be almost no chance of
emission with n = 0.  This is also true of small n but once we go to large
enough #n that the peaks in the harmonic-oscillator wavefunctions are large
near u = ug, states of energy nh® near the classical vibrational energy
1/oxup? (as we saw in Problem 2.9) the probabilities become large, as
illustrated in Part (b) of Fig. 23.3. We may think of this strong-coupling
limit as the classical limit and it is exactly what is expected in classical
physics for the abrupt removal of the particle. The transition of the particle
leaves the oscillator in its original displaced position, with energy 1/2xug?
which then appears as vibrational energy. In fact, the state of the oscillator
is a coherent packet representing a harmonic oscillator with displacement
approximately equal to ug, and that packet will oscillate as a classical
oscillator. Many systems correspond to this strong-coupling, or classical,
limit in which the behavior is as if the electronic transition were very fast
and the harmonic oscillator, or atomic system, is slow. This statement is
called the Franck-Condon Principle, but it is only true for some systems.

We may now go back and ask what time we should have assumed it took
the transition to occur if we wished to guess whether the result corresponded
to an abrupt or an adiabatic transition. The criterion for a "fast transition",

» A » A

n

l I l 1 —
€ (b) <%0 ¢

all 5
(@) i >| &0

Fig. 23.3. The emission spectrum of a particle leaving a state coupled to
an oscillator, as in Fig. 23.2. Part (a) is the weak-coupling limit in which
the probability is high of leaving with the original electronic energy and
leaving no shake-off excitations. There is a small probability of leaving a
few quanta of energy behind. Part (b) is the strong-coupling limit in
which the particle leaves approximately nhw = oku? behind in shake-off
excitation,
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for the Franck-Condon Principle to apply, is that the equilibrium shift ug be
large compared to the zero-point fluctuation ag, or ag? << up?. We may
multiply both sides by 1/2x, and 1/2kap? was seen in Eq. (2.44) to be hw/4.
Further , 1/9kuo? is the spring energy in the relaxed state, twice the energy
gained Erelax, by letting the spring relax as in Fig. 23.2 (a). Thus the
condition for a fast transition is

ho << 8FErelax. (23.12)

This is the condition that b/Ee]ax is short compared to 8/w = 87/2x, with T
the period of the oscillator. We would have guessed correctly when the
sudden approximation is appropriate if we had said that the time for the
particle to make a transition from the platform was i/Eg]ax. This was the
transition time which we suggested most people would guess incorrectly. It
has nothing to do with the lifetime of the state on the platform, nor the
matrix element Vok with the external states, but only upon the parameters of
the oscillator which we are using as the instrument to "measure” the
transition time. This is a particularly important message in a time when it is
often the style to guess answers by asking what are the relevant time scales,
or distance scales, in order to avoid making a model and doing a calculation.
The latter is much safer.

Electron tunneling is an important example which contains the same
physics as this example, Fig. 23.2. If we think of the transition from the
platform as a tunneling event, and ask whether the tunneling should be
considered fast or slow compared to an oscillator period, we find that the
tunneling time is again R/E;elax and has nothing to do with the thickness of
the barrier. One place where this comes up is in the tunneling of electrons in
a polarizable medium such as a semiconductor. We saw in Section 17.3 that
a carrier polarizes the medium, reducing its energy to form a polaron. If that
carrier tunnels to a different place, we might ask if it leaves vibrational
energy behind, or does the polarization of the lattice disappear during the
process. The answer is obviously that it will tend to leave vibrational energy
behind if B/Erelax (With Erelax the energy gain in forming the polaron) is
small compared to 1/m. Probably a better, and equivalent, criterion is that it
will tend to leave vibrational energy behind if Eyelax is large compared to
how. Such a case is frequently called a small polaron. It has distortional
energy large compared to a phonon and usually well localized. This also
means that if the Erelax is small compared to ho it is unlikely to emit a
phonon, and it certainly cannot emit a part of a phonon. Another important
example is electronic excitations in a molecule. Usually such a transition
will shift the equilibrinm spacing so that the molecule may, or may not, be
left vibrating after the transition. We have seen how to learn which.
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In our analysis we began with the oscillator in the ground state, but it is
quite clear how to repeat the analysis with a starting excitation n = ng . Then
there are processes in which vibrational quanta are absorbed as the transition
occurs, often called phonon-assisted transitions, as well as those with shake-
off excitations.

A final closely related example is the Mossbauer effect (Mdssbauer
(1958)). When an atomic nucleus emits a gamma ray (Section 4.4) of
momentum hq of magnitude hw/c, the atom must recoil with equal and
opposite momentum, -hq. This conservation of momentum comes always
from the matrix element and in this case it means that the terms in the
Hamiltonian which describe the emission process within the nucleus must
contain a dependence upon the center-of-mass coordinate R of the nucleus
given by ¢ 14° R Then if a free atom has a nucleus initially in a state
JAKRAQ. it will go to a final state eik+@)R/\/Q. Now, if the atom in
question is part of a solid, we may ask whether the nucleus is left vibrating,
as if the gamma-ray emission were very rapid compared to a typical
vibrational frequency ®wp of the solid, or if the momentum would be
transmitted to the entire crystal with negligible recoil energy, as if the
emission were very slow. The last situation is called the Mossbauer effect.
It is quite easy to answer the question (see, for example, Harrison (1970))
much as we did above. We may write the component of R along the
direction of q as u, and represent the binding of the atom in the solid as a
harmonic oscillator with frequency wp. Then the matrix elements for the
nuclear transition contain a factor <n|e-iqujn’> = Jdu dn(u)e 19Uy (u) with n'
the level of excitation before, and n the level of excitation after, the
transition. If prior to the transition the system is in the vibrational ground
state, the conditional probability of finding it in the r'th vibrational state
after is |<nje-1qu|0>|2. In particular, the probability of remaining in the
ground state is readily evaluated using the harmonic-oscillator ground-state
wavefunction (Eqs. (2.40) and (2.43))and found to be

|<Ole -1qu|0>[2 = ¢ -(q20)>, (23.13)

It is notable that we could solve this problem without knowing anything
about the nuclear process other than the momentum transfer. It turns out that
this formula applies also if the fluctuations come from thermal vibrations,
with the zero-point ag? in Eq. (23.13) replaced by the thermal <u2>. Thus,
to increase the probability of the Mossbauer effect occurring, one goes to
low temperatures so that it is suppressed only by the zero-point fluctuations.
The effect is important since it leads to very sharply-defined gamma-ray
energies, with negligible broadening from nuclear recoil.
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Finally, we could ask what we should have assumed was the time
required to emit a gamma ray if we wished to decide if the process was
sudden or adiabatic. After the above analysis it may not be surprising that
we should have taken the emission time as h divided by the classical recoil
energy, h2¢g2/(2M), with M the nuclear mass. (This form actually also
illustrates the fact that if the recoil is by the entire crystal of mass NM the
recoil energy is negligible.) As we expect, this "transition time" has nothing
to do with half-life of the nuclear state.

23.3 Electronic and Auger Processes

The vibrational system in the preceding section has been a spectator to
an event involving an electron, or other particle. In just the same way we
can treat electronic states which are a spectator to another process. For
example, in the beta-decay of a nucleus (discussed in Section 9.5), the
emission of a beta ray increases the atomic number by one, and any
electronic state on that atom will shift closer to the nucleus due to the extra
nuclear charge. We may ask whether an electron in that state will follow the
state, or whether it will be excited to a different final state. The answer is
quite obvious by analogy with the results for vibrational excitations. If we
write the electron state before the beta-decay as |wg">, and the eigenstates
after the decay as |yp>, we can define a conditional probability (probability,
given that the beta-decay occurred) of finding the electron in the n'th state as

Pn = <yo'lyn><yn|wo'>. (23.14)

Again because of the different energies for the resulting beta-ray, there are
corrections to this probability, usually not so important.

Another illustrative case is an electron in a donor state in a
semiconductor. We found in Section 14.2 that the effective-mass
wavefunction for such a state is hydrogenic,

3
yu) =\ e, (23.15)

with energy relative to the conduction-band minimum of

ZZm*et  h2u2
ED:_”Z_IS—ZST:—E—H!;L_* (23.16)

with Z = 1. If an electron is removed from the core of the donor atom, by an
x-ray, the effective charge binding the donor state will increase from Z=1 to
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Z = 2. The energy drops by a factor of four and W increases by a factor of
two. Then the conditional probability of the electron shifting to the new
ground state of the donor with u=2p' is

64ulw3 512
<ylyps2 = a‘i—}i‘? = 355=0.70. (23.17)

This is again consistent with a sudden approximation but gives the
probability that the electron remains adiabatically in the ground state as Eq.
(23.17).

When the excitations in question are electronic, and the change in
potential is electronic, as in the case of the donor state, these are called
Auger transitions. Another example is a transition in which a valence
electron in an atom drops into an empty core state, which may shake off
another valence electron, frequently ionizing the atom. When a valence
electron in a metal drops to fill an empty core state, the screening of the
resulting change in potential makes only a small change in each electronic
state, very much like the small change in each state in a scattering, or
tunneling, resonance (Section 8.4). Thus the probability of any one state
making a shake-off transition is extremely small, but when summed over all
states some shake-off is certain, as first showed by Anderson (1967). These
transitions in the metal come at very low energies. The corresponding x-ray
emission spectra would otherwise resemble the density of occupied states as
a function of energy, but the spectra are modified near the highest-energy x-
rays.

23 .4 Inelastic Processes

We saw how a tunneling particle, as in Fig. 23.2, can leave vibrational
energy behind, which is called inelastic tunneling. Similarly the tunneling
electron can leave vibrational energy in the medium into which it tunnels,
which is calculated the same way. A particularly interesting third case is in
tunneling through an intermediate state as described in Section 9.1. The
system is illustrated in Fig. 23.4, in analogy with Fig. 23.2. The transition
rate is written as in Eq. (7.9),

<flH|i><i|H|0>
2n Zflz < H1><1HO>| S(Eo - Ef) | (23.18)

Por =

but now the initial state is ¢;1]0>, and we choose to put the harmonic
oscillator in its ground state ¢g(u). (The analysis is the same, as in Section
23.2, if we choose an excited initial harmonic-oscillator state.) The
intermediate states |i> are all ¢,7|0>, with the spring relaxed but with various
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I

Fig. 23.4. An initial electron state ¢;|0> is coupled to an intermediate
state c37|0> by T2, which is in turn coupled to a set of finai states c30>
by T23. There is a polarization term, Au ¢;¥co, in the Hamiltonian, as in
Fig. 23.2 and Eq. (23.8), so vibrations can be introduced in the
intermediate system during tunneling.

vibrational states On'(4 - up). We write their energy €3 - Erelax +n'hw. The
final state is c3t]0> , with no relaxation since no particle is on the platform,
and can have different vibrational states ¢n(u). Its energy is €3 + rhw. Thus
the sum over intermediate states, the second-order coupling of Eq. (9.2),
becomes

flH|i><i|H|0
<f|H20d|0> = Zi < E;><;5, =
- 1
(23.19)

_y, T12123<00(0)|On'(1-10)><On'(1t-10)| O (24)>

€1 - (€2 - Erelax + n' hw)

and the energy delta function becomes 8(Eq - Ef) = 8(¢1 - €3 - nhw).
One interesting case has the final state, as well as the initial state,
without excitations, n = 0. Then the second-order matrix element becomes

T12T23<h0()|On'(u-u0)>2
€1 - (€2 - Erelax + n' hw)

<f|H20d[0>= 25y (23.20)

and the delta function is 8(Eg - Ef) = d(¢1 - €3). We have a sum of
contributions from the intermediate states, of the same sign if 7132723 has
simple behavior and €3 > €. The transition goes through an intermediate, or
virtual, state of higher energy. If € < €] there may be intermediate states of
the same energy as the initial states and the possibility of real transitions to
the intermediate state.

The case in which there are excitations in the final state has the fuil
factor <do(u)|On (U-u0)><On(u-u0)|dn(u)> from Eq. (23.19). It is interesting
to note the two limits we discussed in Section 23.2. If the shift ug is large
compared to the zero-point fluctuations ag, the overlap <do(w)|dn'(u-up)> is
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small unless n’ takes a large value, corresponding to a classical distortion of
the spring from its relaxed position at ug to the initial position « = 0. Then
for that large n' the overlap <0n'(u-u0)|dn(u)> will only be large if n is near
zero for the same reason and there will be no energy lost to the oscillator.
This is the classical result, in which we may think of the platform as
remaining at its initial position u = 0, with the electron darting through the
intermediate state as in Section 9.1. This is in fact quantitatively what Eq.
(23.19) gives for this limit with n = 0. With approximately the same elastic
energy n'hw = 1/pkug? = Erelax added to each intermediate-state energy, the
factor 1/[€] - (€2 - Erelax + nhw)] = 1/[€] - €2] can be taken out from under

the sum in Eq. (23.19), and the sum rule of Eq. (23.11) gives 712723 for the
sum over the numerator of Eq. (23.19) with n = 0. Thus we find
<f|lH2nd|0>= T12T23/(¢] - €2) as if the platform never moved.

