Università degli Studi di Napoli "Federico II"

Dipartimento di Progettazione Aeronautica

Appunti dalle lezioni di Dinamica del Volo

Integrazione di sistemi di equazioni differenziali con il metodo di Runge-Kutta

Ing. Agostino De Marco

agodemar@unina.it

Indice

1	Problemi di valori iniziali e integrazione numerica	3
2	Il metodo di Runge–Kutta	4
3	Listato del codice rkdrive.for	6

1 Problemi di valori iniziali e integrazione numerica

Sia data una funzione f delle variabili x, y_1, \ldots, y_M . In generale sia la f una funzione vettoriale ad M componenti: $f = \{f_1, \ldots, f_M\}^T$. Un sistema di equazioni differenziali ordinarie del primo ordine, nell'incognita $y = \{y_1, \ldots, y_M\}^T = y(x)$, funzione della variabile scalare indipendente x, si scrive nella forma:

$$y' = f(x, y) \tag{1}$$

dove l'operatore $(\cdot)' \equiv d/dx$ indica la derivazione rispetto alla variabile x.

Una qualsiasi equazione differenziale ordinaria, di qualsiasi ordine, può sempre essere ridotta ad un sistema di equazioni differenziali del primo ordine del tipo (1). Ad esempio l'equazione

$$\frac{\mathrm{d}^2 g}{\mathrm{d}x} + q(x)\frac{\mathrm{d}g}{\mathrm{d}x} = r(x) \tag{2}$$

nell'incognita scalare g(x) può essere riscritta nella forma di sistema:

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = y_2(x) \\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = r(x) - q(x)y_2(x) \end{cases}$$
 (3)

nella funzione vettoriale incognita $y(x) = \{y_1(x), y_2(x)\}^\mathsf{T}$, dove l'incognita originale $g(x) \equiv y_1(x)$ mentre $y_2(x)$ è una nuova variabile dipendente.

Il generico problema di equazioni differenziali ordinarie viene quindi sempre ricondotto allo studio di un sistema di M equazioni accoppiate del primo ordine per le funzioni y_i , i = 1, ..., M, avente la forma:

$$\frac{\mathrm{d}y_i}{\mathrm{d}x} = f_i(x, y_1, \dots, y_M) \qquad i = 1, \dots, M \tag{4}$$

dove le funzioni a secondo membro sono assegnate. Il sistema (4) insieme con la condizione iniziale nel punto x_0 :

$$y(x_0) = y_0 \tag{5}$$

costituisce un problema di valori iniziali che ammette una soluzione unica, sotto opportune ipotesi di regolarità della funzione f. Un problema ben posto è anche quello costituito dalla

(4) e dalle condizioni al contorno:

$$y_i(a) = y_{i,A}$$
 $i = 1, ... m$
 $y_i(b) = y_{i,B}$ $i = m + 1, ... M$ (6)

dove, ad esempio, alcune condizioni (m < M) sono assegnate per un valore a e le rimanenti per un valore b. In tal caso si parla di problema di valori al contorno nell'intervallo delle $x \in [a,b]$. In questi appunti si parlerà esclusivamente della risoluzione di un problema di valori iniziali.

I metodi numerici di risoluzione del problema (4)-(5), detti anche metodi di integrazione "al passo", determinano in maniera approssimata i valori della y in corrispondenza di un numero discreto di valori della x:

$$x_{\text{Iniz}} \equiv x_0, x_1, \dots, x_n, x_{n+1}, \dots, x_{\text{Fin}}$$

$$\tag{7}$$

dove n indica il generico valore discreto ed $h_n = x_{n+1} - x_n$ il generico passo di integrazione. Per semplicità si supporrà in quanto segue che il passo di integrazione sia costante e pari ad $h = (x_{\text{Fin}} - x_{\text{Iniz}})/N$, con N il numero totale di passi di integrazione.

Qualsiasi procedura numerica di integrazione al passo segue la stessa semplice idea di base: i differenziali dy e dx vengono riscritti nelle formule (4) come incrementi finiti Δy e Δx . Moltiplicando le equazioni per Δx si ottengono delle formule algebriche che danno la variazione delle funzioni f_i , cioè della variabile dipendente y, al variare, passo passo, Δx , della variabile indipendente. Nel limite per $\Delta x \to 0$ la soluzione numerica, campionata in un numero sempre maggiore di punti, tenderà alla soluzione esatta del problema differenziale di partenza. L'implementazione di una simile procedura corrisponde al ben noto metodo di integrazione di Eulero.

