Home News Events FAQ Contac

CRYSTAL14 Program Features

CRYSTAL

Features

- Theoretical background
- How to cite

SOFTWARE

- How to get a copy
- Download
- License fee
- Platforms

DOCS & SETS

- Documentation
- Interfaces

Full Features

New features with respect to CRYSTAL09 are in *italics* and red

Hamiltonians

- Hartree-Fock Theory
 - Restricted
 - Unrestricted

Density Functional Theory

- Semilocal functionals: local [L], gradient-corrected [G] and meta-GGA (tau-dependent) [T] • Hybrid HF-DFT functionals
 - Global hybrids: B3PW, B3LYP (using the VWN5 functional), PBE0 and more
 - Range-separated hybrids:
 - Screened-Coulomb (SC): HSE06, HSEsol
 - Long-range Corrected (LC): LC-wPBE, LC-wPBEsol, wB97, wB97-X
- Minnesota semilocal and hybrid functionals:
 - M05 family: M05, M05-2X
 - M06 family: M06, M06-2X, M06-HF, M06-L
- Double hybrid functionals: B2-PLYP, mPW2-PLYP, B2GP-PLYP • User-defined hybrid functionals
- Numerical-grid based numerical quadrature scheme
- London-type empirical correction for dispersion interactions (DFT-D2 scheme)

CRYSCOR

TOPOND

Energy derivatives

- Tutorials
- Basis Sets
- Applications
- Animations of vibrational modes
- Analytical first derivatives with respect to the nuclear coordinates and cell parameters
 - Hartree-Fock and Density Functional methods (LDA, GGA, mGGA, global- and range-separated hybrids)
 All-electron and Effective Core Potentials
 - All-electron and Ellective Core Potentials
- Analytical derivatives, up to fourth order, with respect to an applied electric field (CPHF/CPKS)
 - Dielectric tensor
 - (Hyper)-polarizabilities

Type of calculation

- Single-point energy calculation
- Geometry optimizations
 - Uses a quasi-Newton algorithm
 - Optimizes in symmetry-adapted cartesian coordinates
 - Optimizes in redundant coordinates
 - New internal coordinates handling and algorithm for back-transformation
 - Full geometry optimization (cell parameters and atom coordinates)
 - Freezes atoms during optimization
 - Constant volume or pressure constrained geometry optimization (3D only)
 - Transition state search
- Harmonic vibrational frequencies
 - Harmonic vibrational frequencies at Gamma point
 - Phonon dispersion using a direct approach (efficient supercell scheme)
 - Phonon band structure and DOSs
 - Calculation of Atomic Displacement Parameters and Debye-Waller factors
 - IR intensities through localized Wannier functions and Berry Phase
 - IR and Raman intensities through CPHF/CPKS analytical approach
 - Simulated reflectance, IR and Raman spectra
 - Exploration of the energy and geometry along selected normal modes
- Anharmonic frequencies for X-H bonds
- · Automated calculation of the elastic tensor of crystalline systems
 - Generalized to 2D and 1D systems
 - Calculation of directional seismic wave velocities
 - Calculation of isotropic polycrystalline aggregates elastic properties via Voigt-Reuss-Hill scheme
- Automated E vs V calculation for equation of state (3D only)
 - New EoSs: Vinet, Poirer-Tarantola and polynomial

- Automated calculation of pressure dependence of volume and bulk modulus
- Automated calculation of piezoelectric and photoelastic tensors
 - Direct and converse piezoelectricity (using the Berry phase approach)
 - Elasto-optic tensor through the CPHF/CPKS scheme
 - Electric field frequency dependence of photoelastic properties

Improved tools to model solid solutions

- Generation of configurations
- Automated algorithm for computing the energy (with or without geometry optimization) of selected configurations

Basis set

Gaussian type functions basis sets

- s, p, d, and f GTFs
- Standard Pople Basis Sets
 - STO-nG n=2-6 (H-Xe), 3-21G (H-Xe), 6-21G (H-Ar)
 - polarization and diffuse function extensions
- Internal library of basis sets with a simplified input
- User-specified basis sets supported
- Pseudopotential Basis Sets
 - Available sets are:
 - Hay-Wadt large core
 - Hay-Wadt small core
 - User-defined pseudopotential basis sets supported

Periodic systems

- Periodicity
 - Consistent treatment of all periodic systems
 - 3D Crystalline solids (230 space groups)
 - 2D Films and surfaces (80 layer groups)
 - 1D Polymers
 - space group derived symmetry (75 rod groups)
 - helical symmetry (up to order 48)
 - 1D Nanotubes (with any number of symmetry operators)
 - 0D Molecules (32 point groups)
- Automated geometry editing

- 3D to 2D slab parallel to a selected crystalline face (hkl)
- 3D to 0D cluster from a perfect crystal (H saturated)
- 3D to 0D extraction of molecules from a molecular crystal
- 3D to n3D supercell creation
- 2D to 1D building nanotubes from a single-layer slab model
- 2D to 0D building fullerene-like structures from a single-layer slab model
- 3D to 1D, 0D building nanorods and nanoparticles from a perfect crystal
- 2D to 0D construction of Wulff's polyhedron from surface energies
- Several geometry manipulations (reduction of symmetry; insertion, displacement, substitution, deletion of atoms)

Wave function analysis and properties

- Band structure
- · Density of states
 - Band projected DOSS
 - AO projected DOSS
- All Electron Charge Density Spin Density
 - Density maps
 - Mulliken population analysis
 - Density analytical derivatives
- Atomic multipoles
- Electric field
- Electric field gradient
- Static structure factors and dynamic structure factors including the Debye-Waller factor
- Electron Momentum Density and Compton profiles
 - Electron momentum density maps
 - Automated anisotropy maps
 - Partitioning according to Wannier functions
- · Electrostatic potential and its derivatives
 - Quantum and classical electrostatic potential and its derivatives
 - Electrostatic potential maps
- Fermi contact
- Localized Wannier Functions (Boys method)
- Mossbauer effect (isotropic effect and quadrupolar interaction)
- Dielectric properties
 - Spontaneous polarization

- Berry Phase
- Localized Wannier Functions
- Dielectric constant
 - Coupled Perturbed HF(KS) scheme
 - Finite-field approximation
- High-order static electric susceptibilities (2nd and 3rd order)
- Topological analysis of the electron charge density via the TOPOND package, fully integrated in the program

Software performance

- Memory management: dynamic allocation
- Full parallelization of the code
 - parallel SCF and gradients for both HF and DFT methods
 - Replicated data version (MPI)
 - Massive parallel version (MPI) (distributed memory) (Improved version: lower memory usage and better scaling)
 - Parallel (replicated data) version of the "properties" module
 - New parallelization strategy on IRREPs
- Enhanced exploitation of the point-group symmetry

Interfaces

- Internal interface to CRYSCOR (serial version) for electronic structure calculations of 1D,- 2D- and 3D-periodic non-conducting systems at the L-MP2 correlated level and Double-Hybrids
- Internal interface to TOPOND for topological analysis of the charge density

Copyright © CRYSTAL Website by ZioSEM web agency

Home Contacts