In the other limit, with the shift #g small compared to the zero-point
fluctuations, the overlap <¢o(u)|0n'(u-ug)> is large for n’ = 0 and small
otherwise. Similarly then, with n' = 0, we see that <¢n'(u-up)|dn(u)> will
only be large if n is also equal to zero. Thus we again find no loss but in
this case <f|[H20d|0>= T12T23/(€1 - (€2 - Erelax)) as if the platform shifted to
its equilibrium position while the electron was present, with no phonons
excited.

Loss to the harmonic oscillator arises only when the zero-point
fluctuations are of a similar size to the shift ug in the equilibrium position.
We may note that this was the condition that the tunneling time, i/Erelax , is
comparable to the period of the harmonic oscillator. This makes a very
plausible intuitive picture. It is much like a person stepping briefly on a
platform in passing over it. If he is on the platform for a small time
compared to the period, it scarcely moves and no energy is lost. If he steps
very slowly onto the platform and off, it will displace adiabatically down
and up, again with no energy lost. Only if he steps on for a time of the order
of the period of the oscillator will energy be transferred causing the platform
to vibrate.

This same system can be used to address another interesting quantum-
mechanical question, which is frequently discussed in terms of inelastic
events causing a "loss of phase" of a wave packet. It is generally agreed that
there is interference between two packets following different paths, but if an
inelastic event (an energy loss or gain) occurs along one of the paths, the
interference is lost. This is often interpreted as a randomization of the phase
of that packet, which would indeed destroy the interference. However, if we
consider a system for which we can distinguish a loss of phase from the
elimination of one packet, a "collapse of the wavefunction”, we find that the
latter is the correct explanation (Harrison (1994)).

In order to address this question we need additional paths as shown in
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Fig. 23.5. An electron initially in the state |0> can tunnel through either of
two intermediate states |1> and |2> into three final states as shown. With
all matrix elements the same the amplitudes at |[4> from the two paths add,
so the probabilities of ending in |3>, |4>, or |5> are in the ratio 1:4:1. If an
inelastic event occurs in |2>, the ratios are 0:1:1 (as expected), not 1:2:1 as
would be predicted from a phase randomization by the inelastic process.

Fig. 23.5. We shall see that there is interference between the two paths
leading to the states labeled |[4>, so that if all matrix elements are the same
there is four times the probability of that final state relative to that labeled
|3> or that labeled |5>. We shall then allow an inelastic event of the type
illustrated in Fig. 23.4 to occur in the intermediate state labeled |2>. We
expect that this indicates that the electron took the path to the right, so that
the probability of arriving at |3> is zero, and of arriving at [4> or at |5> is
equal, and we shall find that to be true. If the inelastic event simply
randomized the phase of the packet, it would indeed eliminate interference
but would incorrectly predict equal probability for |3> and |5> and double
probability for [4>. Such an assumption of randomized phases would give
the correct average over equal numbers of inelastic events in both channels,
but for the wrong reason. It is of interest to see how the inelastic event
eliminates the second path in the correct theory.

We may again look at the second-order matrix element, which enters
squared in the probability of each final state in Eq. (23.18). Without a
coupling to vibrational states which could give inelastic processes these
second-order matrix elements to the three final states are

To1713
digs>= 0121
<3|H2nd|0> e
191714 192724
d —
<AEA0>= T T (23.21)
ToxT
<5|H2nd|g>= —0222

€0 - €2
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As we indicated, if all matrix elements entering are the same and € = €1, the
second-order matrix element to the middle state [4> is double so the
probability is four times. If we randomized the phase for the two
contributions, the cross term would vanish and the probability of a transition
to [4> would only double.

Now let the state |2> interact with an oscillator, as in Fig. 23.4, and let
the corresponding oscillator be initially in the ground state ¢o(u) but excited
01(x) in the final state. [For purposes of this calculation we need consider
only an oscillator for the state |2>.] Any vibrational state is allowed in the
intermediate state, and if the intermediate state has the electron in the state
|2> the intermediate states are On(u -ug) (we use an n rather than the n’ of
Eq. (23.19) for the intermediate state) with energy €2 -Erelax + i . On the
other hand if the intermediate state does not have the electron in the state
|2>, but in the state |1>, the intermediate states are ¢p(u ) with energy €1 + n
how. We may rewrite the first line in Eq. (23.21) for the path through state
|1> to 3> then as

To1T13 <¢0()|0n()><Pn ()]0 1 (u)>

<3|H2ndi0>: Zn E() - -nl'/l(,l)

(23.22)

We see that every term is exactly zero, either from the first overlap or from
the second, or both. Thus there is no second-order matrix element, and no
probability of the electron arriving in the state |3> if the final state has ¢1(u),
exactly as we expected. If the final state had no phonons, the overlaps
entering in Eq. (23.22) would be <¢¢(10)|0n(u)><Pn(u)|¢o()> which equals
one from the n = 0 term and transitions to the state |3> are allowed, again as
they should be. In fact the oscillator coupled to the state [2> has no effect
for this transition to the state |3> with no phonons excited.

The same factors, <0o(u)|On()><dn(w)|01(m)> when there is an
excitation to n = 1 in the final state, enter the first term in <4|H2nd|0> in Eq.
(23.21) and it does not contribute. This orthogonality has eliminated the
path through the state |1> from the results, as if the wavefunction had
collapsed, though that is a clumsy way to describe a clear result. On the
other hand, for the second term in <4|H2nd|0> with a single phonon in the
final state the overlaps enter as <do(u)|dn(u-10)><dn(u-u)|p1(x)> which are
nonzero for every n . The paths through the state |2>, with or without
excitation in the final state, are calculated exactly as in the system in Fig.
23.4. All of the results of the calculation for this model are as we expect on
physical grounds, and we have seen in detail how an excitation removes
alternate paths.



23.4 Inelastic Processes 321

Another system we should consider would again be that in Fig. 23.5, but
now with a classical raising and lowering of the platform u(7) randomly in
time. This could be a representation of tunneling through a state which was
shifted by thermal fluctuations. Then the corresponding matrix elements in
Eq. (23.21) become time-dependent as in Section 9.3. If the fluctuations are
sufficient, the growth of the coefficient of the final state through this term,
calculated as in Section 9.3, becomes random in phase relative to
contributions through the other path, and indeed a randomizing of the phase
has occurred. Perhaps we can say that it corresponds to an array of inelastic
processes as we described above, averaged over absorption and emission
events, which then does give the same result as a randomized phase. This
becomes more a matter of exactly what question is being asked than of how
a particular physical system is being modeled.

This analysis sheds light on the question of how a particle, represented
by a plane wave, can produce a string of droplets, a track, in a cloud
chamber. Why cannot this plane wave generate a droplet far from the main
track? The answer clearly can be given that the matrix elements needed for
producing that droplet contain factors of the overlap of states associated with
droplets in the main path. These overlaps are zero for the electron in the
distant droplet.

This system represented in Fig. 23.5 also helps clarify the concept of
"entangled states" which is often discussed in quantum theory, though we
have largely avoided it here. We may introduce harmonic oscillators for
both the intermediate states |1> and |2> . Then in the course of transmission
of the electron from |0> to the final states there are many terms in the
intermediate state, some with the harmonic oscillator for the state |1> in an
excited state. However, for those terms, the harmonic oscillator for the state
|2> is definitely in the ground state. When the oscillator for the state |2> is
in the excited state, that for state |l> is always in the ground state. We
cannot discuss the two oscillators separately because their states are
entangled.

This entanglement feature is essential to quantum computing, which is
currently under extensive discussion (e. g., Averin (1999), Nakamura,
Pashkin, and Tsai, (1999)). It is usually based upon spin states, which we
have been able to describe as spin-up or spin-down for almost all of our
discussion, except in connection with spin-orbit coupling, because the spin
did not appear in the Hamiltonian and these two eigenstates were degenerate.
For computing in a binary system, each bit of information is a zero or a one,
which we may represent as a spin up, |T>, or a spin down, [{>, called a
qubit, a bit of quantum information. The quantum computer represents
numbers with an array of such qubits. More generally the spin state of each
qubit can be a mixture of spin up and spin down, cosn[T> + sinn|l«>, and in
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fact such combinations arise automatically when the qubits interact with
each other, and the interacting qubits are entangled in just the sense
described for oscillators above. The lowering of one spin is inevitably
accompanied by the raising of the other. It is this entanglement which may
make it possible to greatly reduce computational time by following several
scenarios (Section 1.5) at the same time. For this to succeed, it is also
necessary to retain each scenario and to conserve the relative phases of the
array of cubits, which may be the most difficult part.

This same mixture of spin-up and spin-down states is the basis of one
method of "quantum cryptography”. With an axis selected, binary
information can be transmitted by sequentially sending particles of |T>
representing 1 and |i«> representing 0. If the receiver knows the axis
direction, he can set his detector and read the message. If the message is
intercepted by someone who does not know the direction, and guesses a
direction off by some angle ¢, he will read the wrong digit a fraction
1/5sin2¢ of the time, be unable to read the message, and have no way to
correct his error. This same method can be used with photons with the
polarization of the light playing the role of spin orientation. However, it is
essential that the message come one photon at a time, or the interceptor can
receive with multiple receivers, with multiple orientations, and sort it out
afterward. It is the particle aspect which is essential, not the representation
as polarization by cosn|T> + sinn|l>. That wave aspect is also there in the
remarkable feature of classical light that crossed polarizers will prevent
transmission of any light, but if a third polarizer is placed between them, at a
450 angle, 25% of the light will be transmitted. That result is immediate in
the wave picture, but difficult to picture in terms of the spin-orientation of
photons.

Epilogue

If we look back over the extraordinary range of topics we have
discussed, we should remember that we have been exploring the
consequences of a single idea, complementarity, which we introduced at the
outset: Everything is at the same time a particle and a wave. That the
consequences could be so pervasive, and yet not recognized before this
century, is because the constant i which relates the particle and the wave is
so small on the scale of everyday experience. It is however large enough
that all modern engineers and scientists should understand this basic rule by
which the world operates, and learn the approximations which allow them to
apply it to their work.
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Exercises

1.1 Compton scattering of an electron

q
a 0

k

A photon of momentum p =hq is absorbed and another p' =hq' emitted at the same
time by an electron initially at rest, called Compton scattering. The electron must pick up
the missing momentum hk (all components) and also pick up the missing energy. Using
conservation of energy and momentum is enough to put a condition on the momentum
gained by the electron in terms of the angle 6 between ¢' and q . One must use the
relativistic form of the electron energy,

€=V (mc2)2 + (cp)? - mc2 .

relative to the rest energy. Your result can be written in terms of the change in
wavelength AA of the light as

AL = 2A¢ sin2(6/2)

with A¢ = 27th /(mc ) =h /(mc)= 2.43x10-12 meters, the Compton wavelength. Derive this
result. This is one of the few derivations in this set of exercises.

2.1 n-states in a benzene ring

The benzene ring of six carbon atoms has a radius of about 1.53 A. Imagine free
electrons confined to such a circular ring.

a) Obtain the wavenumbers and energy of the free-electron states (V(x) = 0).

b) Actually we shall see that one electron per carbon lies in such a state. (These are
called the m-electrons.) What is the lowest sum of electron energies, allowing one
electron of each of two spins in each state?

¢) What is the energy difference between the lowest empty and the highest occupied

states? hw equal to this difference gives the optical absorption threshold.

2.2 Energy to break a benzene ring

Imagine breaking the benzene ring, keeping the length the same, and thus requiring
the y(0) = y(L) =0. (Note y' (L) = -y’ (0) is not ruled out now.)

a) Find the energy for these states.

b) Find the lowest sum of one-electron energies for the six electrons, and then the
change from this sum in Problem 2.1. This is a contribution to the change in energy upon
breaking the ring. (It might be called the energy of a resonant ©-bond.)
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2.3 Fermi energy in free-electron metals
Na, Mg, and Al have 1, 2, and 3 free electrons per atom, respectively. If the volumes
per atom for the three elements are 39.3A3, 23.0 A3, and 16.6 A3, respectively, what is

the Fermi energy Ep = h2kp2/2m  to which the free-electron states are filled for each?

2.4 Density of states in a free-electron metal

Obtain the density of states n(E) = dN/(Ade) per unit energy per unit area for free
electrons (E = h2k2/2m) moving in two dimensions (kx, ky) following the derivation in
Section 2.2 for three dimensions. Note the difference in the dependence of n(E) on
energy E. [E is customarily used for energy when it is just kinetic energy, € when it
includes the potential and is therefore measured from some standard.]

2.5 Quantized conductance

We evaluated in Eq. (2.19) the net transmission of a channel with transmission 77 =
T the same at each end. Reevaluate that sum with the two different (though of course at
each end the transmission for flow to the left must be the same as that to the right). Note
whether it can be asymmetric, corresponding to a rectifying channel.