2 Il metodo di Runge–Kutta

La formula di integrazione corrispondente al metodo di Eulero, che fa "avanzare" una soluzione, nota al generico passo n, dal punto x_n a quello successivo $x_{n+1} \equiv x_n + h$ è la seguente:

$$y_{n+1} = y_n + hf(x_n, y_n)$$
(8)

La (8) è una tipica formula "non simmetrica", nel senso che sfrutta informazioni, le derivate $f(x_n, y_n)$, valutate solo al primo estremo dell'intervallo $[x_n, x_{n+1}]$. Ciò rende la "predizione" del valore y_{n+1} accurata a meno di un termine di correzione di $O(h^2)$. La formula di Eulero (8) corrisponde ad un metodo del primo ordine.¹

Il metodo di Eulero non è raccomandabile per un uso pratico per due motivi principali: (i) esso non è accurato, a parità di passo di integrazione, quanto altri metodi di altrettanto semplice implementazione, come il metodo di Runge–Kutta di cui si parlerà qui di seguito; (ii) il metodo di Eulero può risultare spesso instabile quando la funzione f è sensibilmente variabile.

Si consideri comunque una formula del tipo (8) al fine di ottenere un "incremento di prova" k_1 della y, a partire dai valori x_n ed y_n . Si otterrà un valore $y_n + k_1$ in corrispondenza dell'estremo x_{n+1} . Infine si applichi la stessa formula di integrazione ma valutando stavolta la funzione f in corrispondenza dei valori intermedi $x_n + \frac{1}{2}h$ ed $y_n + \frac{1}{2}k_1$. Si otterrà un nuovo incremento, k_2 , che potrà essere considerato un valore più accurato di k_1 . Si può far vedere [2] che k_2 è un incremento approssimato a meno di un termine di $O(h^3)$:

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf\left(x_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}k_{1}\right)$$

$$y_{n+1} = y_{n} + k_{2} + O(h^{3})$$
(9)

cioè che la procedura appena descritta, nota come midpoint method o metodo di Runge-Kutta del secondo ordine, è un metodo del secondo ordine, cfr fig. 1(b). Combinando due formule del primo ordine, cioè costruendo un valore definitivo della y_{n+1} in due stadi come somma

$$y_{n+1} = y_n + 0 \cdot k_2 + 1 \cdot k_2 \tag{10}$$

"valutando" differentemente la funzione f in ciascuno stadio, si ottiene quindi la cancellazione dal termine di errore del contributo del secondo ordine (h^2) .

Esistono molti modi di valutare il secondo membro f(x,y) all'interno dell'intervallo $[x_n, x_{n+1}]$ secondo formule del primo ordine come la (8) e di combinarle in più stadi N_s . È

¹Per convenzione un metodo si dice di ordine r se il termine di correzione $E = y_{n+1} - y_n - k$ è di $O(h^{r+1})$, dove k è pari al prodotto di h per la f valutata nel modo proposto dallo schema in questione.

possibile dimostrare che, al crescere del numero degli stadi, con opportune combinazioni si possono via via eliminare dall'errore di approssimazione

i contributi di $O(h^2)$, $O(h^3)$, $O(h^4)$ ecc. Questa è l'idea in base alla quale è stato sviluppato il metodo di Runge–Kutta.

La versione più diffusa di questo metodo di integrazione al passo corrisponde alla cosiddetta formula di Runge-Kutta del quarto ordine. Tale procedura viene scritta classicamente nella forma:

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = hf(x_{n} + h, y_{n} + k_{3})$$

$$y_{n+1} = y_{n} + \frac{k_{1}}{6} + \frac{k_{2}}{3} + \frac{k_{3}}{3} + \frac{k_{4}}{6} + O(h^{5})$$

$$(12)$$

Il metodo di Runge-Kutta del quarto ordine, noto anche come 4-stage stepping scheme, $(N_s = 4, c_1 = c_4 = \frac{1}{6}, c_2 = c_3 = \frac{1}{3}, \text{ cfr. (11)})$, richiede quattro valutazioni della funzione f per ciascun passo h, cfr. fig. 2. Una tale procedura è nella grande maggioranza dei casi superiore alla corrispondente formula del secondo ordine (9) se, a parità di accuratezza, si riesce ad mantenere un passo doppio. Si ricorda al lettore che quest'ultima affermazione è vera dal punto di vista della pratica ingegneristica, non dal punto di vista strettamente matematico, cfr. [1].

3 Listato del codice rkdrive.for

Come esempio di applicazione del metodo di integrazione di Runge-Kutta viene proposto in questo paragrafo il listato del codice di calcolo rkdrive.for, scritto in FORTRAN 77. Il

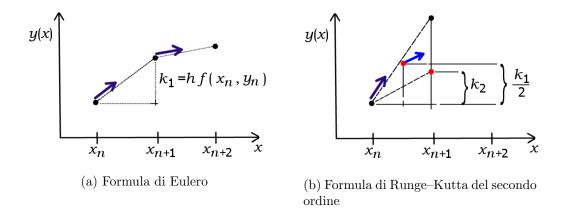


Figura 1: Metodo di Eulero (a). Con la derivata al punto iniziale di ogni intervallo si estrapola direttamente il valore successivo della funzione incognita. *Midpoint method* (b). Con la derivata iniziale si ottiene un punto intermedio. In esso si valuta la derivata che estrapola il valore successivo a partire da quello iniziale.

