
Elements of Statistical Mechanics 

Thermodynamics describes the properties of macroscopic bodies. Statistical 

mechanics allows us to obtain the laws of thermodynamics from the laws of 

mechanics, classical or quantum, applied at its minimum constituents.  

Please note that the definition of each size thermodynamics involves the 

interaction between macroscopic bodies and is therefore closely dependent on 

the time scale of evolution of the system. 

First, we note that in the time needed for the measurement of a magnitude 

thermodynamics, the variables that describe the system change microscopically 

enormously. The thermodynamic quantities are time averages of properties in 

the overall system and are subject to the imprecise nature of its measurement 

of a random quantity, inaccuracies or `that can only be reduced at the cost 

of increased measurement time. We say that a system is isolated if there is 

no interaction between it and the environment. Properly, no system meets that 

definition. We observe, however, that the interactions between the system and 

the environment, by which we designate there is all that it is not the 

system, they are generally mediated by the surface of the system. Increasing 

the size of the system, therefore, the time of interaction between the system 

and the environment increase. Therefore, once again, the system may be said 

or isolated or less depending on the time of observation. Similarly, for a 

system that evolves thermodynamically in its interior, is in some cases 

possible to divide it into subparts such that in the time scale of evolution 

of the system subsystems constituents can be considered isolated from each 

other, then it is possible to define thermodynamic quantities. 

 

A system of N point-like constituents is described according to classical 

mechanics the set of 6N variables that describe for each instant of time 

positions and moments. The set of all the values that these variables can 

assume is that the phase space. A microstate of the system is therefore 

represented by a point in space 6N dimensional phases and the temporal 

evolution of the system by a curve in the phase space.  

 

Obviously there is a one to one correspondence between a thermodynamic and a 

section of the curve in the phase space, or equivalently exist due to the 

complexity of the system different microscopic states such that the average 

of a quantity over a time interval of their evolution as give result in the 

same value. Therefore, to take account of our inability to `prepare the 

system in a state determined microscopically consider a function ρ(x, p) in 

phase space, and this function represents the density of probability that a 

state macroscopically determined match microstates in the volume dxdp 

centered around x, p. 

By definition must be 𝝆 𝒙,𝒑 𝒅𝒙𝒅𝒑 =𝟏. 

The conservation of ρ time ago that ıs worth the continuity equation: 



 
 

where v is extended to the vector . 

In steady state we then  specializing: 

 

Or 

 

but the Hamiltonian mechanics, along the trajectories of the system: 

 

So, Liouville theorem for a system under stationary conditions the density of 

probability is a constant along the trajectories of the system: 

 

 

The same is true if we consider a system at the quantum level. Expanding the 

wave function of the system in a comprehensive basis: 

 

the expectation value for a quantity f it will be given by: 

 

The time evolution of the system is described by the equations: 



 

The transition to the incomplete description of quantum statistics are made 

by changing the words in  relative to the pure states with the terms  

which represent the statistical average. The evolution of the matrix w in 

general should return the correct description of the evolution to a pure 

state, ie, with no statistical uncertainty, therefore: 

 

So if w commutes with H then w does not change over time. This is the 

equivalent of the Liouville theorem.  

If the base  has a diagonal representation, then w is independent of 

time only if 

 

and therefore it is possible to find a basis in which both w and H 

simultaneously have diagonal representation.  

 

Catered Liouville's theorem, n is the quantum equivalent are sufficient to 

determine the shape of the density of probability. The distributions that we 

will use can be obtained from the above two hypotheses under equivalent: that 

states of equal energy have equal a priori probabilities, ie that the 

distribution statisticaly maximizes the entropy of the system. Given a set of 

mutually exclusive events, the entropy associated with the distribution of 

probability is given by: 

 

which is obviously a positive magnitude, since  

 

A microcanonical ensemble is said if his energy is assigned. For the study of 

the statistical distribution of this set, therefore, we can limit ourselves 

to states that meet the requirement , since otherwise w anything. We 

introduce the Lagrange function that includes the constraint  



 

 

in order that F takes an extremal value then: 

 

and or α can be derived from the condition of the bond: 

 

 

As already said the condition of maximization of entropy coincides with the 

statistical assumption of equivalence of states of equal energy. We can 

arrive at a similar definition of entropy for the microcanonical ensemble 

even in the context of classical mechanics: 

 

Where  designates the set of points of the phase space of energy E. E' 

evident that this definition of entropy depends on the unit of measure. To 

eliminate this equivocit `a and divides the integral for getting   also a 

correspondence between the value obtained from classical mechanics and the 

value obtained by quantum mechanics in the classical regime. 

 

Now suppose we divide an isolated thermodynamic system into two parts. For 

the case of advanced, the system realizzer `a with equal probability to each 

of the microstates  which verify the relationship . 

Therefore, the probability to find a part in a state i is proportional to the 

number of ways in which the other party can `or achieve a state of energy

. therefore, 

 

 



 

where we took advantage of the fact that the fluctuations around the energy E 

of a thermodynamic system are small to expand the function S (E). But  

and thermodynamics 1 / T.  

 

Therefore we have: 

 

where  is the normalization factor: 

 

 

and the sum in the denominator is called the partition function. From the 

expression of entropy 

 

we get that  which is linked to the function of Helmholtz, F, for which we 

can rewrite the distribution: 

 

This distribution is called the canonical distribution.  