2.6 A round quantum wire

Imagine a quantum wire, as in Fig. 2.4, but with a circular cross-section of radius rg , and
great length L. The energy eigenstates can be written in terms of cylindrical coordinates r, ¢,
and z . The radial solutions obtained from Eq. (2.23) with V(r) = 0 are Bessel functions of
integral order Jin(kr) as indicated in the text. These Jy(kr) are similar in form to the ji(kr)
shown in Fig. 2.9, with Jo(kr) going to 1 at kr=0, and J(kr) going to kr /2 at small kr. The
only properties we shall need for this problem are the relation between & and the eigenvalue in
Eq. (2.23), € =h2k%/(2m), and the zeros of the first two Bessel functions,

Jo(x) =0 at x =2.40, 5.52, 8.65...
and

Jitx)=0at x=3.83,7.02, 10.17...

obtained from Mathews and Walker (1964) p. 224.

What are the energies of the two lowest bands of m = 0 states, and of the lowest band of »
=1 states? To what Fermi energy would we need to fill the m = 0 band to accommodate 1
electron per A of length if rgis =3 A? Would this Fermi energy place electrons also in the
lowest m = 1 band? In the second m = 0 band? [If it helps, you could take L = 1000A.]

2.7 States in a large spherical cavity

When we consider the ionization of a (spherically symmetric) atom or impurity in a
solid, we will want to treat free-electron states(V(r) = 0) using a large spherically
symmetric boundary, rather than the parallelepiped we used in Section 2.2.  The radius
R of the boundary is very large. It is often convenient to work in terms of the full
wavefunction y(r), rather than the radial factor alone, R(r), and we do that here.

a) Obtain the energies of the [ = 0 free-electron states (s-states) by requiring Y(R) =
Ajo(kR) = 0.



Exercises 325

b) Normalize these states, [y*(ry(r)d3r =1, by integrating over all space in the
volume of radius R.

c¢) Obtain the number of s-states per unit energy in terms of R and energy E =
h2k2/(2my), including the factor two for spin. [It will be proportional to R rather than to
volume. If we were to add the density of p-, d-, etc., states, the total would eventually
approach the density of states proportional to volume as we found for the parallelepiped.]

d) Similarly obtain the energies of the free-electron I/ = 1 (p-states) for very large R,
using the jikr) given in Eq. (2.35). (Note that one term is smaller by a factor of order
1/(kR) and can be dropped when you set j1(kR) = 0.)

[We will not do the normalization integral for p-states , which contains an integration
of cos?0 and care would need to be taken with the radial integration for such higher [
since individual terms diverge as r goes to zero.]

2.8 Existence of bound s-states

A deep spherical quantum well, of depth -Vj, and radius rg , will have bound s-states.
However, for fixed rg , it will not have any bound states if Vg is too small. How large must Vg
be, as a function of rg, in order to have at least one bound s-state. [The solutions of Eq. (2.32) at
£ =0 will need to turn over for r less than rg to match to a decaying exponential.]

2.9 Harmonic-oscillator states
a) Integrate the Schroedinger Equation numerically,

2 92
2O L Ly =y, M

with h2/m = 7.62 €V-A2 (for m the electron mass) and « = 2 eV/A2 (so ho =h\ k/m =
3.90 eV) to obtain the n=7 solution. You might proceed as follows, or in some other
way:

Start with € = 71/» hw and Wy = x near x = 0 [appropriate for an odd », and it does not
matter that the resulting y(x) is not normalized; for even n one could have used y = 1
near x = 0]. Forodd n y(0) =0, we can take y'(0) = 1, and from Eq. (1), y" (0)=0.

You can obtain y(Ax) from

WX + Ax) = W(x) + ' ()Ax + 1oy (0)Ax2

and
2
W(x + Ax)) = W'(x) + W' (x)Ax

and again y"(x + Ax) from Eq. (1) using everywhere x + Ax. The process is repeated
interval by interval to a large x, and the energy adjusted up or down until it goes to zero at
large x and has n nodes (for all x, including x = 0 and x < 0, not counting the zeros at x
=t o). (You might use an interval Ax = 0.1A, adjusting the energy to three significant
figures to get W(8A) =0 . It won't be quite the right energy since Ax is not infinitesimal
and 8A is not infinite. )

b) Plot the result. (You need not normalize and x >0 is enough.)
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¢) How does the x-value for the largest peak agree with the classical xpy,x obtained
from & =Y, Kxmax 2? (Use your calculated € , but it would not matter if you used the
7.5hw since xmax is not so close at this small an r.)

d) Reestimate the energy using Ax = 0.02 A, to see what sort of error was incurred
from use of the finite interval.

3.1 Lagrangians and canonical momentum

Imagine a spherical bead of mass M sliding on a wire with position 0<x <L with
periodic boundary conditions at the ends. V(x)=0.

a) What are the energy eigenvalues? [We have obtained exactly this before.]

b) If the bead can also freely rotate or spin (through angle 0) on the wire, its
rotational energy would classically be /5102 with the moment of inertia I = 2/sMrg? for a
homogeneous ball of radius ro. What are now its energy eigenstates, allowing both spin
and translation of the ball? [ You may have to go through the Lagrangian, L, and the p
conjugate to coordinate © if it is not clear how to proceed. Then p — (h/i) 3/00 .]

¢) Letting L = 27mrg so that both motions depend upon the same parameters, what is
the ground state energy and that of the next two lowest states, all in terms of M, r¢, and h.
. d) Now let this bead roll along a line without slipping, so the rotation speed
0 =x /rg, and there is again only one independent coordinate. What are now the energy
eigenvalues if we again apply periodic boundary conditions on L =2nrp? Note that L is
chosen so that when the bead reaches the end the angle 0 is exactly the same as at the
start, so periodic boundary conditions are still satisfied at the ends. [Itis an interesting
possibility to take L # 2mtrg. It allows nonintegral angular momentum, when combined
with the nonslipping condition, as we shall discuss for electrons in Section 10.5.]

€) What are now the lowest three energy eigenvalues, in terms of M, rg, and h?

3.2 Tumbling, translating, and vibrating Li;
Lithium atoms have a mass M and form a molecule Li> with an equilibrium spacing dp =
2.67 A. We describe the electronic structure in Problem 5.1, writing the electronic energy plus

L

d=d0 +u

Yy r

-
o
X

A lithium molecule, moving in a plane.
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an overlap repulsion. This leads to a spring constant k = 02E;o/dd2|gy = n2h2/(mdo*) (with m
the electron mass) giving a potential energy V{(d) = l/ox(d-dp)? = rxu?,

If we confine the atoms to a square plane, L on each edge, (confine with vanishing
boundary conditions on the center of gravity) the molecule can translate, rotate, and vibrate.
There are no potentials except the V(d) .

a) Describe the states of this molecule in terms of the quantum numbers which are needed to
specify the state, and the parameters M, dg, L, and h.

b) Write an expression for the ground state energy, ground state with respect to the three or
four motions .

Comments: We neglect any excitation of electrons to excited states (discussed in Problem
5.1 d). We also neglect any effect of stretching, u =d-dp, on the moment of inertia for the
rotating modes. [Note that a displacement of one atom by ©/2, and the other in the opposite
direction by u/2 produces the separation dp + u . There are many factors of 2. ] You can obtain
the kinetic energy, Lagrangian, and the momentum for each coordinate, py, etc., and go to the
energy eigenvalue equation.

4.1 Variational state for hydrogen

To see how well variational solutions work, try y(r) =A exp(-c. r2) iational
solution for the ground state of hydrogen (which has a correct solution \ W3/ exp(-lr)).
What is the lowest energy € you can get with this Gaussian form? You may evaluate

o 42y () dr
T[4y dr

analytically, with

and tabulate it numerically as a function of o to obtain the minimum € to a few
hundredths of an eV. Compare with -13.6 eV.

4.2 Spherical systems

We gave in Fig. 4.1 the energy levels for hydrogen, including the two lowest [ = 0
states and the lowest set of [ = 1 states. Obtain the values for the corresponding states and
sketch the levels for

a) a spherical cavity (infinitely high walls) of radius 2. A . (You can use the ji1tkr)
given in Eq. (2.35) but need a numerical solution to get that energy.)

b) Repeat for a spherical harmonic oscillator, V(r) = 1/2Kr2 , with K chosen to give
the same energy as in a) for the lowest [ = 0 state. (2s-states can be made of a
spherically-symmetric combination of states such as ny=2, ny = n; =0 harmonic oscillator
states, similar to the way we made the p-states from n=1 and n=0 states in Section 2.5.)

Note: for both a) and b), all energy eigenvalues are positive. The shell model of the
nucleus is usually used with the potential from part a), but sometimes with that from b).
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4.3. Pseudopotentials and p-states

An empty-core pseudopotential radius, r¢ , can be obtained for an alkali-metal atom
by finding the value which will give the correct s-state energy by solution of the radial
Schroedinger Equation based upon ¥ = rR(r), Eq. (4.2),

hZ 92
“om g2 K+ WX = EsX 0
with
( 0 for r<re
w(r)= 1 @
L -e2/r for r>re.

a) Obtain r¢ for lithium (gg = -5.34 eV) and sodium (g5 = -4.96 V), integrating the
Schroedinger Equation as described in detail in Problem 2.9 . Use a step in » of 0.01 A
and adjust r¢ to within 0.01 A so Ww(8A)=0.

b) Use the sodium r¢ and find &p , the lowest p-state energy (within about 0.01 eV).
It is interesting to compare this result with the empirical rule, Eq. (4.17).

Suggestions. It is helpful again to use h2/m = 7.62 ¢V-A2 and €2 = 14.4 ¢V-A. Then
for this s-state we can seek a solution of Eq. (1) above by numerical integration. It may
save time to start with the Problem 2.9 program. At small r, you may take % = r (not
normalized) to set %(0) and %'(0), and obtain %"(0) = 0 from Eq. (1). Then proceed
interval by interval as in Problem 2.9.

The value of r¢ which gives a nodeless wavefunction that does not diverge at large r
is correct. Using x(&&) rather than x(ee) is good to around 0.01 A. You probably need to
print out x(r) values to see that there is no node between r =0 and r = §, but a tenth of
the values of ris plenty. [If you like, you can run it for € = -3.4 eV also to obtain the
used for the hydrogen 2s-state in Fig. 4.2.]

For Part b you need to add h2I(I+1)/(2mr2) to w(r) in Eq. (1), fix r. and adjust the
energy €p to get a nodeless solution with %(8A) = 0. At small , you may take ¥ = r2 (not
normalized).

The full free-atom calculation is a direct generalization of this procedure with w(r)
replaced by a more complete potential.

5.1. Molecular physics

The distance between the two nuclei in Li is d = 2.67 A. &= -5.34 ¢V for the free
atom from Hartree-Fock, Table 4.1. Based upon Vg from Eq. (5.6),

a) What is the energy of the bonding state and of the antibonding state?

b) What is the total change in energy of occupied one-electron states in formation
of the molecule from free atoms, obtained as X electrons 98;-

If this were the only contribution to the energy of Lip, the molecule would collapse.
The repulsion arising from the nonorthogonality of the two atomic s-states was
approximated in Eq. (5.22) by an additional energy A/d4. That is, the total energy
becomes:

A
Etor= & + Zejectrons &j -
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c) Adjust A such that the correct equilibrium spacing is obtained. With this added
repulsion, what is the formation energy (positive number) of the molecule?

Formation energies are typically overestimated by as much as a factor of two for
first-row-element systems, though not for elements from lower rows. The experimental
value is 1.07 eV for Li».

d) What energy of photon would you estimate is required to excite an electron into
an excited electronic state of the molecule?

5.2 Polarizability of Li;

Take an electric field E along the axis of the Liz molecule. If the s-states on the two
atoms are separated by d, this will make an energy difference between the two lithium
atomic states of eEd, making the molecule polar. This will also shift the average
occupation of each atomic orbital from the original u;? = 1/, with no field.

Calculate the dipole which arises to first order in the field, (two electrons in the
bonding state) to obtain the polarizability o such that the dipole is p = oE. [0t (not to be
confused with polarity op) should have units of A3 Work through the polarity ¢, to first
order in the field E. Magnitudes are enough; clearly the electrons move in the direction
they are pushed.]

5.3 Second-order perturbation theory

Another way (different from Problem 5.2) the polarizability ¢ is calculated is by
noting that a molecule has its energy shifted by - 1/20tE2 by a small electric field E.

a) Calculate the shift in energy of the electrons in the bond by second-order
perturbation theory, noting <aleEx|b> = 1/, (<1| - <2])|eEx|(|1> + |2>) = -eEd/2 . Equate
this to the - /20E2 to obtain another estimate of ¢, .

b) Use this same perturbation theory to calculate the polarizability of a pair of
electrons in a quantum-well state V2/L sin(rx/L ) due to its coupling with the first
excited state V2/L sin(2rx/L ). [L is the thickness, along the electric field, of the
quantum well and the area does not matter. There are also contributions from coupling to
higher states, V2/L sin(mna/L ) with n = 3,4, 5... (actually only even » contribute), which
we do not include. The energies of the states are from h2(na/LY2/2m.]