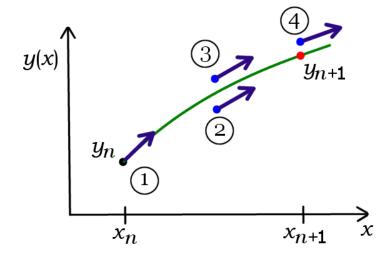


Figura 2: Metodo di Runge–Kutta del quarto ordine. La derivata è valutata quattro volte, una volta al punto iniziale (1), due volte in due punti intermedi di prova (2) e (3) ed infine al punto di prova finale (4). Dalla combinazione di tali valori si ottiene il valore successivo dell'incognita y.

problema di valori iniziali risolto con questo programma è il seguente:

$$\frac{d^2y}{dx^2} + 3\cos^2 x - 2 = 0$$

$$y(0) = \frac{dy}{dx}(0) = 0$$
(13)

Si può facilmente verificare che la soluzione analitica del problema (13) è costituita dalla funzione:

$$y(x) = \frac{1}{4}x^2 + \frac{3}{8}\cos(2x) - \frac{3}{8} \tag{14}$$

Nel codice rkdrive viene fissato un numero di passi di integrazione pari ad NSTEP ed un valore finale della variabile indipendente (x2) pari a 6.28. La subroutine che implementa la formula di Runge–Kutta è denominata rk4 mentre la subroutine che implementa l'algoritmo di integrazione al passo è denominata rkdumb. La subroutine derivs, il cui nome compare tra gli argomenti di rkdumb, implementa la posizione:

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = f_1(x, y_1, y_2) = y_2\\ \frac{\mathrm{d}y_2}{\mathrm{d}x} = f_2(x, y_1, y_2) = -3\cos^2 x + 2 \end{cases}$$
 (15)

Il grafico della soluzione esatta e della soluzione numerica del problema proposto è riportato infine in fig. 3.

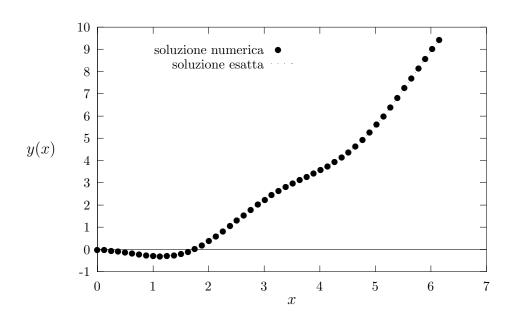


Figura 3: Soluzione numerica del problema di valori iniziali (13) nell'intervallo $[0, 2\pi]$ con metodo di Runge–Kutta del quarto ordine.