Suppose now that a part of the system can communicate with the rest not only 

energy, but also matter. Then, generalizing the arguments of the first and 

the expansion of the entropy 

 

we get 

 

where  is the usual normalization factor, which one can derive the 

expression of entropy:  

 



 

 

 

or  

 

 

 

 

In summary , the sets microcanonical , canonical and grancanonical are models 

of closed systems , respectively , which are open to the exchange of heat , 

open to the exchange of heat and mass transfer. The normalization factors are 

related to the functions  which, as is known from thermodynamics 

take maximum value for each of the three types of systems in equilibrium 

conditions. 

 

We will apply now the distribution grandcanonical to find the thermodynamic 

functions of systems of identical particles. Fermions are particles whose 

wavefunction is antisymmetric with respect to exchange of two positions. 

In formulas , designated the set of coordinates that describe the 

position and spin , 

 

 

A consequence of this is that in the description or the independent states of 

the two particles can not occupy the same state. For several reasons , this 

description is by far the most common ` u and therefore occupies a special 

position . If the states are independent , we can considerably each state as 

a thermodynamic system at hand, then for each of the states we have , 

 



but the sum is reduced to only two terms , since ` and the possible values of 

the number of jobs for fermions are 0 and 1 . 

Therefore, 

 

and each thermodynamic properties is obtained as the sum of the contributions 

of each state / subsystem . 

Bosons are identical particles such that the wave function that describes 

them is symmetric with respect to the exchange of the coordinates. The 

description in terms of independent states , there are no limits to the 

occupation numbers of bosonic states . Thus the sum  that describes 

contains all possible values of the index n, 

 

 

The numbers ni define the relationship of the probability of finding in each 

state i. As can be seen , bosons and fermions differ in the sign in the 

denominator, in the case of fermions , the positive sign ensures that ni is 

always less than 1 . In the case of bosons , instead , in order that the 

expression ` and makes sense , μ must be less than all energy levels. Note 

also that , ie for small values of the occupation numbers , the two 

distributions take values close to the Boltzmann distribution . 

 

We could also obtain the distribution of Boltzmann , Fermi-Dirac and Bose-

Einstein from the maximization of entropy, for giving good that the 

distribution of probability is a function of the energy alone . Let a system 

of N independent particles . We wonder what is the distribution of the 

occupation numbers of the states of the system that maximizes the entropy 

under the constraint that the sum of the occupation numbers is N, and that 

the energy of the system is the set point E. 

To obtain the sought formula , we divide the energy eigenstates into groups 

such that each group has the same energy in less than a macroscopic 

indeterminacy and are irrelevant ?  respectively the energy value and 

the cardinality of each group. The system is then described macroscopically 

by the number Nj of particles occupying each group j , or the number of 



average employment  nj = Nj / Gj . The diversities in the 

statistical behavior of the particles arises from the way in which you count 

the macroscopic states of the system. 

For a set of distinguishable particles the number of states that we can build 

on the basis of single-particle states of Gj is given by  

 

As already said , the number of maximum employment for fermions is 1. 

Therefore, the number of macroscopic states that it is possible to obtain Gj 

been dealing with fermions Nj is the way to choose Nj of G -J states, or 

 

 

 

Bosons are particles indistinguishable, but the number of jobs in each state 

is arbitrary . If a configuration is represented by a succession of dots and 

strokes, 

 

 

in which each point represents a boson and all the sudden separation between 

two states then it can be deduced that the number of distinguishable 

configurations is given by the number of ways in which you can assign

traits to  places. 

 

 

therefore 

 

 

 

Therefore, the configuration described by nj is associated to entropy 



 

Using Stirling's formula for the asymptotic value of the factorial function: 

 

We obtain: 

 

 

where the upper sign applies to bosons and the lower sign for fermions . In 

the limit of small values of nj , applicable for example to gas at ordinary 

temperatures , the two entropy formulas become equivalent to each other and 

to the relationship longer the simplest 

 

 

which returns the correct Boltzmann statistics of the factor N! to take 

account of the identity of the particles ( boltzoni ) . 

To maximize the entropy subject to the constraints 

 

 

we form the Lagrange function 

 



getting value for extremal 

 

which is the distribution of identical particles already obtained in above. 

 

As an exercise we calculate the properties of an ideal gas of boltzoni . If 

the gas is made up of point particles and at temperatures such that we can 

neglect the quantum corrections we simply : 

 

positions on the integral yields simply the volume V , the integral on the 

moments is factored : 

 

 

Finally we get: 

 

 

Therefore, we calculate the energy : 

 

Entropy : 

 



and the pressure of the system: 

 

 

If the constituents of the gas are pluriatomici , or temperatures such that 

the internal electronic structure becomes relevant bisogner have to add terms 

related to internal degrees of freedom . 

 

and where Ftr is for contributions to translational already calculated for 

the rotational Frot , which classically is described by : 

 

with Ix, Iy , Iz moments of rotational inertia along the principal axes.

 and represents the contribution of the electronic and vibrational 

states. 

 

To conclude we note that passing from the classical statistical 

thermodynamics it is necessary to carry out replacements 

 

 

 