Comments: There are different ways to obtain the matrix element, any of which are
allowed:

One, you might look the integral up in the tables. [The author did not find it.]

Two, you might evaluate it analytically using 0/daly ¢ sin(ax)dx = Jp cxcos(ax). [The
author did that.]

Three you might extract the L by changing variables and evaluate a remaining
integral numerically. [The author did it as a check.]

Four, you might use Mathematica, or some such program.

In any case, you should end up with a formula which contains the dependences upon
the parameters of the problem with a numerical factor. The dependence upon L of the
result is of particular interest.

5.4. N2 molecule
a) Using the molecular-orbital levels from the first column in Table 5.1, and the
term values from Table 4.1, estimate the cohesive energy of the nitrogen molecule
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(including division by a factor of two as a rough estimate of the effect of overlap energy).
The observed cohesion is much smaller at 9.8 eV per molecule.

b) Recalculate the cohesion using sp-hybrids (js> £ [p>)/V2 for the G-states and
keeping only the largest coupling V. (Again, d = 1.09 A.) Compare the resulting
cohesion with the value obtained in Part a).

5.5 sp-hybrids in CO

Consider the carbon monoxide molecule, with a spacing of 1.13 A . Calculate the
molecular orbital energies using sp-hybrids on the C and O to obtain the c-states so that
only a quadratic equation needs to be solved. You also need a quadratic equation to
obtain the m-bonding states. See which states are occupied and obtain the cohesion as for
N> in Problem 5.4, to be compared with the experimental 11.0 eV. Again the
overestimate is greater than the usual factor of two for first-row compounds.

6.1. Tight-Binding benzene 7-states

We redo Problems 2.1 and 2.2 for the benzene ring, using tight-binding m-states
rather than free-electron states. Use Vppr = -(m2/8)h2/(md2) with d = 1.53 A and we can
measure energies from €, .

a) What are the energies of the six m-states (relative to €5)? What is the contribution
of the occupied states to the cohesive energy? (Divide by two for the effect of the
repulsion from nonorthogonality.)

b) If we break the ring but keep the other spacings the same, we saw in Fig. 6.4 that
the states needed to go to zero at N+1 spacings. What is now the sum of energies of
occupied states, divided by two?

¢) How does the difference, the bond-breaking energy, compare with the energy per
bond from Part a)?

6.2. Fitting interband coupling to free-electron bands

a) Given the formulae for Vssg, Vppn. and Vpps we have used, what would €p - &
have to be to fit the free-electron bands for a simple-cubic structure at k = 0?

b). No elements are simple cubic, but compare the free-atom term-value differences
with the estimate based upon Part a) using simple-cubic spacings we estimate (if nearest-
neighbor spacings vary with number of nearest-neighbor atoms X as X1/4 (Harrison
(1999)) for C (d=1.70A), Si (d=2.60A), Ge (d=2.70 A) and Sn (d=3.10 A). The term
values do not vary nearly as much as this would suggest and are closest for systems
where the band gaps are smallest (Sn).

c) The s-band &8 of Eq. (6.4) can be expanded for small k; (or kx or ky) to get a
term proportional to ;2. The coupling Vi(sp) = 2iVspgsink,d entering Eq. (6.5) (good
for a chain or for a simple-cubic structure) gives an additional term which can be
calculated in second-order perturbation theory. It is proportional to k,2 at small k, since
Vik(sp) is proportional to k, and the energy denominator can be taken as constant. We fit
that band difference as [h2/(2m)][27/d]? (plus a term in ;2 which only gives fourth-order
terms in the band energy we are studying, and can be dropped). What must Vspe be to
get the free-electron mass for the lowest band? Compare with the geometric mean of
Vsso and Ve, and with our choice of Vspe = (/2)h2/(md?) . [The result could have
been obtained by expanding Eq. (6.5), with €S and exP for the simple-cubic structure,
for small &, but the way we did it may be good practice in the use of 2nd-order
perturbation theory.]



Exercises 331

7.1 Scattering by an impurity in two dimensions

We treated scattering by an impurity level in one and three dimensions for tight-
binding s-bands, such that the perturbing matrix elements <k'|HJk> were equal to
(58S/N)e'i(k"k) o

a) Use this same matrix element for a two-dimensional band to calculate the total
scattering rate as a function of the energy of the electron. Use free-electron bands, as in
the derivation of Eq. (7.12), for converting the sum to an integral over energy.

b) The scattering center could be represented by the diameter D of a scattering disk
(rather than the cross-section in three dimensions), vD/A = 1/t with v the electron speed,
A the area of the system, and 1/1 the scattering rate. What is that diameter (in A) for a
thermal (e= 0.025 eV) free electron with the free-electron mass if 8¢ =2 eV and the
area per atom is 4 A2?

7.2 Transition from a local state

V(r

G N
71

ro Wl ‘ r

Vo

R

Imagine an electron bound in the lowest s-state [0> in a spherical quantum well (or
bowl, since the minimum potentials are the same outside as inside) as above, with |0> =

NT1/(2nrg) sinkr /r for r<rg, with k = /g and energy h2k2/(2m) We shall see in Chapter
8 that such a state is coupled to s-states [&"> outside the well, which if R is very large

have wavenumbers k' equal to an integer times 7/R, with energies h2k’ 2/(2m). We shall
see in Chapter 8 how the matrix elements between the state inside and those outside is
estimated, and Egs. (8.15) and (8.20) will suggest squared matrix elements given by a
form,
<O|H|k'><k [H|0> = M
k=m=roR

with k related to the energy and Vg by h2x2/(2m) = Vj - € = Vj, so we take it independent
of energy. Note that this has units of energy-squared and appropriate dependences upon
the normalization distances rg and R.

Obtain a formula for the lifetime T for this bound state, or the rate of transitions out
1/1, using the Golden Rule. Note that the sum over final states is a sum over k&' for
spherically symmetric states vanishing at radius R.

8.1 Tunneling through a resonant state

We construct a program to calculate the transmission as a function of energy for a
row of atoms (or a stack of atomic planes) for a one-band system with atomic levels of
energy &j, coupled to nearest neighbors by the same Vssg (bere = -1 €V). Let all g be the
same & for j < 0. Then the program begins with a transmitted wave to the left, uj =
Te-ixdj for j < 0, which satisfies Eq. (8.12) for these j with energy € = g5 + 2Vcoskd.
We can, for example, use this form to obtain the real and imaginary parts of u; for j = -2
and j =-1. Then Eq. (8.12) can be used to obtain successive value of the real x; and
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imaginary iy; parts of u;, keeping the same € and inputting the successive values of &; for
increasing j , as illustrated in Fig. 8.1, until we reach aj where all gj are the same (not
necessarily the same as far to the left). Then we have passed the barrier and we may use
Eq. (8.13) and any pair of neighboring ; to obtain the transmission. (If the constant &; on
the right is different from that on the left, as illustrated in Fig. 8.1, the wavenumber &
must be determined using € = € + 2V goc0skd  with the starting energy € from the left,
but with the g for the right, and therefore a different k than used on the left. This is
because Eq. (8.13) was obtained by evaluating the ratio of incident to reflected waves of
the wavenumber appropriate to the right side. In the present exercise we treat the simpler
case where € is the same to the left and right of the barrier.)

For this problem we may again measure energies from the bulk g appropriate on
both sides of the barrier, and take Vssg =-1 €V throughout. That is, we take all €; equal
to zero except near the central barrier. For this problem we take all ¢ =0 except €1 = €3

=3eV. Since €3 = 0 this is a double barrier. The energies for propagating states run
from 2V = -2eV to -2V = 2eV . For each energy in this range kd for the transmitted
wave is given in terms of the energy by € = 2V gcos(kd) and for each energy the
program will work through the barrier and calculate the transmission. Plot that
transmission for the energy range of the entire band.

This double barrier has a resonance as described in Section 8.4 and you will find that
the transmission goes to one at the corresponding resonance energy. Note that the same
program, with different €; , and maybe different Vjj, will solve an extraordinary range of
transmission problems. One example is Problem 8.3.

8.2 Scattering by a displaced atom

We think of the chain of atoms of length Nd as in Fig. 7.3 and Problem 8.1, but
instead of changing the energy €5 for one atom, we displace it to the right by 8d. If the
coupling Vs varies as 1/d2 the matrix element on the left decreases by a factor d2/(d +
8d)2 and that on the right increases by a factor d2/(d - 8d)2 , but all € remain at the
energy which we took as zero.

Use the Golden Rule to calculate the reflectivity due to the displaced atom. Note
that this could also be done numerically, and more accurately, using the program from
Problem 8.1, but we wish here to see how the Golden Rule is used for such a case, and in
particular how to calculate the needed matrix element.

The states in zero order are |k> = (1/VN) Zielkxj and <k = (1AN) Zie iK%, The
matrix element of the Hamiltonian without distortion is zero between states of different
wavenumber, but there is coupling between the two from the changes in coupling just
mentioned. If the position of the atom to be displaced is xg, there is a change in coupling
between the atomic state at xg and that at xj of -2V 8d / d , to first order in 84, which
appears with a factor (1/N)| e-ik%oeikx| +e-ikX1¢ikxg |, There is also a change in coupling
between atomic states at xg and x_; of +2Vss0d /d . This provides four terms in the
matrix element,

2Vsso Od

<k|Hlk>=- —7

[ e-ikxgeikx| 4eikx|oikxg - grik'x_1eikxg - g-ikXgeikx ) ]
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4iVisg 8d o .
= —l% (kKX [sinkd - sink'd].

The calculation using the Golden Rule for 1/t and for the rate of reflection, for k'=
-k, is now straightforward. a) Carry it out for £ and &’ small so that the sines in this
matrix element can be taken equal to their arguments. The result will depend upon & .

b) Carry it out for states midband, where kd = 7/2.

¢) We may think of this electron with periodic boundary conditions as moving to
the right, crossing the displaced atom once for every length Nd it traverses, and reflecting
each time with probability R . Write R for the defect for electrons near the bottom of the
band from the result in Part a. Had we calculated reflection directly as in Problem 8.1,

the result , to lowest order in 84 should be the same.

8.3 Tunneling through complex barriers

Problem 8.1 provides the basis for a wide range of interesting problems, simply by changing
the parameters which enter. One such example is to calculate the transmission for a system as in
Problem 8.1, with coupling Vg =-1eV and allgj =0 except for, in this case,

g1=3eV

€2 =0eV
g3=1eV
g4=0eV
€5=3CV

[Once you have iterated through the chain from the transmitted side to the incident and
reflected side, the reflectivity is obtainable as in Eq. (8.13).]

a) Plot the transmission for the energy range of the entire band.
b) How would you interpret the result?

9.1. Excitation from a quantum well
We consider carriers confined to the lowest subband of a quantum well of thickness
dand area A as in the diagram to the left below,

[ \2I(dA) cos(nx/d) eikyy+k,z)  for |x<d/2

Vo=l for > d2 .
PR —
<—LE
A 0# > X

>

d
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There is light on the system, which has its field E in the x-direction and wavelength large
compared to the system so the perturbation can be taken to be eEx . Then, the quantum-
well states are coupled to bulk states yi(r) = V2/(LA) sin(kxx)ei(ky)"*kzz) of the same ky
and k, with kxL/2 = nmt. See the energy-level diagram to the right for this problem (L is
large compared to d but small compared to the wavelength of light.) The well states are
not coupled to bulk states of the form cos(kxx). [One could represent these bulk states
more accurately, but this is a meaningful approximation.]

a) For fixed ky and k; obtain the matrix element using the first term in He| from Eq.
(9.11). (One way of doing the integrals is using cosA cosB = [cos(A+B) + cos(A-B)}/2.)

b) Use the Golden Rule and integrate over kx, (for large L) to obtain the absorption
rate (proportional to u_quq) as a function hw and kxd , related to each other and to the
energy €x = h2ky2/2m above threshold as shown to the right above. We can use Eq.
(9.10), and the relation between the vector potential and E above it to write u_quq as
Qc2E2/(4mw?) to obtain a result proportional to E2, or the light intensity, with no factors
of volume.

c) Plot the resulting absorption rate for an electron of given ky and k,, taking for
simplicity d such that Epresn. =h2/(2md?) . Then in units of Eipres. , we have hw = 1 +
(kxd)?. For the plot do not worry about a leading factor, containing E2 and fundamental
constants, which is independent of kxd and .

[One way to proceed is to calculate both hw and the absorption in terms of kxd over
the range 0 < kxd <3 for the plot.]

10.1 Probabilities of defect charge states

We saw in Eq. (10.7) that the relative probability of occupation of a vibrational state
of energy E; is proportional to the Boltzmann factor exp(-Ej/kpT) in equilibrium at
temperature 7. The same Boltzmann factor applies to a defect (maybe a vacant site in
silicon) which can be neutral or which can have charge +¢ by removing an electron of
spin up, or a charge +e by removing an electron of spin down, or can have a charge +2¢
by removing both electrons. We call g the energy at which the first electron is
removed, and define a reservoir energy @ at which it would be deposited (in
equilibrium). It takes more energy, by U, to remove the second electron since it is from a
positively charged defect. Thus the energy of each of the +e states of the defect, relative
to the neutral state of the defect, is U - €9 and that of the +2e state, relative to the +e
states is i - (o - U). The sum of the probabilities of the four defect states is one. Write
formulae for the probability of each charge state.