Listato 1: Il file sorgente "rkdrive.for".

```
! Programma: rkdrive
  ! Autore: Agostino De Marco
  ! Ref.: Numerical Recipes in Fortran
    Task: Driver per la routine rkdumb
        PROGRAM rkdrive
        INTEGER NSTEP, NVAR
        PARAMETER (NVAR=2, NSTEP=50)
        PARAMETER (NMAX=50, NSTPMX=200)
10
        INTEGER i, j
11
        REAL x(NSTPMX),x1,x2,y(NMAX,NSTPMX),vstart(NVAR)
12
        COMMON /path/ x,y
13
        EXTERNAL derivs
14
        x1=0.0
15
        vstart(1)=0. \leftarrow y_1(0)=0
16
        vstart(2)=0. \leftarrow y_2(0) = 0
^{17}
        x2=6.28
18
        CALL rkdumb(vstart,NVAR,x1,x2,NSTEP,derivs)
19
```

```
20
21
   ! Stampa i risultati a video
22
23
        WRITE(*, '(/1x,t9,a,t17,a,t31,a/)') 'X', 'Integrated', 'Exact'
24
        DO 11 i=1, (NSTEP/10)
25
           j=10*i
26
           WRITE(*, '(1x,f10.4,2x,2f12.6)') x(j),y(1,j),val(x(j))
27
         CONTINUE
   11
28
29
30
   ! Salva i risultati su file
31
32
        OPEN(8, FILE="output.txt")
33
        DO 111 j=1, NSTEP
           WRITE(8, '(1x, f10.4, 2x, 2f12.6)') x(j), y(1, j), val(x(j))
35
  111
        CONTINUE
36
37
        END
38
39
40
   ! Definisce la soluzione esatta: y(x) = x^4 + 3\cos^2 x + 2
42
        REAL FUNCTION val(t)
43
        REAL t
44
        val=t*t/4. + 3.*cos(2.*t)/8.-3./8.
45
        END FUNCTION
46
47
48
   ! Definisce le derivate f_i(x, y_1, y_2)
49
50
        SUBROUTINE derivs(x,y,dydx)
51
        REAL x,y(*),dydx(*)
52
                                         \longleftarrow y_1' = y_2
        dydx(1)=y(2)
        dydx(2)=-3.*cos(x)*cos(x)+2. \leftarrow y_2'=-3\cos^2 x+2
54
        RETURN
        END
56
   ! Implementa l'algoritmo di integrazione al passo
58
        SUBROUTINE rkdumb(vstart,nvar,x1,x2,nstep,derivs)
```

```
INTEGER nstep,nvar,NMAX,NSTPMX
61
         PARAMETER (NMAX=50, NSTPMX=200)
62
          REAL x1,x2,vstart(nvar),xx(NSTPMX),y(NMAX,NSTPMX)
63
         EXTERNAL derivs
64
         COMMON /path/ xx,y
65
         USES rk4
   !U
66
         INTEGER i,k
67
         REAL h,x,dv(NMAX),v(NMAX)
68
         DO 11 i=1, nvar
69
            v(i)=vstart(i)
70
            y(i,1)=v(i)
                               \leftarrow assegna y(x_0) = y_0
71
   11
         CONTINUE
72
         xx(1)=x1
73
         x=x1
74
         h=(x2-x1)/nstep
                                 \leftarrow calcola il passo h
75
                                       (k \equiv indice del generico passo di integrazione n)
         DO 13 k=1,nstep
76
            CALL derivs(x,v,dv)
                                       \longleftarrow valuta la derivata d\mathbf{v} = f(x_n, y_n)
            CALL rk4(v,dv,nvar,x,h,v,derivs) ← v è la soluzione al passo successivo
78
            IF(x+h.eq.x)pause 'stepsize not significant in rkdumb'
79
            x=x+h
80
            xx(k+1)=x
                             \longleftarrow x_{n+1} = x_n + h
            DO 12 i=1,nvar
82
              y(i,k+1)=v(i)
                                   \longleftarrow y_{n+1} = v
83
   12
            CONTINUE
84
   13
         CONTINUE
85
         RETURN
86
          END
87
88
89
     Implementa la formula di Runge-Kutta a quattro stadi
90
91
         SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)
92
         INTEGER n, NMAX
93
         REAL h,x,dydx(n),y(n),yout(n)
         EXTERNAL derivs
95
         PARAMETER (NMAX=50)
96
         INTEGER i
97
         REAL h6,hh,xh,dym(NMAX),dyt(NMAX),yt(NMAX)
98
         hh=h*0.5
99
         h6=h/6.
100
                        \longleftarrow x_n + \frac{h}{2}
         xh=x+hh
101
```

```
DO 11 i=1,n
102
               yt(i)=y(i)+hh*dydx(i) \leftarrow dyt = y_n + \frac{k_1}{2}
103
    11
            CONTINUE
104
                                                 \leftarrow valuta la derivata dyt= f(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})
            CALL derivs(xh,yt,dyt)
105
            DO 12 i=1,n
106
                                                   \longleftarrow y_n + \frac{k_2}{2}
              yt(i)=y(i)+hh*dyt(i)
107
            CONTINUE
108
                                                  \longleftarrow valuta la derivata dym= f(x_n + \frac{h}{2}, y_n + \frac{k_2}{2})
            CALL derivs(xh,yt,dym)
109
            DO 13 i=1,n
110
               yt(i)=y(i)+h*dym(i)
                                                 \leftarrow dyt = y_n + k_3
111
                                                 \leftarrow dym= (k_2 + k_3)/h
               dym(i)=dyt(i)+dym(i)
112
            CONTINUE
    13
113
                                                    \leftarrow valuta la derivata dyt= f(x_n + h, y_n + k_3)
            CALL derivs(x+h,yt,dyt)
114
            DO 14 i=1,n
115
               yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.*dym(i)) \leftarrow y_n + \frac{h}{6} \left( \frac{k_1}{h} + \frac{k_4}{h} + 2 \frac{k_2 + k_3}{h} \right)
116
    14
            CONTINUE
117
            RETURN
118
            END
119
```

Riferimenti bibliografici

- [1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, *Numerical Recipes in Fortran: The Art of Scientific Computing*, Cambridge University Press, 1992.
- [2] G. Dahlquist, A. Bjorck, Numerical Methods, Prentice-Hall, 1974.