Evaluate the probabilities numerically for kg7 = 0.025 eV (room temperature) and
-g0=0.1eV. Youmaytake U =0.5 eV, but it does not affect the results appreciably.
Fermi statistics could be derived in a similar way and this g turns out to be the Fermi
energy for the electrons. For this problem it enters only through the excitation energy p -
€p and drops out once we set the total probability equal to one for the defect. For the
evaluation in this problem, one of the probabilities is so small as to be negligible.

10.2 Zero-point energy in solids

Estimate the zero-point energy, per atom, in a solid with a speed of longitudinal
sound of vg = 6.4x105 cm/sec. and atomic volume Qg = 16.5 A3(aluminum). Use the
Debye approximation of @ = vgg up to a gp such that there are as many modes in each of
the three branches as there are atoms. Take the speed of the transverse modes to be
smaller by a factor 1/¥2. (It's actually smaller than that, at about 3x105 cm/sec.)



Exercises 335

The high-temperature vibrational energy is 3kgT, 0.075 eV per atom at room
temperature, for comparison.

10.3 Carrier distribution in semiconductors

We obtained a formula for the density of electrons in the conduction band in terms of
the energy difference Ac between the Fermi energy and the conduction band, the effective
mass and the temperature, in Eq. (10.28). A similar formula applies for the number of
holes in the light-hole band in GaAs and the upper heavy-hole band. We neglect the
number of carriers in the lower heavy-hole band. Given the band gap of Eg = 1.52 eV for
GaAs and the masses: conduction band, m¢/m = 0.067; light hole band, mjy/m = 0.13; and
heavy-hole band, mpy/m=0.62,

a) where is the Fermi energy in the gap in intrinsic GaAs (equal number of electrons
and holes) at room temperature (kg7 = 0.025 eV)?

b) What is then the density of electrons (per cm3) in the conduction band?

¢) What is the average kinetic energy (energy above E¢ ) of these electrons?

A Conduction Band
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11.1 Time-dependent distribution functions

We solved the Boltzmann Equation for the case in which there was no dependence
upon position and no dependence upon time to obtain Eq. (11.6). For the case of a
uniform field turned on abruptly at ¢ = 0, this dependence upon p remains correct for s>
0, but there will also be a dependence upon time. Try a solution f1(p.f) = fi(p)g(?r) in the
Boltzmann Equation, Eq. (11.5) with f1(p) from Eq. (11.6). This will lead to a
differential equation for g(r). Obtain the general solution of the reduced equation, and a
special solution of the full equation, and fit the sum to g(0) = 0 (when the field is first
turned on) to obtain fi(p,t) for all 1 > 0.

12.1 Van-der-Waals interaction in 3D

We treated van-der-Waals interaction between two dipole oscillators oriented along
the internuclear separation. Atomic dipole oscillators can also oscillate perpendicular to
that separation. Transverse oscillators, of energy 1/oky;2 + 1/omy;2, will also contribute to
the interaction. The transverse dipole p = ey will produce a field in the y-direction , at an
atom a distance r away in the x-direction, of -p/r3, corresponding to an energy of
interaction of €2y yo/r3. Calculate the correction, to second order in this interaction, to
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the dipole frequencies wp= Y k/m for these two coupled oscillators. Use this to obtain
the change in the zero-point energy (to second order in the interaction) of the two
oscillators in terms of the polarizability o = ¢2/x. Add this lowering in energy, and that
for polarization in the z-direction, to that we obtained for the x-direction, to obtain the
full van-der-Waals interaction between two three-dimensional oscillators each of
polarizability a.. You could directly generalize this to two oscillators of different
polarizabilities.

[It is an important point that this interaction applies directly to two atoms of
polarizability ¢« . Often a harmonic oscillator provides a valid model for an atom or
molecule, with ho taken equal to the electronic excitation energy. Such an interaction is
calculated more directly in the Problem 12.2. ]

12.2 Many-body (van-der-Waals) interaction between atoms and molecules

For atoms or molecules the electron-electron interaction provides the counterpart of
the -2¢2x1xp/r3 between the dipoles shown in Fig. 12.1. Let the nuclei on two helium
atoms be separated by r. There is a first-order term in the energy from the interaction
between each s-electron on one atom and an electron on the other atom, given by
approximately e2/r , which is not of interest. It balances an interaction energy between
the electrons and a proton from the other atom. Now let the electron position on the first
atom be rj relative to its nucleus and that of an electron on the second atom be ryp
relative to its nucleus. Then the electron-electron interaction is e2/|ry + r -ry|. If ris
large, and in an x-direction, this may be expanded in the components of r1 and r; to
obtain the leading term in x1x7 again as -2eZx1x/r. (Including other components, ;, z;,
would be analogous to Problem 12.1.) The factor x; will have a matrix element between
an atomic s-state s1(r1) and an atomic p-state Yp1(ry) (we consider the p-state which is
proportional to xi/ry). We call that matrix element Xgp = f Yp1(ry) x1 Ys1(r1)d3r1. Thus
a two-electron state for the two up-spin electrons, for example, of two helium atoms,
Ws1(rDWs2(r2), will have a matrix element -2¢2X,2/r3 with the state with both atoms
excited, Wp1(r)Wp2(r2). (This would also be true if we used antisymmetric
combinations of states as in Eq. (4.14).)

a) Use this coupling to obtain the lowering in energy of the molecule in second-
order perturbation theory in terms of Xgp, and €p - €. Note that there are equal
contribution for the excitation of both spin-down electrons, for the excitation of the spin-
up electron on atom 1 and the spin-down electronic atom 2, and also for the spin-down
electron on atom 1 and the spin-up electron on atom 2. The total is the van-der-Waals
interaction between two helium atoms.

b) Similarly calculate the polarizability of the helium atom by calculating the shift in
energy -/o<yp1leExx1|Ws1>2/(gp - &) of each electron by the perturbation eExx| due to
the coupling with the same excited p-states, in analogy with Problem 5.3a. Equate the
sum of the shifts of the two electrons to the -1/,0Ey2 of one helium atom to obtain the
polarizability o of that atom.

¢) Use Part b to write the van-der-Waals interaction of Part a in terms of
polarizabilities for comparison with Eq. (12.2).

d) Follow through the reasoning to see the form of the result of Part ¢ for two
different atoms (e. g., He and Ne, where the excitation energy for Ne would be Ae = g¢*-
&p with €¢* the energy of the lowest excited s-state). Note again that there are only the
two transitions, spin-up and spin down, to the s*-state on each atom.
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13.1 Electron diffraction and Fermi surfaces

The nearest Bragg reflection planes in a simple-cubic lattice (which make up the
faces of the cubic Brillouin Zone) are the planes which bisect wavenumbers [271/d] in
cube directions. A divalent simple metal has a spherical Fermi surface with volume
equal to that of the Brillouin Zone (a cube of edge 27/d for a simple-cubic lattice) which
is seen to intersect that cube.

a) Sketch a central cross-section (a (100) plane) of that cube and sphere. The
portions of the sphere within the Brillouin Zone are Fermi surface in the first band.

b) If an electron has a wavenumber on one of those four segments from the first band
while there is a magmetic field H present, perpendicular to the plane of the figure, that
wavenumber will rotate with angular frequency ®. = eH/mc (discussed in Section 14.1).
As a free-electron it would complete a circular orbit, assume counterclockwise, in a time
T =2nmc/eH. However, due to the pseudopotential, when it reaches a Brillouin Zone
face it will be diffracted (abruptly) to the opposite face and the wavenumber will continue
to rotate counterclockwise until it again reaches a Zone face. Sketch the orbit which
such an electron will follow in real space. (You will have the exact shape, in the
diffraction limit, and do not need to work through the scale.)

¢) In units of 7', how long will it take the electron to complete the orbit?

13.2 Scattering by pseudopotentials, two dimensions

Redo the derivation of a formula for impurity scattering in two dimensions, starting
with Eq. (13.15), leading to the two-dimensional counterpart of the second form in Eq.
(13.17). The form is not as simple as in three dimensions.

14.1 Electron dynamics
Consider an electron moving in a simple-cubic tight-binding band

€k = & + 2Vgsolcoskxd + coskyd + cosk,d ]

with Vgsg = -(n2/8)h2/(md?) andd =2 A.

a) What is the maximum velocity (in cm/sec) such an electron can have in an x-
direction?

b) In a field of 100 volts per centimeter in the x-direction, how long would it take an
electron at rest at k = 0 to again be at rest at k = 0?7 (This assumes no scattering during
this time, which is not realistic.)

¢) Where would it end up after this time, relative to its starting point, and how far
would it have traveled?

15.1 Phonon dispersion

Calculate the frequencies of transverse modes for q in a [100] direction in a face-
centered-cubic structure, assuming a nearest-neighbor spring constant k. The calculation
follows closely the longitudinal calculation shown in Fig. 15.3, but the displacements are
in different directions and the frequencies are not the same.

15.2 Vibrational specific heat
Write the sum (over wavenumbers and polarization A =1,2,3 for modes of
frequency u)q}\) for the total vibrational energy for an fcc (face-centered-cubic) crystal in
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thermal equilibrium, using the average excitation number for each mode which we found
in Eq. (10.11). Note that this does not assume a simple ® = gv which led to Eq. (10.14).
However, it becomes simple in the limit of kBT much greater than all hwq . Obtain the
leading term (in kBT /( h(oq)) in the vibrational energy per atom for that limit, and its
derivative with respect to T, which is the specific heat per atomn.

16.1 Second quantization manipulations

This is so simple it is hardly worth writing down, but follow the analysis in Section
16.1 to see that these are true:

a) If two states |¥({ri})> and |‘{‘({rj })' > have different numbers of electrons, they
are orthogonal, <¥({rj})' [¥({ri})>=0.

b) Show that if any state is occupied in |‘P({rj }' >, but empty in [¥({ri})>, the two
many-electron states are orthogonal.

16.2 Harmonic-oscillator number operator
Using the definitions

T lﬂ _ip
“ 2hw ©x-3)

and

,M p
= —  (x +5),
¢ 2hw (©x+3p

evaluate a'a , noting also that px - xp = h/i. Then manipulate the result to see that the
Hamiltonian (p2/(2M) + kx2/2 ) is hw(ata + 1/2).

17.1 Phonon emission by electrons

Complete the calculation of the rate at which an electron of wavenumber k
spontaneously emits a phonon (no phonons present initially) outlined in Section 17.3,
again taking Vq = Voqo/q and ®q = ®q, constant.

18.1 The field energy for photons

Use the expansion of the vector potential in Eq. (18.9) to write A2 = A - A (you will
need a sum over q and another over q') to evaluate the expectation value of the electric-
field energy lgr [d3r E2 fora photon state with nqo}‘o photons in a single mode of
wave wavenumber g, polarization Ag, and no photons in any other mode. Note that E2
= A2(wg/c)? = A2g(? for this mode. Note also that there are four terms each with two ag?.
aq}\T, a_q)‘, or a_qM, and that in the sum over q, two terms contribute.

18.2. Optical matrix elements
We ordinarily get reasonable matrix elements taking atomic s-states as hydrogenic,

y(r) =V d/m et | which is normalized, with p given by &= - h2u2/(2m ). p-states

then are Ypz(r) = A’z e M etc., with €p=- h2u?2/2m , and A’ chosen for normalization.
a) Evaluate the A’ which gives a normalized p-state wavefunction.
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b) Evaluate the matrix element of d/dz between the 1s-state of beryllium (eg = -8.42

eV) and the 2pz-state of beryllium (take €p = -5.81 eV). It should be given in AL
[You could check that the result is the same if you interchange left and right states,
but you do not need to.]

18.3 Excitation of atoms

a) Take the absorption and emission rates from Eqs. (18.16) and (18.17) with the
beryllium atom in a volume €2, and the sum can be written as an integral, as indicated. If
f2s and fop are independent of spin, Zgpin gives a factor 2. Substitute for Hiqx from Eq.
(18.12), writing <2p,|d/dz|2s> = 1/r, as in Eq. (18.14) and for every A there is some p-
state oriented along the polarization direction and f2p applies to that p-state. Evaluaie the
integrals for absorption and emission, letting ng™ be a smooth function of g, (which
would be kg T/(hcg) if we had a thermal distribution at high temperature, but we do not
make that assumption here). The results will depend upon nq}\, the distribution functions
and ry.

b) For a single electron , fop = 1 - f25 and you can write the rate equation for df2p/ds
in terms of nq}‘ evaluated at hmg= €2p-€25. One could use this even if we applied a nq7L
which depended upon time.

c) What is fo, (as a function of a steady ng) in steady state? Sketch the result for fap
as a function of nq)\ , which we may think of as kg7 / hu)q.

19.1 2nd-order Stark Effect in a quantum well

The splitting of 2s and 2p-states in hydrogen due to a dc field, which we gave in Eq.
(19.19), is called first-order Stark splitting, linear in field. The shift of the 1s-level due to
coupling with the 2p-level is called a second-order Stark shift. Obtain the corresponding
shift of the lowest quantum-well state ( y1(z) = (V2 / VL)sin(nz/L) for a well thickness L)
due to coupling to the next-lowest state , yo(z) = (N2 / NL)sin@nz/L), by a uniform field £
in the z-direction (a term in the Hamiltonian, 8H = eEz). This will be a formula,
proportional to E2. {fdxdy would cancel and you don't need to include it. The result
depends upon L ]

20.1 Interatomic interactions in metals
The interatomic interactions in a simple metal are given approximately following Eq.
(20.11) as

Z1Zne2coshKrecoshkrope
Wir)= - .
Such a form can be used to estimate a wide range of properties of a metal. One simple
property is the highest-frequency longitudinal vibrational mode propagating along a [100]
direction in a simple-cubic metal, the mode in which nearest-neighbor atoms along the
direction of propagation move in opposite directions, 8x = *u cosmt. Estimate the
frequency for lithium, taking the interatomic distance for the simple-cubic structure as
2.75 A, chosen to give the observed volume per atom in the real structure. You can
evaluate kr which will give a Fermi-sphere volume equal to half that of the Brillouin
Zone (Z =1 for Li), and then the Fermi-Thomas screening parameter from Eq. (20.9).
We estimated the core radius for lithium in Problem 4.3, but we use the standard value of
0.92 A (Harrison (1999), p. 453). This gives all parameters in V(r), from which you can
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evaluate the net force from derivatives of V(r), or numerically if the magnitudes of the
displacements is for example # =0.01 A. Only two nearest neighbors contribute a force
to first order in ug for displacements in a cube direction since the four nearest-neighbors
in the lateral directions (4 in the y- and z-directions) move with the central atom. We
neglect contributions from more distant neighbors. You can then use force equals mass

times acceleration, with the mass given by 1.67x10-24g times the atomic weight of 6.94.
[The Debye frequency for lithium, for comparison, is wp = 4.5x1013/sec. (Kittel (1976),

p. 126). Our estimate should be the same order of magnitude, but it is a different physical
quantity and our estimate is approximate.]

21.1 Localized electrons in molecules

The Hamiltonian for a diatomic molecule, such as Lip, can be approximated by three
terms.

Ho = gg(cisTers +crfer + eonfepy + o2 ¥e0)

Hy = VsolereTeas +crfer+ eofery + ea.fer)

Hy= UlcriTers erTer+ caiferienfen)

with the subscript * indicating spin. H = Hyg + H; + H; is the Hubbard Hamiltonian for a
chain of two atoms. This can be solved exactly for two electrons present, but we look at
approximate solutions.

a) If Hy is negligible, it is the problem treated in Section 5.1, with ground state
(Hartree-Fock) |Gup> = Va(e14T + co+ Te1.T + ¢2.7)|0>. Evaluate the corresponding Eg =
<GuHH|Gur>, including the term Ha in the Hamiltonian proportional to U. [It would
also be possible to calculate the 2nd-order shift in energy due to H» using second-order
perturbation theory, Zj<GHF|H2[j><j|H2|GHF>/(E0 - Ej), but it would be rather intricate.
That shift is called the "correlation energy”.]

b) If H1 is dropped, the ground state (called the Heitler-London state) is |Gy > =
c1+Te2.1|0> (or any of three other states with the two electrons on different atoms).
Evaluate Eg = <Gqp |H|GypL> for this state, including Hj. Aside from these four states
there are only two other states, |j> each having both electrons on the same atom. Evaluate
their energies from <j|Ho + Hy +Ha|j>.

c) Evaluate the 2nd-order shift in energy of |Gur> = ¢1.7¢2-70> due to H1,
which is Zj<Gpy |Hi|j><j||H1|GHL>/(Ep -Ej). This lowering in energy would not arise if
the two electrons were chosen to have parallel spin (e. g., ¢+ Tc2,1|0>) so it favors the
spins of the ground state being antiferromagnetically aligned.

22.1 Quantum Hall Effect

The wavefunction for a free electron in a magnetic field, y(r) = ¢(x - xg) elkyy elkz,
which was introduced in Section 22.1 applies for a two-dimensional gas with the elKzZ
dropped. Let the system be a plane of dimensions Lx and Ly . Apply periodic boundary
conditions on Ly and require the xg of ¢(x-xp) to lie in the region of length Lx.

a) Obtain a formula for the number of states (of a given spin) in each level ¢n for a
given field.

b) For a density of electrons (number per area) of 1/Ag electrons of each spin, at what
fields will the individual sets be exactly filled?

¢) Relate this area per electron Ag to an amplitude ag for a ground-state ¢o(x) such
that !/7kag? = 1/4hw, (potential energy equal to half the zero-point energy), with k the
effective spring constant for these orbits given in Section 22.1.



Exercises

22.2 Zeeman splitting
Find the splitting of the different orbitals for a d-state (I = 2) in a magnetic field.
a) Allow also for the interaction of the two spin states with the field to sketch the
new level diagram. (No spin-orbit coupling is included.)
b) Give the splitting in electron volts for H = 1 kilogauss.

22.3 Magnetic susceptibility

a) Obtain the Langevin shift in the energy, in eV, for a field of 1 kilogauss, of the
two electrons in a helium atom (proportional to <rt?> = <> - <zZ>, using the ls-
wavefunctions obtained as in Problem 18.2, with €5 taken from Table 4.1. The shift is
very tiny.

b) There is no Van-Vleck term, Eq. (22.19), for the atom (since the s-states are
eigenstates of L), but if these were two electrons in a molecule, the matrix element of L,
between each occupied state and an empty state (with energy such as the 2s-energy)
would be of order <1|L;]2> ~h. Using this value and taking the energy of the excited
state to be of order Jeg| for helium, what would be the ratio of the Van Vleck to the
Langevin term in the energy of the two electrons?

22.4 Spin-orbit coupling

Redo our analysis of the spin-orbit splitting of atomic p-states to obtain the
corresponding result for d-states, with energies in terms of Ay, and give the number of
states at each energy.

23.1 Shake-off excitations

The s-states for an electron in a spherical quantum well of radius R are
Asin(nmtr/R)/r, with A chosen so the states are normalized, illustrated below for the
ground state, going to zero at /R = 1. If an electron is in the ground state, and R is
suddenly increased to R'=1.1R =R/v,

a) what is the probability (numerical) for the electron going to the new ground state?
[This could be done by numerical integration or as a special case of the integral in Part b.]

b) Give a formula for the probability of its being excited to the new state of
quantum-number n . (The needed integrals are quite simple.) Such an excited state in
the expanded well is also shown below.

0 0.5 1 1.5
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Phonons, 224
Photons, 130, 235ff, 339pr
Actinides, 98
Adiabatic approximation, 306-312, 318
Affinity, electron, 261
Aharanov-Bohm paradox, 10ff
Aliased periods, 27
Alpha-particle emission, 123
Angular functions
Circular, 32
Spherical, 34
Angular momentum
Circular systems, 32, 48
Commutator, 217
Classical, 47
Eigenstates in spherical symmetry, 34
Excluded states, identical particles, 150
Half-integral values, 151
Ortho- and parahydrogen, 152, 153
Photons, 131
Selection rules for transitions, 130
Stepping operators for, 216ff
Annihilation operators
Electrons, 208
Harmonic oscillator excitation, 214
Phonons, 220
Photons, 234
Antibonding states, 70, 76, 100
Anticrossing of bands, 305
Antiferromagnetism, 277ff
Cuprates, 280
Molecular states, 58, 340pr
Antisymmetry
Molecular orbitals, 70ff, 152
Fermion wavefunctions, 58, 152, 207ff
Atomic term values
Approximate rules, 62
Fine structure, 302, 303
Table, 61
Atoms, 53ff
Configuration, 60
Electron affinity, 261
Energy levels, 60, see s-, p-, d-, f-states
Approximate rules, 62
Fine structure, 302, 303

Model wavefunction, 237, 338pr, 339pr

Table, 61
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Excitation with light, 235ff, 339pr
Fermi-Thomas theory, 264
Interaction, metals, 267, 339pr
ITonization with light, 130ff
Ionization potentials, 60

Linear chain, 88ff

Magnetic polarizability, 296ff

Matrix elements between orbitals, 95, 330pr

Auger processes, 315ff

Baldereschi point, 280
Band, see Energy bands
BCS ground state, 285
Benzene ring, 21
Free-electron model, 323pr
Tight-binding, 330pr
Bessel functions
Ordinary, 33, 324pr
Spherical, 36ff, 132
Beta-decay, 65
Calculation of rate, 135ff
Bloch sum, 89
Blockade, Coulomb, 124
Body-centered-cubic lattice, 181
Bohm-Aharanov paradox, 10ff
Bohm-Staver speed of sound, 269
Bohr magneton, 293
Boltzmann
Distribution function, 156
Equation, 159ff
Factor, 144
Bonding states
Covalent semiconductors, 100
Molecules, 70, 76
Multicenter, 86
Nonbonding states, 85
Pi-bonding, benzene, 323pr, 330pr
Polar, 76, 101
Born-Oppenheimer Approximation, 54
Bose-Einstein
Condensation, 149
Distribution, 148
Bosons
Condensation, 149
Noise enhancement, 169
Statistics, 147ff
Symmetry under interchange, 149, 150
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Bound states, 40
Condition for, 325pr
Boundary conditions, 16
Sound, 18
Tunneling problems, 112
Vanishing in tight-binding, 91
Bragg mirrors, 245
Brillouin Zone, 89, 90, 177
Face-centered-cubic, 181
Simple cubic, 337pr

Canonical momentum, 47, 326pr
Capture into local states, 127, 158ff
Carbon

Dioxide, 86, 87

Monoxide, 86, 330pr
Center-of-mass motion, 53, 326pr
Centrifugal potential, 33, 36
Charge-density wave, 281
Charge of electron, 6, 287
Chemical bonds, see Bonding states
Chemical potential,

Bosons 148

Fermions, 155
Circular symmetry, 31ff

Quantum wire states, 324pr
Classical distribution, 156
Close-packing, 180
Cloud chamber, 321
Coherence

In lasers, 255

In Peierls distortion, 282

In superconductivity, 282, 286

Light, 254ff

Phases, 248

States, 247ff
Cohesion

Ionic solids, 101

Molecules, 329pr
Collapse of wavefunction, 13, 318ff
Commuting operators, 33, 206ff

Angular momentum, 217

Photons, 234
Complementarity, defined, 2

Compton scattering, wavelength, 231, 323pr

Computing, quantum 321, 322
Condensed matter, see Crystals
Conditional probability, 311
Conduction bands, 187
Conductivity, 163
Configuration, atoms, 60, 61
Configuration interaction, 212
Conjugate momentum, 47
Conservation laws

Charge, 119

Energy, 108, 128, 323pr

Momentum, 6, 136, 323pr

Particle physics, 138

Particles with mass, 148

Spin and neutrinos, 135

Transverse wavenumber, 121
Continuity Equation, 119
Cooper pairs, superconductivity, 282ff
Cooperative phenomena, 270ff
Core states

Atoms, 60

Radius, 62
Correlation energy, 166,212

Molecules, 270ff, 340pr
Van-der-Waals interaction, 166, 212
Correspondence principle, 254
Coulomb
Blockade, 124, 170
Effects, 260ff
Enhancement of gap, 262
Coupling
Between atomic orbitals, 95, 330pr
Second-order, 125ff
Time-dependent, 128ff
Weak and strong, 311, 312
Covalent
Energy, 75, 76, 85
Tetrahedral semiconductors, 100
Solids, 99ff
Creation operators
Electrons 208
Harmonic oscillator excitation, 214
Phonons, 220
Photons, 234
Cross-section, for ionization, 134
Cryptography, quantum, 322
Crystallographic notation, (100), etc., 26, 180
Crystals, 88ff, see also Energy bands
Diamond, silicon structure, 181, 187
Face-centered-cubic, 180
Tunreling in, 115
Cubic harmonics, 35, 36
Cuprates,
Antiferromagnetism, 280
Superconductivity, 282
Curly brackets, {}, 45
Curie temperature, 300
Current
Density calculation, 162
Operator, 119
Cyclotron frequency, 287
Cylindrical symmetry, see Circular symmetry

d-states, 35, 60

Localization, 102

Radius, 103
Dagger, T, 208
Debye Approximation, 146, 199, 229, 335pr

Opr

Debye-Waller factor , 205
Deformation potential, 221
Degenerate, 28

Bands, 28, 94

Distribution, 156

Perturbation theory, 80, 183
De Haas-van Alphen effect, 290
Delta function,

Dirac, 108, 253

Kronecker, 15
Density Functional Theory, 59
Density matrix, 254, 282
Density of states

Free electrons, 23

Joint, 245

Two-dimensional gas, 25, 324pr
Detailed balance, 127, 158

Electron-photon, 239, 243
Determinental wavefunction, 154, 207
Diagonalization, 178
Diamond structure, 187



Dielectric function, 264
Fermi-Thomas, 265
Plot, 268
Quantum, 267
Diffraction
Band electrons, 190, 337pr
Theory, 174ff, 184ff
Two-slit experiment, 11
Dilatation, defined, 17
Dirac delta function, 108
In classical theory, 253
Dirac notation, 35, 71
Generality, 78
Dirac Theory, 8, 154, 291, 294
Fermi-Dirac distribution, 155
Semiconductor as analogy, 194
Spin-orbit coupling, 301, 341pr
Dispersion curve, 198
Distribution functions, 140ff
Boltzmann (classical), 156
Bosons, 148
Defect charge states, 334pr
Degenerate, 156
Equilibrium, 141, 335pr
Fermi-Dirac, 155
For transport theory, 160
Harmonic oscillator excitations, 145
Semiconductors, 335pr
Time-dependent, 335pr
Donor states, 193
Doping, semiconductors, 156
Dressed state, 251
Dynamic states, 258
Dynamics
Classical, 45ff
Electrons in energy bands, 189ff, 337pr
Holes, 194ff
Molecules, 326pr
Relativistic, 323pr

Effective mass
Anisotropic, 192
Defined, 192
Equation, 193
Matching conditions, 120
Eigenstates, 13ff
Einstein
Condensation Temperature, 149
Distribution, vibrations, 146
Electric field
Energy, 338pr
From vector potential, 9, 130
Electromagnetically-induced transparency, 255ff
Electron affinity, 261
Electron dynamics, in bands, 189ff, 337pr
Electronic charge, 6, 287
Electrons, see Beta decay, Mass and Charge,
Free, see Free electrons
Gas, see Free electrons
Electromagnetic waves, 9ff, 130, 232ff
Electron-electron interaction
Coulomb effects, 260ff
From phonons, 228ff
One-electron approximation, 56
Operator form, 210
Scattering, 212
Superconductivity, 285
Van der Waals interaction, 165ff, 212, 335pr
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Electron-light interaction
Classical, 130
Compton scattering, 323pr
Interatomic, 242
Quantum, 235, 236, 241
Electron-phonon interaction
Classical, 203ff
Metals, 203ff, 221, 222
Quantum representation, 221, 222
Semiconductors, 221
Superconductivity, 228
Electron-photon interaction, see Electron-
light interaction
Electron spin resonance, 293, 294
Electronic structure
Atoms, 53ff, Table, 61
Molecules, 72ff
Solids, 88ff
Empty-core pseudopotential, 62-64
Calculation of radius, 328pr
see also Pseudopotentials
Energy
Cohesive, ionic solids, 101
Fields, electric, magnetic, 338pr
Formation, molecules, 329pr
Level, 15
Atomic, 60, 61, 237, 239, 338pr
Crossing, 191, 192
Donor states, 193
Dynamic, 258
Dressed, 251
In a magnetic field, 288
Repulsion, 80
Resonant, 122
Spherical, 324pr
Operator for, 7
Energy bands, 23, 174ff
Calculation, 178ff
Conduction 187, 241
d- and f-bands, 102
Dynamics of electrons in, 189ff, 337pr
Free-electron, 33ff, 182ff
Gap
Coulomb enhancement, 262
From pseudopotentials, 183
Tonic solids, 101
Parameter, superconductors, 285
Semiconductors, 100, 155, 156
Interband transitions, 24 1ff
p-bands, 92
pi-bands, 95
Semiconductors, 186ff, 24 L {f
sp-bands, 93
Spin-orbit splitting, 304, 305
Tight-binding, 88ff
Valence, 187
Ensemble, 141, 144
Entangled states, 321
Equilibrium distribution, 141, 334pr, 335pr
Exchange, 58
Absence in two-electron molecule, 272
Free-electron, 59
Self, 58
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Photothreshold, Shake-off excitations
Exciton, 194
Exclusion Principle, 28
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Expectation values, 4

For energy and momentum, 7
Empty-core pseudopotential, 63ff, 174ff
Extended Hiickel Theory, 78

f-states, 60, 98
Localization, 102
Radius, 103
Face-centered-cubic structure, 180
Factorial, Stirling's formula, 143
Factoring wavefunctions, 21
Fermi
Distribution function, 155
Energy
Fermions, 155
Metals, 23, 324pr
Quasi, 244
Golden Rule, 108, 33 1pr - 339pr
Classical counterpart, 253, 254
Time-dependent perturbations, 128ff
Surface
Experimental studies, 183, 191
Metals, 23
Square lattice, 280
Fermions, 153ff
Fermi-Thomas method, 263ff
Atoms, 264
Linearized, 265
Screening parameter, 176, 266
Ferromagnetism, 298ff
Feynman diagrams, 211
Field
Energy, 338pr
Operators, 207ff
Fine-structure, 302, 303
Constant, 291
First-order perturbation theory, 79
First-order transition, 274
Fission of nuclei, 68
Fluctuation-dissipation theorem, 165
Flux quantization (magnetic), 286
Formation energy, molecules, 329pr
Form factor, pseudopotential, 176
Forward scattering, 110
Franck-Condon Principle, 312
Free electrons
Bands, 93ff, 183ff
Benzene pi-states, 323pr
Density of states, 2D, 324pr
Diffraction 190, 337pr
Exchange energy, 59
Fermi energy, 23, 324pr
In a magnetic field, 48ff, 287ff
In a spherical well, 36ff
Kinetic energy, average, 24
One dimension, 19ff
Three dimensions, 21
Tight-binding representation, 91
Friedet oscillations, 267
Fundamental constants, e, h, m, 6,287

g-value, 294
Gamma rays, 68

Recoil from, 314

Time for emission, 314, 315
Gauge, magnetic field, 288, 292
Gaussian, 4
Giant magnetoresistance, 27

Ginsburg-Landau theory, 286
Golden Rule, 108, 331pr
Classical counterpart, 253, 254
Time-dependent perturbations 128ff
Gradient, circular systems, 32
Green's function, 254
Ground state, defined, 28
Harmonic oscillator, 41
Group velocity, 5
Gyromagnetic ratio, 293

Half-filled band
One dimension, 275ff, 28 1ff
Two dimensions, 280ff
Hamiltonian, 6
Definition, 47
Harmonic oscillator, 40ff, 214, 338pr
Hubbard, 275ff, 340pr
Mechanics, 46ff
Operator, 14
Photons, 233,234
Vibrations, classical, 201ff
Hamilton's Equations, 48
For band electrons, 190
Harmonic oscillator, 40ff
As model of atom or molecule, 166, 336pr
Coherence in, 42, 247ff
Driven, 249
Excitation, 253
By electronic transitions, 309ff
Hamiltonian, 40ff, 214, 338pr
Number operator for 214, 338pr
Numerical solution, 325pr
Selection rules for transitions, 130
Spherical, 327pr
Stepping operator formulation, 212ff
Thermal excitations, 145
Three-dimensional, 43, 335pr
Hartree
Dielectric function, 267, 268
Equations, 57
Hartree-Fock Approximation, 58, 59
Atomic term values, 61
Molecular states, 272, 340pr
Uarestricted, 273
Heat capacity, see Specific heat
Heavy holes, 194
Heisenberg and operators, 3, 206
Heitler-London state, 340pr
Helium
Atom, 56
Liquid, 149
Hermite polynomials, 42
Hermitian
Matrices, 71
Operators, 13
Holes
Distribution function, 156
Dynamics of, 194ff
HOMO's, 84
Hubbard Hamiltonian, 275ff
Hiickel Theory, 78
Hund's Rule, 59, 298
Hybrid orbitals, 85
Molecules, 85, 330pr
Tetrahedral semiconductors, 99ff
Hydrogen,
Atom, 53ff



Molecule, tumbling states, 152, 153
Variational state, 327pr

Identity operator, 223
Impurity
Scattering by pseudopotentials, 1185ff

Scattering in tight-binding, 109, 110, 331pr

States, 193
Incommensurate spin-density wave, 279
Indistinguishability, phonons, 43
Inelastic tunneling, 312ff, 316ff
Inert-gas atoms, 99
Inertia, moment of, 47, 326pr
Infinite series, summing, 30, 31, 144, 324pr
Instability
Cooper pairs, 282
Ferromagnetic, 299
Hubbard Hamiltonian, 276
Peierls, 281
Insulators, 99, 101
Interatomic interaction
Overlap, 77,78
Metals, 267, 339pr
Interchange of particles, 147, 149ff
Interference
Between intermediate states, 126
In two-slit diffraction, [ 1
Inverted population, lasers, 240
Ionization
Potentials, atoms, 60
With light, 130ff
Ions, ionic crystals, 101
Isoelectronic
Molecules, 86
Series, 101
Isotopes, 67
Iterative solutions, 263

Johnson-Nyquist Theorem, 165
Joint density of states, 245

Kronecker delta function, 15, 108

Lagrangian, 454, 326pr
Lagrange multipliers for
Molecular orbitals, 73ff
Statistical distributions, 143
Superconductivity, 285
Landau gauge, 288
Landau-Ginsburg theory, 286
Langevin susceptibility, 298, 341pr
Laplacian
Circular systems, 32
Spherical systems, 34
Larmour frequency, 288
Laser
Coherence of, 255
Diagram, 239
Three-level, 239ff
Four-level, 240
Solid-state, 244ff
Lattice vibrations, see Phonons
Lattice wavenumbers
Defined, 177
lustrated, 179
Primitive, 181
Laughlin wavefunction, 292
LCAO, 69
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Legendre functions and polynomials, 34, 132
Level crossing, 191, 192
Light-emitting diode, 243
Light holes, 194
Light waves, see also Photons
Coherent, 254ff
In terms of vector potentials, 9ff
Interaction with electrons, 130
Planck distribution, 146, 147
Liquid-drop model, 65, 230
Lindhard dielectric function, 267, 268
Linear Combination of Atomic Orbitals, 69
Linear chain of atoms, 88ff
Finite length, 91
Linearization, 161
Lithium molecule, 69tf
Electronic structure, 328pr
Localization in, 270ff, 340pr
Polarizability, 329pr
Tumbling, etc., 326pr
Local Density Approximation, 59
Localization, 270ff, 340pr
Wigner crystal, 300
Lorentz force, 49
Lowering operator, 214
LUMO's, 84

Madelung energy, 261
Magnetic breakdown, 191
Magnetic field
Energy, 338pr
Flux quantization, superconductivity, 286
From vector potential, 9
Motion of band electron, 191
Motion of charged particle, 48ff, 287ff
Nuclear Magnetic Resonance, 68, 294
Magnetic moment
Orbital, spin, 293
Oxygen, 298
Nucleons, 294
Magnetic susceptibility
Atoms and molecules, 296ff, 341pr
De Haas-van Alphen fluctuations, 290
Diamagnetic, of free-electrons, 290
Ferromagnets, 298ff
Oxygen molecules, 298
Paramagnetic, of free electrons, 295
Magnetoresistance, 27
Many-body
Problem, 210, 259ff
Interaction, 210
Localization, 270ff, 340pr
Superconductivity, 282ff

Van-der-Waals interaction, 165ff, 212

State, 56, 207{f
Normalization, 209
Mass of electron, 6, 287
Matching wavefunctions
At boundaries, 17, 117
Effective-mass theory, 119, 120
Matrix elements
Beta decay, 135
Between atomic orbitals, 95, 330pr
Defined, 71
Electron-light interaction, 132, 237, 339pr
Interatomic, for light, 242
Pseudopotential, 175ff
Second-order, 125ff
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Time-dependent, 128ff
Tunneling, 114
Maximum resistance, 31
Maxwell's Equations, 9, 10
Measurement in quantum mechanics, 12ff
Metals, 98
Fermi energy, simple metals, 323pr
Insulator transition, 277
Screening in, 263ff
Shake-off excitations, 316
Sound speed in, 269
Vibrational frequencies, 339pr
Mirrors, Bragg, 245
Molecular orbitals
Bonding and antibonding, 70, 76
General , 75ff
Lip, 328pr
Molecules, 69ff
Carbon dioxide, monoxide, 86, 330pr
Electronic structure, 328pr
Formation energy, 329pr
Localization in, 270, 340pr
Magnetic polarizability, 296ff
Nitrogen, 81ff, 329pr
Orbitals, 77ff
Tumbling, rotating, etc., 150-153, 326pr
Van-der-Waals interaction between, 336pr
Moment of inertia, 47, 326pr
Momentum, 6
Canonical, conjugate, 47
Conservation, 136, 323pr
Operator for, 7
Mossbauer effect, 314
Multicenter bonds, 86

Neutrino, 135
NMR, 68, 294
Nitrogen molecule, 81ff, 329pr
Nodes
Atomic states, 62
Defined, 37
Relation to energy, 37, 42
Noise
Concentration at a frequency, 170
Johnson-Nyquist, 164ff
Lf, 171
Partition, 171
Quantum, 165ff
Shot, 167ff
Thermal, 164
White, 165
Nonbonding states, 85, 101
Molecular states, 70
Nonlocal effects, conduction, 163
Nonorthogonality of atomic states, 71
Normal
Coordinates, 201
Modes, defined, 198
Processes, phonons, 205
Normalization of states, 14
Harmonic-oscillator state, 215
Many-electron states, 209
Spherical states, 325pr
Stepping operators, 214
Using Lagrange multipliers, 285
Nuclear Magnetic Resonance, 68, 294
Nucleus
Alpha decay, 123

Beta-ray emission, 135ff
Fission, 68
Gamma-ray emission, 68, 314
Magnetic resonance, 294
Nucleon-nucleon interaction, 230ff
Structure, 65ff
Number operator
Electrons, 209
Harmonic oscillator, 214, 338pr
Numerical solutions, 37ff, 325pr, 328pr, 329pr
Nyquist theorem, 165

Off-diagonal long-range order, 282
One-electron approximation, 22, 57
Operators

Annihilation, see Annihilation operators

Commutation of, 206ff

Creation, see Creation operators

Field, 207ff

For momentum and energy, 7

Identity, 223

Number operator

Electrons, 209
Oscillator, 214

Raising and lowering, 214

Scissor, 262

Stepping, 212ff
Optical vibration modes, 226
Optical transitions, 130ff, 235ff, 339pr
Order, of neglected terms, 107
Orthohydrogen, 152, 153
Orthogonality of states, 15, 71, 74, 208, 337pr
Orthogonalized plane waves, 131
Orthonormality, 208, see Orthogonality of state.
Overlap

Integrals, harmonic oscillator, 310

Orbitals, 71

Repulsion, 77,78
Oxygen

Nucleus, 66

Paramagnetism, 298, 341pr

Tumbling states, 150

p-states 34, 35
Bands, 92, 95
Coupling, 95-97
Packet, wave, 3ff, 189{f
Phase coherence, 318ff
Parahydrogen, 153
Partial derivative, 5, 161
Partition noise, 171
Pauli Exclusion Principle, 58
Derived, 153
Pauli susceptibility, 295
Peierls distortion, 281, 282
Periodic boundary conditions, 16
Tight-binding chain, 88
Periodic table of elements, 61, 62
Persistent current, superconductors, 286
Perturbation theory, 791, , 329pr, 330pr
Degenerate, 80, 183
Failure for cooperative phenomena, 282
Time-dependent, 108, 128ff, 251, 331pr
339pr
Phase coherence, 248, 318ff,
Phase randomization, 318ff
Phase transitions
First-order, 274



Second order, 279
Phase velocity, 5
Phonons, 42
Absorption and emission, 130, 223ff
Annihilation and creation operators, 220
Dispersion, 197ff, 337pr, 339pr
Electron-electron interaction from, 228ff
Electron-phonon interaction, 203ff
Emission by electrons, 338pr
Frequencies, 197ff, 337pr, 339pr
Normal coordinates, 201
Optical modes, 226, 339pr
Spectrum, 197ff, 337pr, 339pr
Thermal excitations, 145ff
Transitions assisted by, 314
Virtual, 228
Photons, 9, 232ff
Absorption and emission, 130ff, 235ff,
33%9pr
Annihilation and creation operators, 234
Coherence, 254ff
Field energy, 338pr
Flux, 133,134
Interaction with electrons, 130, 235, 236
Planck distribution, 146, 147
Spin angular momentum, 131
Thermal excitation, 145ff
Photothreshold, molecule, 329pr
Physical constants, 6, 287
Pi-bands, 21, 90, 91
Benzene, 323pr, 330pr
Pi-bonds, 21, 82, 323pr, 330pr
Pi-mesons, pions, 231
Planck Distribution, 146, 147
Planck's constant, 6, 287
Plane waves and spherical Bessel functions, 132
Plasma oscillations, 268, 269
Polar energy, 76, 101
Polarity, 76
Polarizability
Atoms, 336pr
Molecules, 329pr
Polarons, 225ff
Small, 313
Primitive
Lattice translations, 180
Lattice wavenumbers. 181
Principle quantum number, 55, 60
Probability
Conditional, 311
Density, 14
Occupation of states, 16, 140, 334pr
Pseudopotentials, 62ff, 174ff
Band-gap from, 183
Calculation of core radius, 328pr
Scattering by, 337pr
Screening, 176, 266
Pseudowavefunction, 62ff, 178

Qubit, 321
Quantized conductance, 28, 324pr
Quantum
Computing, 321, 322
Cryptography, 322
Flux, 286
Hall Effect, 291, 340pr
Noise, 165ff
Numbers

Subject Index 351

Angular momentum, 33, 34
Atoms, 55, 60
Harmonic oscillator, 42
Hydrogen atom, 55
Slabs, wires and dots, 24ff, 324pr
Well, 37ff, 245
Excitation from, 333pr
Stark shift in, 339pr
Quarks, 68
Quasi-Fermi level, 244

Rabi frequency, 258
Radial function and equation
Circular systems, 32
Spherical systems 34
Raising operators, 214
Randomizing phases, 319ff
Rare earths, 98
Reciprocal lattice vectors,
see Lattice wavenumbers
Recoil, gamma-ray emission, 314
Reduced mass, 53
Relativity
In the wave equation, 8
Magnetism, 291
Particle energy, 323pr
Spin-orbit coupling, 301ff, 341pr
Relaxation time
Approximation 161
Momentum, 186
Repulsion
Levels, 80
Overlap, 77,78
Resistance, maximum, 31
Resonant
Bond, 323pr
Tunneling and state, 122, 123ff, 331pr
Scattering by resonant state, 123
Rotational states, see also Angular momentum
Lis, 326pr
O3, 150
Rydberg, 54

s-states, 34
Bands, 91ff
Coupling 88ff
sp-hybrids, 85, 99ff
Saturating a transition, 239
Scanning Tunneling Microscope, 121
Scattering
By displaced atom, 332pr
Compton, light-electron, 323pr
Electron-electron, 212
Forward, 110
Impurity
Using pseudopotentials, 185ff, 337pr
Using tight-binding, 109-111, 331pr
Resonance, 123
Schroedinger's cat, 1, 13
Schroedinger Equation, 3ff, 8
In generalized coordinates, 48
Radial, 36
Time-independent, 14
With the vector potential, 50, 287ff
Scissor operator, 262
Screening, 263ff
Coulomb potential, 266, 267
Fermi-Thomas, 263ff
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Pseudopotentials, 176, 266
Quantum, 267, 268
Second-order
Coupling, 126ff
Perturbation theory, 79, 329pr, 330pr
Phase transition, 279
Stark Effect, 339pr
Second quantization, 206, 207ff, 338pr
Selection rules for transitions, 130, 132, 218
Self-consistent solutions, 263
Hubbard Hamiltonian, 276
Self-energy, polarons, 225ff
Self-exchange, 59, 272
Semiclassical theory, 160, 263, 264
Semiconductors, 99ff
Bands, 156, 186ff, 24 1ff
Spin-orbit splitting, 304, 305
Carrier distributions, 335pr
Doping, 156
Electron distribution, 155, 156
Electron-phonon interaction, 221
Sequential tunneling, 128
Shake-off excitations, 306ff, 341pr
Shell model, nuclear, 66ff, 327pr
Shot noise, 167ff
Sigma-bonds, 83
Slater determinant, 154, 207
Slow transition, 313
Smalil polaron, 313
Solids, 88ff, see Crystals
Solid-state laser, 244ff
Sommerfeld corrections, 244
Sound waves, 17ff, see also Phonons
Boundary conditions, 18
Metals, speed, 269
Speed of, 18
sp3—hybrids, 100
Special-point method, 280
Special relativity, see Relativity
Specific heat
Electronic, 155
Vibrating solid, 146, 338pr
Spectator systems, 306, 315
Speed
Light, 287
Sound, 18, 269
Spherical Bessel functions, 36ff, 132
Spherical cavity, 37ff, 327pr
Spherical harmonics, 34
Spherical symmetry, 33ff, 324pr, 327pr
Spin
And neutrinos, 135
Density wave, 277
Incommensurate, 279
Electron, 8
Half-integral values, fermions, 151
Integral values, bosons, 147
Magnetic moment, 293
Photons, 131
Resonance experiments, 294
Spin-flip scattering, 110
Spin-orbit coupling, 154, 301{f, 341pr
Semiconductor bands, 304, 305
States, 23, 153, 154
Spontaneous emission
Phonons, 224
Photons, 238

Standard Model of fundamental particles, 68,
138
Stark effect, 255, 256, 339pr
Statistical mechanics, 140ff, 334pr, 335pr
Steady state
Light absorption and emission, 339pr
Sequential tunneling, 128, 159
Stepping operators, 212ff, see Annihilation
operators, Creation operators
Angular momentum, 216
Stimulated emission
Phonons, 224
Photons, 238
Stirling's formula, 143
Strain-layer superlattice, 246
Strong coupling, 312
Structure, see Crystals
Structure factor
Diffraction, 175, 176
Electron-phonon interaction, 203, 204
Subbands, 24
Sudden approximation, 306-312, 318, 341pr
Sum rule, overlaps, 311
Summing infinite series, 30, 31, 144, 177, 324pr
Superconductivity, 282ff
Ground state, 285
Interaction responsible for, 228ff
Wavefunction, A(r), 286
Superfluid helium, 149
Superlattice, strain layer, 246
Surfaces
Energy in metals, 26
Interaction between, 26
Symmetry
Breaking, 270ff, 340pr
Molecular states, 70
Under interchange of particles, 58, 147,
149ff

Temperature, defined, 144
Theoretical alchemy, 101
Thermal
Energy, 146, 155, 338pr
Fluctuations, randomizing phase, 321
Noise, 165ff
Thermodynamics, 141
Thomas precession factor, 301
Threshold for ionization, 60, 134
Tight-Binding Theory, 69ff
Linear chain, 88ff
Periodic boundary conditions, 88
Universal parameters, 95, 330pr
Time-dependent
Distribution functions, 335pr
Level crossing, 191, 192
Perturbation theory, 108, 128ff, 251,m
331pr - 339pr
Time-independent Schroedinger Equation, 14
Track, cloud chamber, 321
Transmission of barriers, 112ff
Transition metals, 60
Ferromagnetism in, 300
Transitions
Adiabatic and sudden, 306-312, 318, 341pr
Antiferromagnetic, 279
Capture into local states, 127
Fast and slow, 312
First-order, 274



From a local state, 111, 331pr

Gamma-ray emission, 68, 314

Inelastic, 309ff, 314ff

Interband, 241ff

Metal-insulator, 277

Quantum, 105ff

Peierls, 281, 282

Phonon-assisted, 314

Saturating, 239

Second-order, 279

Time required, 309ff

Vertical in band diagrams, 241, 242
Transparency, electromagnetically-induced,

Transport theory, 158ff
Tumbling, see Angular momentum, Rotational
states

Tunneling, 112ff
Complex barriers, 333pr
Coulomb blockade, 170
Effective-mass theory, 119, 120
Effects of temperature, 321
In 3D crystals, 115
Inelastic, 31 1ff, 314ff
Into barrier, 38
Mairix elements, 114
Microscope, 121
Production of noise, 169
Rectangular barrier, 117, 118
Sequential, 128
Through oxides, 127
Through resonant state, 126, 331pr
Time, 313

Two-dimensional behavior, 25, 326pr

Umklapp processes, 205
Units, for fundamental constants, 6, 287
Universal tight-binding parameters, 95, 330pr
From semiconductor bands, 188
Unrestricted Hartree-Fock, 273
For Hubbard Hamiltonian, 276

Subject Index

Valence states
Atoms, 60, 62
Bands, 100, 187
Van-der-Waals Interaction, 165ff, 212, 335pr
Vanishing boundary conditions, 16, 91
Van Vleck susceptibility, 298, 341pr
Variational calculation, 56
Cooper pairs, 283
Cooperative phenomena, 282
Hydrogen 1s-state, 327pr
Molecular orbitals, 72ff
Statistical physics, 140ff, 143, 334pr, 335pr
Superconductivity, 285
Tight-binding states, 56, 88, 112
Unrestricted Hartree-Fock, 273
Use of physical intuition, 75
Vector potential, 9
For light wave, 9, 130
In quantum mechanics, 10
In the Schroedinger Equation, 48ff
Vertical transitions in bands, 241, 242
Vibrations, see Phonons
Virtual state, 228, 317
Virtual phonon, 228

Wavefunction, 3
As an invention, 8
Boundary conditions, 16,
Factoring, 21
Many-electron, 56
Model for atoms, 237, 338pr
Superconducting, A(r), 286

Wavenumber, 4

Wave packet, 3ff, 189ff

Wave-particle duality, 2ff

Weak coupling, 311

Weak interactions, 138

White noise, 165

Wigner crystal, 300

WKB method, 123

Zeeman splitting, 292, 341pr
Zero-point energy, 41, 335pr
Zone, Brillouin, 89, 90
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